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1. Introduction

Good teaching requires clear exposition of main facts, as well as all those which
are trivial but could be lasting prejudices of students.

In mathematics lessons at secondary schools, a frequently discussed issue is
whether it is true that

0.999 . . . < 1 or 0.999 . . . = 1.

From my experience as a college teacher, I know that the vast majority of freshmen
choose the first alternative without any hesitation. Their justification is almost
always the same: If a decimal number begins with a zero, it cannot equal one but
it is smaller than one. Similarly, Mundy and Graham mention students’ frequent
statement that The number 0.999 . . . equals approximately 1, gets closer and closer
to 1, but it is not exactly 1 [9]. The students think that The difference between
0.999 . . . and 1 is infinitesimally small, but there is one or The number 0.999 . . . is
the last number before 1 (see studies [3] and [12]).

In the subsequent discussion with students (we will come back to it), it might
be appropriate to say that 0.999 . . . can be understood as the infinite sum
(1) 0.999 . . . = 0.9 + 0.09 + 0.009 + 0.0009 + · · · .

This way we come to infinite series. The key issue now is the question: Are students
capable of accepting the thesis that the sum of an infinite number of positive real
numbers is a real number? At this stage, the most frequent answer is: No.

Bero states that the task of calculating the sum of infinite series requires a
coordinated usage of more concepts related to the infinity: the number of terms
in the infinite series, the infinite process and the sum of infinite series [1]. These
concepts are not differentiated in the student’s mind and the usage of each of the
concepts separately causes difficulties. The situation mentioned above, however,
additionally requires using the links between them as well.
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2. The obstacles

In my view, three basic obstacles (see the theory of the epistemological obsta-
cles in [2]) can be specified concerning students’ understanding of the concept of
infinite series.

First, it is the attitude of students that an infinite series cannot be summed
up. This view follows students’ experience with finite sums:

It cannot be determined if it goes up to the infinity. It has no end, after all.
(Ivan, a male grammar school student, 16 years).

One cannot sum the numbers up to the infinity as we always add something
more to that, after all. (Marta, a female grammar school student, 17 years).

Second, it is a common idea of the majority of students that the sequence of
partial sums of an infinite series of positive terms grows above all limits:

But when I add one more number, it further grows and it keeps on growing
until the infinity. (Petr, a male grammar school student, 16 years).

From the point of the relation of phylogenesis and ontogenesis, this idea cor-
responds to Zenon’s belief (about 490-430 BC) that the sum of an infinite number
of line segments must be infinite.

It is possible to overcome this idea of students by specific geometrical proce-
dures. For example, we can mention Oresme’s imaginative method (Nicole Oresme,
1323?-1382) of cutting up a unit square (Fig. 1) for equality proof:

∞∑
n=1

1
2n

=
1
2

+
1
4

+
1
8

+ · · · = 1.

Fig. 1 Fig. 2

The same can be shown with a line segment as well (Fig. 3).

Fig. 3
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Similarly, the illustrative Figure 2 can be used as a proof of the equality
∞∑

n=1

1
4n

=
1
4

+
1
16

+
1
64

+ · · · = 1
3
.

After mastering the second obstacle, though, the third obstacle occurs (which
is closely connected to the first one). For example regarding Figure 3, students
often argue:

All the same, it never equals one, it only gets closer and closer to one, but it
never gets there. (Marta, a female grammar school student, 17 years).

There is always a little bit missing to one—even if we keep on adding, there will
always be a little bit missing. (Ondra, a male grammar school student, 18 years)

The above mentioned statements of students clearly show their potential un-
derstanding of the infinite process in the task (see also [10] or [8]). Students have
not internalized the sum of a series as a limit of the sequence of its partial sums.
However, even the majority of those who did this part in their lessons deal with
non-standard tasks similarly. Hence, there is still a long way to go to get a deeper
understanding of the limit and thus the infinite sum (see e.g. [11]).

How to deal with the third obstacle in lessons? Let us go back to the initial
issue:

Is it true that 0.999 . . . < 1 or 0.999 . . . = 1?

An adequate method would be to explain to students the notion of the limit of
a sequence and the sum of a series, and to give them the formula to calculate the
sum of infinite geometrical series, by means of which to calculate the sum of series
(1):

(2) a1 · 1
1− q

= 0.9 · 1
1− 0.1

= 1.

However, it is advisable to present the above mentioned problem already before
dealing with the corresponding parts. Besides, a great number of secondary schools
never take the last step, namely to move from the geometrical sequence to infinite
series. Even more significant drawback of this method is, however, that although
students superficially master to give the sum of the geometrical series while using
the formula (2), they rarely understand the heart of what they are doing and they
cannot see the link to the statement 0.999 . . . = 1.

Hence, teachers at secondary schools often adopt the ‘equation’ technique to
justify the equality of 0.999 . . . = 1:

x = 0.999 . . . · 10
10x = 9.999 . . .−
9x = 9
x = 1
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Students are usually impressed by this smart solution. However, it involves a little
bit of cheating as, in order to remove the infinite part of the decimal number, we
multiply and subtract infinite decimal progressions term by term, without asking
if we are justified in doing so.

At this point, it would be appropriate to use a simple task to show to the
students that some cases of infinite sums cannot be dealt with by this mechanical
method:

0 = (1− 1) + (1− 1) + (1− 1) + · · · = 1− 1 + 1− 1 + 1− 1 + · · ·
= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 1.

Given the students’ actual perception of the infinite limit process, what I see
as something yielding good results is the discussion stimulated by asking the sup-
porters of the statement 0.999 . . . < 1 the following question:

If 0.999 . . . < 1, then the difference 1−0.999 . . . must be a positive real number,
the same way as it holds that for example

0.9 < 1 and 1− 0.9 = 0.1 > 0.

What is then 1− 0.999 . . . equal to?
In a very lively discussion students often reach the conclusion that the solution

cannot be any number in the form of 0.0000000001, no matter how many 0’s it
might include (to be precise, arbitrarily, but finitely many). The reason is clear:
the sum of such a number with the number 0.999 . . . is obviously a number greater
than 1. Thus, the suggestions that might follow are: 0.000 . . . 1 (explained by the
statement Infinitely many zeros and at the end 1) or Ten to the power of minus
infinity (which proves to be the same thing after the discussion). This discussion
still concerns potential and actual perception of the infinite limit process and it is
extremely valuable in terms of forming perceptions of the limit process.

The difficulty with 0.999 . . . = 1 stands in contrast to student’s understanding
of the equation 0.333 . . . = 1

3 (see [4]). In a case study conducted with a real analysis
in [5], a student stated that 0.333 . . . is equal to 1

3 because one could divide 1 by 3
to get 0.333 . . . . However, the student was adamant that the equation 0.999 . . . = 1
is false, because If you divide 1 by 1, you don’t get 0.999 . . . ! In the case of the
equation 0.333 . . . = 1

3 , the student might have been limited to see both 1
3 and

0.333 . . . as processes. In the case of 0.999 . . . = 1, the student may see 0.999 . . .
exclusively as a process and 1

1 as a process that does not result in 0.999 . . . .
An adequate interpretation of Zenon’s paradox of Achilles and Tortoise offers

a strong argument for the supporters of the statement that 0.999 . . . = 1. Let us
use this paradox in our argument for the case that 0.999 . . . = 1.

Achilles and Tortoise compete in a 100m race. Since Achilles runs ten times
faster than Tortoise, Tortoise gets the initial advantage of 90m. Who will win?
Not Achilles, as everybody would think, but Tortoise. When Achilles reaches the
starting point of Tortoise, Tortoise is 9m ahead of Achilles. Before Achilles reaches
that point, Tortoise is 9 dm ahead of him. And so on—Achilles will never catch up
with Tortoise.
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For our purposes, let us adapt the parameters of the race: in the moment of
start, Achilles and Tortoise will be separated by the distance d = 90 m. Achilles
will run at speed vA = 10 m/s and Tortoise at vT = 1 m/s. In what time and in
what distance from the start will Achilles reach Tortoise? Let us mark this point
by C in Figure 4. Let us mark the distance |AC| by x.

Fig. 4

How can we calculate the distance x? Achilles needs time t1 to reach Tortoise’s
starting point Z. This is easy to calculate:

d = vA · t1, 90 = 10 · t1, t1 = 9 s.

In this time, Tortoise covered the distance

d1 = vT · t1 = 1 · 9 = 9 m.

To reach this point (point Z1), Achilles needs time t2 = 0.9 s since it is true that

d1 = vA · t2, 9 = 10 · t2.
In this time, Tortoise covers the distance d2 = 0.9m. We could proceed this way
on and on. Therefore, we can represent the distance x as the infinite sum

x = 90 + 9 + 0.9 + · · · ,

thus x = 99.99 . . . m. However, we can calculate this distance in a different way, as
well. Achilles and Tortoise will reach the point C at the same time t. Comparing
the track of Achilles with the track of Tortoise, we get

vA · t = vT · t + 90, 10 · t = 1 · t + 90, t = 10 s.

So, x = vA · t = 100 m. Hence, it is true that 99.99 . . . = 100, or, equivalently,
0.999 . . . = 1.

3. Conclusion

In conclusion, I would like to express my firm belief that a suitable procedure
for teaching the discussed parts is the following sequence of steps: Motivation by
presenting the problem of the sum of an infinite series (e.g., 0.999 . . . = 1) → the
limit of a sequence → the sum of the series. For giving a definition of the sequence
limit I would be in favour for its gradual definition through the simpler case of
a monotonous (e.g., decreasing) sequence limit—the definition of this limit does
include the key idea of dependency with the addition of only two quantifiers.

An objection might be raised against the above mentioned traditional proce-
dure (with the exception of the initial motivation step) as to the fact that this
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procedure does not respect the principle of congruence between the phylogenesis
and ontogenesis. The sequence limit is viewed here as a simpler basic concept,
the mastering of which is necessary for the understanding of the sum of an infinite
series. Nevertheless, Archimedes, for example, summed up infinite series without
having (and needing) the notion of limit. To be more precise, he did not have the
definition of limit at his disposal—the limit process itself existed in similar lines of
thoughts already before Archimedes (e.g., in Antifonos and his calculation of the
area of a circle by means of gradual filling the circle with polygons (5th century
BC), or in Eudoxus and his exhaustion method (4th century BC)—for details see,
e.g., [6]). In their lessons, however, students do not encounter a sufficient number
of models of the limit process before they go into the infinite series, and therefore
they lack something to follow. Moreover, the principle of genetic parallel is not
a universal principle in mathematics teaching (see, e.g., [8]), which is also a fact
documented by, e.g., [7, p. 73] on the traditional procedure of Differential calculus
→ Integral calculus.
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