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GEOMETRICAL DEFINITION OF π AND
ITS APPROXIMATIONS BY NESTED RADICALS

Milan Janjić

Abstract. In this paper the length of the arc of a circle and the area of a circular
sector are defined in an elementary way. From this we derive the geometrical definition
of the number π, in two equivalent ways. Formulas for the area and the perimeter of
a circle are proved. Also, the number π is represented as a limit of several sequences
involving nested radicals. From this some approximations of π are obtained. One of
them is in terms of Golden ratio.
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1. Introduction

The number π is one of the five most important numbers in mathematics, the
other four being 0, 1, i and e. These four numbers are relatively easy to define.
This is not the case with π. Within the frame of Mathematical analysis it is usually
defined as the least positive zero of the function y = sin x, defined as

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
.

Then, using integrals, one easily obtains the formulas for the perimeter of a circle
and the area of a disc.

This is probably the reason why, even in the books which are entirely devoted
to π, for instance [1], there are no geometrical definitions of π.

But, there are strong methodological reasons for such a definition. Above all,
the number π arises from geometry. We first meet it when we learn the formula for
the perimeter or the area of a circle, and these formulas are interesting for rather
broad range of people, even for many which are not mathematicians.

Thus, the question arises: Must we wait to learn series, derivatives and inte-
grals to explain why the area of the unit disc is π?

We shall try in this paper to explain these questions in an elementary way,
within the frame of elementary geometry. Beside some elementary properties of
triangles, we shall use the notion of limit of a sequence, which is, more or less,
equivalent to the method of exhaustion broadly used by Archimedes, which was the
first mathematician that offered accurate approximations of π. This consideration
also introduces the notion of the radian measure of angles, which is the fundamental
notion in the development of trigonometry.
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We also think that this consideration might be useful as the first meeting with
following problem: How something that is curved may be measured by something
that is straight? From this question integrals arise.

2. Definition of the area of a circular sector
and the length of a circular arc

Suppose that A and B are points on the circle of radius r (Fig. 1). If A = M0,

A1, . . . Mn = B are points on the arc
_

AB taken in cyclic order then we say that
the polygon OM0M1 . . . MnO is inscribed into the circular sector OAB. We also

say that the polygonal line M0, . . . , Mn is inscribed in the arc
_

AB. The polygonal
line A = N0, N1, . . . , Nk = B, such that line segments NiNi+1 (i = 0, 1, . . . , k − 1)
belong to the tangent lines on the circle in the points Mi is said to be circumscribed

about the arc
_

AB. Similarly the polygon ON0N1 . . . NkO is said to be circumscribed

about the circular sector
_

AOB.
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We shall prove that lengths of inscribed lines and areas of inscribed polygons
are bounded from above, and that lengths of circumscribed lines and areas of cir-
cumscribed polygons are bounded from below.

For this it is enough to prove that the length of each inscribed line is less than
the length of arbitrary circumscribed line, and the same for areas of circular sectors.

We shall first prove the following: If C is a point of the line OA such that
OA ≤ OC, and D a point of OB with OB ≤ OD (Fig. 2) then

(1) AB ≤ CD.

Take the point M at the middle of the chord AB, and let P be the intersection
point of the lines CD and OM . Finally, N and Q are points of the line OM such
that NC and QD are perpendicular to OM .

It follows from similarity of triangles OAM and OCN that AM ≤ CN and,
similarly, BM ≤ DQ, which yields

AB = AM + MB ≤ CN + QD ≤ CP + PD = CD,

since CP and PD are hypotenuses of right triangles whose legs are CN and DQ.
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Note that the inequality is sharp under the condition that either A 6= C or
B 6= D.
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Suppose now that AB is one of the line segments forming an inscribed polyg-
onal line Σi, and that C and D are points of intersections of OA and OB with a
circumscribed polygonal line Σs. In this way we may bijectively map Σi onto a
polygonal line Σ′i whose vertices lie on Σs. It follows that the length of Σ′i is less
or equal to the length of Σs. On the other hand, (1) implies that the length of Σi

is less than the length of Σ′i.

Thus the length of a polygonal line inscribed in
_

AB is less than the length

of a polygonal line circumscribed over
_

AB. In the same way we prove that the
area of a polygon inscribed in a circular sector is less than the area of a polygon
circumscribed about this segment.

It follows that these two sets are bounded from above and thus they have the
least upper bounds, which will be denoted by l and p respectively. In the same way
the set of lengths of polygonal lines circumscribed about an arc and the set of areas
of polygons circumscribed about a circle sector are bounded from below and thus
have the greatest lower bound, which we shall denote by L and P respectively.

We thus may define the length of an arc and the area of a circular sector in
two ways.

Definition 1. The length of an arc is the least upper bound of the set of
lengths of polygonal lines inscribed into the arc. The area of a circular sector is
the least upper bound of the set of areas of polygons which are inscribed into the
segment.

Definition 2. The length of an arc is the greatest lower bound of the set
of lengths of circumscribed polygonal lines. The area of a circular sector is the
greatest lower bound of the set of areas of polygons which are circumscribed about
the sector.
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3. Archimedes Doubling Method

In this section we shall prove that Definitions 1 and 2 are equivalent. Namely,
it will be proved that the length of an arc and the area of a sector my be obtained
by the so called Archimedes doubling method.

It is a well known fact that the first accurate approximations for π were ob-
tained by Archimedes using regular 6, 12, 24, 48, 96-gons. We shall apply this
idea to arbitrary arcs and circular sectors. Let A and B be two points on the circle
of radius r. Denote x = d(A,B), the length of the chord AB, and take the point

C of the circle that halves the arc
_

AB (Fig. 3).
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If we denote a0(r, x) = x, a1(r, x) = d(B, C) then by Pythagoras rule we have

d(B, C)2 =
x2

4
+

(
r −

√
r2 − x2

4

)2

,

that is
a1(r, x) =

√
2r2 − r

√
4r2 − a0(r, x)2.

Define the sequence of nested radicals {an(r, x) : n = 1, 2, . . . } in the following way:

an+1(r, x) =
√

2r2 − r
√

4r2 − a2
n(r, x), n = 1, 2, . . .

It follows that an(r, x) is the side of the regular 2n-gonal line A = P0, P1, . . . , P2n =

B inscribed in the arc
_

AB. Then obviously

ln(r, x) = 2nan(r, x), n = 0, 1, 2, . . .

is its length.
It holds

a2(r, x) =

√
2r2 − r

√
4r2 − a2

1(r, x) =

√
2r2 − r

√
2r2 + r

√
4r2 − x2.
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Continuing in the same way one obtains

(2) an(r, x) =

√√√√
2r2 − r

√

2r2 + r

√
2r2 + · · ·+ r

√
2r2 +

√
4r2 − x2.

On the right-hand side of the preceding equation square roots appear exactly n+1
times.

By denoting

fn(r, x) =

√
2r2 + · · ·+ r

√
2r2 + r

√
4r2 − x2, n = 1, 2, . . .

where in the expression on the right-hand side radicals appear exactly n times, we
obtain

(3) an(r, x) =
√

2r2 − rfn(r, x), n = 1, 2, 3, . . . .

For the lengths ln(r, x) we have now

(4) ln(r, x) = 2n
√

2r2 − rfn(r, x).

Define also the sequence {pn(r, x) : n = 0, 1, . . . } such that

p0(r, x) =
x

2

√
4r2 − x2

is the area of triangle OAB and pn(r, x), (n = 1, 2, . . . ) are the areas of 2n-gons
O, P0, P1, . . . , P2n , O.

It follows that

p1(r, x) = 2 · a1(r, x)
2

√
4r2 − a2

1(r, x)

=
√

2r2 − r
√

4r2 − x2

√
2r2 + r

√
4r2 − x2 = rx.

In the same way, for n = 2, 3, . . . we obtain

pn(r, x) = 2n an(r, x)
2

√
4r2 − a2

n(r, x) = r2n−1an−1(r, x).

Using (3) it follows that

(5) pn(r, x) = r2n−1
√

2r2 − fn−1(r, x) n = 2, 3, . . . .

According to (4) i (5) we conclude that

(6) rln(r, x) = 2pn+1(r, x), n = 0, 1, 2, . . . .

It is clear that {ln(r, x)} and {pn(r, x)} are increasing, and being bounded from
above they are convergent. But, until now, we only know that limn→∞ ln(r, x) ≤ l,
and limn→∞ pn(r, x) ≤ p, where l, p are from Section 2.
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We shall now construct a sequence of circumscribed polygonal lines about the

arc
_

AB.
Take the tangent line BN of the circle at the point B (Fig. 3), where N is

the intersection point of the tangent line and the line OA. Let M be the point on
the tangent line such that OM halves the angle AOB. Denote BN = y. From
elementary geometry we know that BM : MN = r : ON . This yields

b1(r, y) =
rb0(r, y)

r +
√

r2 + y2
,

where b0(r, y) = y, b1(r, y) = d(M, B).
Define the sequence {bn(r, y) : n = 1, 2, . . . } such that

bn(r, y) =
rbn−1(r, y)

r +
√

r2 + bn−1(r, y)2
.

If we also define the sequence {gn(r, y) : n = 1, 2, 3 . . . } such that

g1(r, y) = r +
√

r2 + y2,

gn(r, y) = gn−1(r, y) +
√

gn−1(r, y)2 + y2, n = 2, 4, . . .

then we have
b1(r, y) =

ry

g1(r, y)
, b2(r, y) =

ry

g2(r, y)
.

Using induction we obtain

bn(r, y) =
ry

gn(r, y)
, n = 2, . . . .

Triangles OAM and OBM are congruent, which implies that AM = BM , and
that the line segment AM lies on the line tangent to the circle at the point A. It
follows that

P1(r, y) = 2 · r

2
b1(r, y) = rb1(r, y)

is the area of the polygon OAMBO circumscribed about the sector OAB. In the
same way the area Pn(r, y) of the polygon consisting of n right triangles with one
leg equal 1 and the other equal bn(r, y) is

Pn(r, y) = r2n−1bn(r, y).

For the length Ln(r, y) of the circumscribed polygonal line consisting of n line
segments of the lengths equal bn(r, y) we have

(7) Ln(r, y) = 2nbn(r, y).

Two preceding equations imply

(8) rLn(r, y) = 2Pn(r, y).
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Sequences {Pn(r, x) : n = 0, 1, 2, . . . } and {Ln(r, x) : n = 0, 1, 2, . . . } are
decreasing and bounded from below, that is, they are convergent. It holds

L(r, x) ≤ lim
n→∞

Ln(x, r), P (r, x) ≤ lim
n→∞

Pn(x, r),

where L(r, x) and P (r, x) are as in Section 2.
Until now we have proved the following inequalities:

ln(r, x) < l(r, x) ≤ L(r, x) < Ln(r, x), n = 1, 2, . . .(9)

pn(r, y) < p(r, y) ≤ P (r, y) < Pn(r, y), n = 1, 2, . . . .(10)

We shall now find the connection between an(r, x) = d(A,B) and bn(r, y) = d(B, N)
(Fig. 3).

From the right triangle OBM we obtain
x

2
=

rMB√
MB2 + r2

, which implies

MB =
rx√

4r2 − x2
.

Next, from NM : MB = ON : r it follows MB =
ry

r +
√

r2 + y2
. From two

preceding equations we conclude that
y

r +
√

r2 + y2
=

x√
4r2 − x2

.

Accordingly, for n = 1, 2, . . . ,

bn(r, y)
r +

√
r2 + bn(r, y)2

=
an(r, x)√

4r2 − an(r, x)2

holds true. Multiplying by 2n we obtain

(11)
Ln(r, y)

r +
√

r2 + bn(r, y)2
=

ln(r, x)√
4r2 − an(r, x)2

.

According to the fact that limn→∞ an(r, x) = limn→∞ ln(r, y) = 0 we finally
have

lim
n→∞

ln(r, x) = lim
n→∞

Ln(r, y).

From (8) and (6) it also follows

lim
n→∞

pn(r, y) = lim
n→∞

Pn(r, y).

We have thus proved that

lim
n→∞

ln(r, x) = lim
n→∞

Ln(r, y) = l(r, x) = L(r, y),

and
lim

n→∞
pn(r, x) = lim

n→∞
Pn(r, y) = p(r, x) = P (r, y),

which means that Definitions 1 and 2 are equivalent.
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From (6) or (8) we obtain the following

Theorem 1. The area P of the circular sector of a circle with radius r deter-
mined by an arc of the length l is

P =
r · l
2

.

Now we are able to define π in two equivalent way.

Definition 3. The number π is the area of the unit circle.

Definition 4. The number π is the half of the perimeter of the unit circle.

It remains to express the length of arc and the area of circular sector as func-
tions of π.
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Consider two concentric circles k1 and k2 whose radii are 1 and r respectively
(Fig. 4). Correspondence A1 7→ A2 is a bijection of k1 onto k2. Accordingly, there

is also a bijection between polygonal lines inscribed in corresponding arcs
_

A1B1

and
_

A2B2. Since
d(A2B2) : d(A1B1) = r : 1

the lengths of the corresponding polygonal lines have also the same ratio. This

implies that the lengths of the arcs
_

A2B2 and
_

A1B1 are in the same ratio.
We have thus proved the following:

Theorem 2. The perimeter O and the area P of the circle with radius r are

O = 2 · r · π, P = r2π.

We finally define the radian measure of an angle.

Definition 5. Radian measure of an angle α is the ratio l
r , where l is the

length of the arc determined by this angle and r is radius of the circle.
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4. Some formulas for π in terms of nested radicals

All results that are proved until now are of existential type. But we do not
know yet a basic fact about π, namely, that π = 3.141592 . . . .

From our considerations it is easy to obtain various approximations for π. For
this we shall use formulas, obtained in Section 3.

Taking r = 1, x = 2 in (4) we obtain

π = lim
n→∞

2n+1

√√√√√√2−
√

2 + · · ·+
√

2 +
√

2
︸ ︷︷ ︸

n−times

,

which is the formula (66) in [3] (Pi formulas, 2000.g.)
Taking x = 1 in the same formula yields

π = 3 lim
n→∞

2n+1

√√√√√√2−
√

2 + · · ·+
√

2 +
√

3
︸ ︷︷ ︸

n−1−times

.

A few of the first terms of the sequence on the right-hand side give well-known
Archimedes lower approximations of π.

Take finally

x =

√
5−√5

2
,

which is the side of the regular pentagon inscribed in the unit circle. We obtain

√
4− x2 =

√
5 + 1
2

,

and thus we obtain approximations of π in terms of Golden ratio,

π = 5 · lim
n→∞

2n

√√√√√√√√√
2−

√√√√√2 + · · ·+

√√√√
2 +

√
2 +

√
5 + 1
2

︸ ︷︷ ︸
n−1−times

.

A few of the first approximations are given in [2].
Putting r = 1, y = 1 in (7) we obtain

π = lim
n→∞

2n+2

(1 +
√

2) +
√

(1 +
√

2)2 + 1 +

√(
1 +

√
2 +

√
(1 +

√
2)2 + 1

)2 + 1 + · · ·
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where the expression in the denominator has n summands. For k = 2, 3, . . . , n the
k-th term ak in the sum is obtained by taking square root of

( ∑k−1
i=1 ai

)2 + 1.

For r = 1, y =
√

3 we obtain

π = lim
n→∞

3
√

3 · 2n

3 + 2
√

3 +
√

(3 + 2
√

3)2 + 3 +

√(
3 + 2

√
3 +

√
(3 + 2

√
3)2 + 3

)2

+ 3 + · · ·
,

where, again, the expression in the denominator has n summands, obtained simi-
larly as in the preceding formula.

First four terms in the sequence on the right-hand side give Archimedes upper
approximations of π.

We shall finish the paper by an immediate consequence of (7). Namely, in
this equation y is an arbitrary positive real number. It implies that we may take
y → +∞ to obtain

π

2
= lim

y→∞
lim

n→∞
2ny

gn(y)
.

Taking particularly y = n one obtains

π

2
= lim

n→∞
2nn

gn(n)
,

that is,

π = lim
n→∞

2n+1n

1 +
√

3 +
√

(1 +
√

3)2 + 4 +

√(
1 +

√
3 +

√
(1 +

√
3)2 + 4

)2

+ 9 + · · ·
.
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