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SOLVING INEQUALITIES IN PRIMARY SCHOOL
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Abstract. When sums and differences with a variable component are compared
with a fixed number, simple inequalities suitable for solving in the set N of natural
numbers are obtained. Solving of these inequalities bases upon the properties of such
expressions to increase or decrease, depending on the change of values of their compo-
nents.

To establish the meaning of an inequality, children have to be stimulated to see
it as a representation of a whole set of numerical relations, some of which are true and
some false. Then, the search for those values of the variable component for which these
relations are true is the procedure of solving an inequality.

Thinking of prerequisite knowledge and skills for this procedure, some exercises
have to be planed that will help children assimilate the meaning of some operative
terms: expression, value of an expression, to take value, etc., as well as to instruct
them in using first set-theoretical notations properly.

Not counting general observations, the entire text of this paper resembles a con-
crete elaboration, appropriate for school practice.

ZDM Subject Classification: F32; AMS Subject Classification: 00A35.
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1. Introduction

The use of letters in elementary school arithmetic is aimed at an early devel-
opment of the idea of variable and the selection of items to be included in school
contents as well as the ways of their elaboration have to be subjected to this im-
portant didactical task. A literal expression or a literal relation have to be seen
as representing a whole set of particular cases in both ways—by generalizing the
particular and by specifying the general. And just the primary grades seem to be
the right place to commence with a proper realization of this task.

The following four areas for the use of letters can be singled out:

1. Solving of equations,
2. Solving of inequalities,
3. Symbolic expressions of the rules (laws) of arithmetic,
4. Composing of literal expressions representing the laws of correspondence of

two quantities (germs of the idea of function).

In this paper we focus our attention on the second of these areas, suggesting a
procedure for solving simple inequalities based on variation of sums and differences
depending on changes of value of their components ([7], [8]). This approach of
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elaboration of inequalities has been widely adopted in Serbian primary schools and
the corresponding practice shows no difficulties in realization of this theme, (what
several of our interviews with teachers also confirm).

Let us notice that inequalities are a highly motivating topic that helps children
to develop the idea of variable—where each of them comprises a whole set of nu-
merical relations, some of which are true and some that are false. In contrast with
the case of equations, here the searched values of the variable constitute a whole
set and not only a single unknown number.

In the practice that still continues to exist, the following two unfortunate cir-
cumstances are encountered—inequalities to be solved are unreasonably complex or
they are wrongly transformed into equivalent ones, failing to see that such equiva-
lences, though valid for the set R of real numbers (or Q the set of rational numbers),
are transformations which do not hold in the case of the set N of natural numbers.
For instance, in N, the inequality x : 11 < 10 is not equivalent to the inequality
x < 110 and, when solved in N, it has {11, 22, . . . , 99} for the set of its solutions.
Avoiding such awkward cases of inequalities that would complicate a normal elab-
oration of this theme, we confine our considerations to the following six types of
inequalities:

a + x < b, a + x > b, x− a < b, x− a > b, a− x < b, a− x > b.

Although simple, these types are sufficient to serve well the fulfillment of the
mentioned didactical task.

There exists a long series of papers concerning Early Algebra and they manifest
a variation of perspectives: building on child?s initial understanding ([1], [2], [3]),
projecting a schematic-theoretic view ([14]), promoting transition from arithmetical
to algebraic thinking ([4], [5], [6]), treating algebraic thinking as a sign-mediated
cognitive praxis ([10]), etc.

As for the first of the above ways, we base solving of equations on interdepen-
dence of arithmetic operations ([7], [8]) and not on logical equivalence of conditions
that are produced by “adding equals to equals and subtracting equals from equals”
([11]).

Here and in general, we follow Skemp’s ideas of relational understanding ([12],
[13]), which can result only after a thorough didactical analysis of the matter under
consideration and by a proper didactical shaping of that matter.

2. Looking at the idea of variable

The use of letters as notations for an unknown can be traced back to the
Grecian mathematics. With the Vieta’s logistica speciosa (François Viète, 1540–
1603) the letters had been used to denote “species of numbers” and when Gallilleo’s
contemporaries had used them to compose the formula expressing symbolically his
Law of Vertical Projectile that was containing “everything”—the height which the
projectile reaches, the time when it happens and the time when the projectile falls
back to the ground, it was so much spectacular and inspiring to follow that various
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relationships between magnitudes and between geometric elements were expressed
in that symbolic way. The Vieta’s use of letters introduced the idea of variable
into mathematics effecting its very intensive development (creation of Analytic
Geometry, Calculus, etc.).

On the other hand, in the countries which had enlightened approach to ed-
ucation, the efforts to introduce the idea of variable and the concept of function
into the school contents of mathematics can be traced back to the whole course
of the 19th century. In the beginning of the 20th century, under the guidance
of the great mathematician and educator Felix Klein (1849–1925), an important
innovatory program (known as Merano Program, Merano, 1905) was created and
which had been influencing the teaching of school mathematics throughout the first
half of that century. In particular, Klein underlined the fact that function is the
dominating concept of modern mathematics and he pleaded for such elaborations
of the school contents that would help the development of “functional thinking”.
He wrote that it would not be enough to give the definition of function, but that
that concept should penetrate entire teaching of mathematics in schools.

In the period of “New Maths”, an intensive use of letters and correspondences
manifesting the idea of function had been abundant in school mathematics at all
levels. Then, the concept of function did indeed penetrate all contents of school
mathematics but, dare we say it, there was a serious lack of right didactical elab-
orations. And as the teaching practice shows it clearly, general concepts have first
to be used implicitly and in fragments before they gain a full meaning. Such a task
requires a series of proper didactical procedures and we hope that our paper is a
modest link in such a chain.

As one can easily observe it, in the older mathematical writings the term
“idea of variable” is used instead of the term “concept of variable”. The reason
for it can be seen in the fact that without serviceable tools of set theory such a
conceptualization was not possible. Based on the concept of set, the definition of
variable goes as follows:

Given a letter, say, x and a non-empty set, say, S, when x denotes any element
of the set S, then the letter x is called variable in the set S and the set S is called
universal set of the variable x.

Though true, it would be trivial to insist that any letter can be a variable and
any non-empty set its universal set. Instead of it, fixed notations have traditionally
been used to denote some important sets in mathematics and variables in them:

N – the set of natural numbers, n – variable in N,
Q – the set of rational numbers, q – variable in Q,
R – the set of real numbers, x – variable in R,
C – the set of complex numbers, z – variable in C, etc.

When two or more variables are considered at the same time, two or more
different letters are used to denote them. For example, in the case of the set N,
the letters l,m, n, . . . are used, in the case of the set R, the letters x, y, z, . . . , etc.
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Let us also remark that the letter x is often used to denote a variable irrespective
of its universal set.

When children use letters, then they denote variables in the set of numbers
with which they have been already acquainted. Thus, for the second graders such a
set is the block N100 of numbers up to 100, for the third graders the block N1000 of
numbers up to 1000 and for the fourth graders the set N of all natural numbers. By
keeping all essential considerations inside the limits of those sets and by adopting
respective notations, the teacher helps children to develop a feeling for such frames
to which variation of a variable is bounded.

3. Why exemplification is needed

But what constitutes mathemat-
ics is not the subject matter, but a
particular kind of knowledge about
it.

R. Skemp

It is extremely simple to formulate mathematically the ways of solution of
inequalities that are considered in this paper. For example, the inequality a−x < b
is solved by solving the equation: a − x = b, x = a − b. Then, using the fact
that the difference a − x decreases when x increases, the solutions (in N) are all
natural numbers larger than a − b and not exceeding the minuend a. In this way
the skeleton of the argument is fleshed out, but all subtleties providing the way of
understanding that argument by a child are missing.

Prior to elaboration of this theme, children ought to develop some skills in
dealing with numerical expressions without an automatic stimulus to calculate their
values. But with these skills alone, literal expressions as, for example, x+3 or literal
relations as, for example, x + 3 < 15 will have no a priori meaning to them. Thus,
a number of deliberately designed didactical procedures are needed and, instead
of describing them, it is more reasonable to exemplify them by the pieces of text
that refer directly to children (and that look like they were torn from a child’s
textbook). In this paper, these pieces are separated from the rest of the text in
an easily noticeable way. Let us also add that without pointing out what children
have learned before and how they have done it, elaboration of a topic or study of
it must necessarily be incomplete.

Let us recall some basic facts that teachers should always have in mind. Each
numerical expression represents a unique number. But its form may be not much
informative as it is the decimal notation representing that same number. To cal-
culate the value of a numerical expression means exactly to find such its decimal
notation. And while each numerical expression has its unique value, a variable
or a literal expression takes values. This way of saying things helps children to
acquire variable quantities as being always changing. Thus, a correct assimilation
of the involved terms is essential and we will also sketch here an elaboration that
resembles classroom practice.

Connected with the solving of inequalities, set theoretical notations appear
for the first time as being really needed. The use of brackets to denote sets as
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organized wholes, modified “e” to denote relationship between an element and a
set, ellipsis to suggest an ordering of numbers, are little bits of technique that also
require some careful elaboration. Finally, let us say that teachers have to be aware
of the fact that brackets are syntactic signs and that they should not be placed
around all sorts of strange things.

Before proceeding with the direct elaboration of inequalities, we will sketch
the ways of forming prerequisite knowledge and skills to that theme.

4. Expressions and their values

Loosely speaking, expressions are collections of symbols obtained when num-
bers and letters are combined with the operation signs. For children “expression”
is a general term for sums, differences, products and quotients. Before starting
to assimilate the meaning of that term, children should be assigned a number of
exercises as, for instance, the following are:

(i) 3 · 9 + 15 : 3 is (a sum). The first summand is
(3 · 9) and the second (15 : 3).

3 · 9 is (a product) and 15 : 3 (a quo-
tient).

(ii) (22− 2) : 5 is (a quotient). The dividend is
(22− 2) and the divisor is (5).

22− 2 is (a difference). Etc.

(The answers expected to be given by children are put in brackets).
At this level the meaning of a general term is formed by an active use of a

number of suitable examples or by means of more specific concepts that it includes.
Thus, in this case we can proceed as follows:

Sums as, for example,

7 + 18, 3 · 9 + 2 · 7, 36 : 9 + 4, . . . ,

differences as, for example,

75− 28, 7 · 9− 3 · 7, 57− 99 : 3, . . . ,

products as, for example,

15 · 3, 4 · (12 · 8), (27 : 3) · 5, . . . ,
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quotients as, for example,

63 : 7, (17− 2) : 5, (12 · 2) : 4, . . . ,

are called, in a single word, expressions.
Calculating as in the following cases:
(i) 3 · 9 + 2 · 7 = 27 + 14 = 41, (ii) 57− 99 : 3 = 57− 33 = 24,
(iii) 4 · (12 + 8) = 4 · 20 = 80, (iv) (12 · 2) : 4 = 24 : 4 = 6,

we find that:
(i) The expression 3 · 9 + 2 · 7 represents the number 41. Then we say that the

number 41 is the value of the expression 3 · 9 + 2 · 7.
(ii) The expression 57 − 99 : 3 represents the number (24). Then we say

that the number (24) is the value of the expression 57− 99 : 3.
(iii) The expression 4 · (12 + 8) has the value (80).
(iv) The value of the expression (12 · 2) : 4 is (6). Etc.

Completing these and similar sentences (by filling in the appropriate answers),
children learn actively the meaning of the terms “expression” and “value of expres-
sion”.

5. Evaluation of literal expressions

Children meet the first case of evaluation of literal expressions when they check
an equation for the right solution. For example, the first graders solve such simple
equations as the following one:

x + 7 = 15.

(Children understand this equation as a word problem: When 7 is added to the
unknown (hidden) number x, 15 is obtained. Find x.). When they have found that
the hidden number was 8, they write: x = 8. To help them to acquire easier how
the checking runs, a box as a place holder can be used. For instance,

x + 7 = 15
8
↓

+ 7 = 8 + 7 = 15
↓
x

Such a scheme suggests that x falls out of its place and 8 takes that place. Let us
remark that such tiny procedures are valuable parts of didactical elaboration and
they should never be ignored.
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Another popular form of evaluation of literal expressions is found in many
textbooks (particularly often in Russian ones), when children are assigned to fill in
tables as, for instance, this one is

m 3 5 9 15 24 57

27−m

An explanation in words of what is required may suffice, but it is still better
to help children see clearly what they are supposed to do.

For instance,
(i) m = 3 (ii) m = 5

27−m

3
↓

27− = 27− 3 = 24
↓
m

27−m

5
↓

27− = 27− 5 = 22
↓
m

etc.
As soon as children learn how a variable is substituted by its specific values,

such technicalities are omitted.
The third graders are supposed to assimilate the meaning of the term “takes

value”, which is particularly convenient when variation of literal expressions is
concerned. It can be done by a parallel description of the cases as in (i) and (ii)
above.

(i) When m = 3, the expression 27−m takes the value 24.
(ii) When m = 5, then 27−m = 22.

When m takes the value 5, the expression 27−m takes the value 22. Etc.

6. Using set-theoretical notations for the first time

The process of forming ideas of natural numbers begins with activities of ob-
servation of collections of concrete objects. Using the examples of collections of
objects that are meaningfully organized as coherent wholes, the terms “set” and
“element” are to be used and, in that way, children assimilate gradually their mean-
ing. When the idea of set is related to collections of concrete objects, then we say
that such a concept is at the sensory level. (See [9], where a way of treating sets
at that level is suggested).
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As the next level, we take the case when examples are still finite sets but
when the elements are conventional signs—symbols for numbers and letters. It is
important to say that the shape of such signs serves only for their clear recognition
and, laying stress on equating, also to say that such two signs are equal whenever
they mean the same (represent the same number, letter, etc.).

Now we sketch shortly how the symbols: {. . . }, ∈, /∈ are introduced to and
used by children.

(i) Write all numbers belonging to the first ten: , , , , , ,
, , , , (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Taken together, these

numbers form a set which is denoted by

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

(ii) The letters: a, e, i, o, u are vowels. Taken together, these letters form a set
which is denoted by

{a, e, i, o, u}.
(iii) {32, 34, 36, 38, 40} is the set of all even numbers belonging to the

(fourth ten).
(iv) The set {1, 24, 125} has (3) elements. Its elements are: , ,

(1, 24, 125). Etc.
(v) When a set is denoted by a letter, then that letter is in the upper case. When

we use “A” to denote the set {2, 4, 6, 8, 10}, then we write

A = {2, 4, 6, 8, 10}.
Denoting in the same way another set, say, {1, 3, 5, 7, 9} we use another letter,
say, “B” and then we write

B = {1, 3, 5, 7, 9}.
The elements belonging to the set A are: , , , , (2, 4, 6,
8, 10). To write shortly that 2 is an element of the set A, we use the sign “∈”
(which is read “is an element of”). Thus, we can write

2 ∈ A, (4) ∈ A, (6) ∈ A, (8) ∈ A and (10) ∈ A.

The number 1 is not an element of the set A. Then, we write

1 /∈ A

(and the sign “/∈” is read “is not an element of”).
Write one of the signs “∈”, “/∈” so that you obtain true relations:

4 (∈) A, 5 (/∈) A, 7 (/∈) A, 10 (∈) A

2 (/∈) B, 3 (∈) B, 7 (∈) B, 10 (/∈) B
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Read these relations, checking if all of them are true (or you have made some
mistakes).

Write A or B so that you obtain true relations:

6 ∈ (A), 7 ∈ (B), 6 /∈ (B), 7 /∈ (A).

Read these relations that you have written, checking if all of them are true.

Using a number of similar examples children learn the meaning of and the way
how the symbols: {. . . }, ∈, /∈ are used.

To be able to represent those sets that are solutions of inequalities, children
have to learn how to denote the sets of numbers having a greater number of elements
(say, hundreds of them). But it is connected with the equating of sets and our next
exercises are concerned with comparison of two sets and where children are supposed
to find if they are equal or different. Let us recall that a set is equal only to itself
and that the equating of sets is, in fact, equating of their different notations.

(vi) One and the same set can be denoted in different ways writing its elements in
different order.
(a) Notations

{4, 2, 1, 3}, {3, 1, 2, 4}, {4, 1, 3, 2}
represent one and the same set, whose elements are: 1, 2, 3, 4.The neatest of all
such notations is the following one:

{1, 2, 3, 4},
when these numbers are written in increasing order.

(b) Notations:
{4, 7, 5}, {7, 5, 4}, {7, 4, 5}

represent one and the same set, whose elements are: , , (4, 5, 7). The
neatest of all such notations is the following one:

{4, 5, 7},
when the numbers are written in order.

(c) Notations:

{e, c, b, a, d}, {a, e, d, b, c}, {d, c, a, e, b}
represent one and the same set, whose elements are: , , , , , (a,
b, c, d, e). The neatest of all such notations is the following one:

{a, b, c, d, e},
when the letters are written in alphabetical order.
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(vii) As you know it, when the elements of a set are numbers, the neatest notation
is that when the numbers are written in increasing order.

For instance, the neatest notations are the following ones:

(a) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
(b) {21, 22, 23, 24, 25, 26, 27},
(c) {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
(d) {31, 33, 35, 37, 39}.
Not writing all numbers, these notations can be shortened as:

(a) {1, 2, . . . , 12} – denoting so the set of all numbers from 1 to 12,

(b) {21, 22, . . . , 27} – denoting so the set of all numbers from 21 to 27,

(c) {10, 20, . . . , 100} – denoting so the set of all tens belonging to the first
hundred,

(d) {31, 33, . . . , 39} – denoting so the set of all odd numbers belonging to the
fourth ten.

Denote in the short way:

(e) The set of all numbers belonging to the seventh ten:

{ , , . . . , } ({61, 62, . . . , 70}).

(f) The set of all even numbers belonging to the ninth ten:

{ , , . . . , } ({82, 84, . . . , 90}).

(g) The set of all numbers devisable by 5 which are less than 41:

{ , , . . . , } ({5, 10, . . . , 40}).

Etc.

7. The simplest inequalities

In the same way as how a literal expression represents a whole set of concrete
numerical expressions, an inequality containing a variable (an unknown) stands for
a whole set of concrete numerical inequalities. Thus, the first examples designed
to establish the meaning of inequalities x < a and x > a, have to express this idea.
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(i) When x takes the value: the inequality x < 4 becomes: being:

0 0 < 4 T (true)
1 1 < 4 T

2 2 < 4 T

3 3 < 4 T

4 4 < 4 F (false)
5 5 < 4 F

6 6 < 4 F

. . . . . . . . .

The values of x for which the inequality x < 4 is true are: , , , (0,
1, 2, 3) and those for which it is false are: , , . . . , (4, 5, . . . , 1000).

(A third grader is acquainted with the block of numbers up to 1000).

The set of values of x for which the inequality x < 4 is true is {0, 1, 2, 3} and
the set of those for which it is false is {4, 5, . . . , 1000}.

(ii) When x takes the value: the inequality x > 5 becomes: being:
0 0 > 5 F

1 1 > 5 F

2 2 > 5 F

3 3 > 5 F

4 4 > 5 F

5 5 > 5 F

6 6 > 5 T

7 7 > 5 T

. . . . . . . . .

The values of x for which the inequality x > 5 is true are: , , . . . ,
(6, 7, . . . , 1000) and those for which it is false are: , , . . . , (0, 1, . . . ,
5). The set of values of x for which the inequality x > 5 is true is { , , . . . ,

} ({6, 7, . . . , 1000}) and the set of those for which it is false is { , ,
. . . , } ({0, 1, . . . , 5}).

The values of x for which an inequality is true are called its solutions and the
set of such values is called the set of its solutions.

(i’) The solutions of the inequality x < 4 are the numbers: , , ,
(0, 1, 2, 3) and the set of its solutions is { , , , } ({0, 1, 2, 3}).
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(ii’) The solutions of the inequality x > 5 are the numbers: , , . . . ,
(6, 7, . . . , 1000) and the set of its solutions is { , , . . . , }

({6, 7, . . . , 1000}).
Remember that to solve an inequality will mean to find the set of its solutions.
(iii) Write the inequality whose set of solutions is:
(a) {0, 1, . . . , 100} (b) {100, 101, . . . , 1000}

(x < 101) (x > 99)

(c) {101, 102, . . . , 1000}
(x > 100). Etc.

8. Solving inequalities

Since the way of solving inequalities that we will present is based on properties
expressing the variation of sums and differences depending on the change of value
of their components, three different cases will be considered separately. Learning
arithmetic, children do exercises expressing procedurally these properties as, for
example, in the cases that follow.

(i) Put “<” or “>” so as to get a true inequality:
(a) 5 + 7 5 + 11, 5 + 11 3 + 11, etc.
(b) 17− 4 15− 4, 17− 4 19− 4, etc.
(c) 17− 6 17− 8, 17− 6 17− 4, etc.

(For the first graders)

(ii) Let the difference 517− 389 be given.
(a) When the minuend is increased (decreased) by 125, the given difference is

increased (decreased) by (125).
(b) When the subtrahend is increased (decreased) by 149, the given difference

is decreased (increased) by (149). Etc.

(For the third graders)
These properties can be clearly interpreted in an iconic way and children also

learn to express them rhetorically. Now children have to learn how to express them
depending on the change of a variable component denoted by a letter, say, x. Of
course, a number of exercises which help children to understand what kind of a
requirement are those somewhat less simple inequalities, should again be given.
For instance:
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When x takes the value: the inequality 7− x > 4 becomes: being:
0 7− 0 > 4 T

1 7− 1 > 4 T

2 7− 2 > 4 T

3 7− 3 > 4 F

4 7− 4 < 4 F

. . . . . . . . .

Also such exercises can be used to explain solving of inequalities as the search
for those values of x for which an inequality is true.

Proceeding further we will sketch a didactical elaboration showing how each
of the three types of inequalities is solved.

8.1. The case of variable summand

You already know that a sum becomes lar-
ger—increases, when one of its summands be-
comes larger—increases. You also know that a
sum becomes smaller—decreases, when one of
its summands becomes smaller—decreases.

Let us denote by x that variable summand.
Then a sum, for example, 176 + x changes its
value depending on the change of value of the
summand x. Thus, when

sum

1. summand 2. summand

the value of x is: the value of 176 + x is:
853 176 + = ,
1214 176 + = ,
5823 176 + = .

8.1.1. Which value does x take, when the sum 1421 + x takes the value:
(a) 2633? (b) 5888? (c) 7989?

1421 + x = 2633
x = 2633− 1421
x = x = x =
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(Without forcing the use of the term “value”, a simpler formulation of these
exercises would be: Find x, when 1421 + x equals 2633, etc.)

8.1.2. Write the inequality which expresses the following:
(a) The value of the sum 725 + x is smaller than 1856:

(725 + x < 1856).
(b) The value of the sum 725+x is larger than 1856:

(725 + x > 1856).
To solve the inequalities

(a) 725 + x < 1856 (b) 725 + x > 1856,

first you solve the equation:

725 + x = 1856
x = 1856− 725

x = 1131.

The sum 725 + x takes the value 1856, when x takes the value 1131. Hence, the
value of the sum 725 + x will be

(a) smaller than 1856, when (b) larger than 1856, when
x < 1131 x > 1131

and the set of solutions of and the set of solutions of
the inequality the inequality

725 + x < 1856 725 + x > 1856
is is
{0, 1, 2, . . . , 1130} {1132, 1133, . . . }. Etc.

8.2. The case of variable minuend

You already know that a difference
becomes larger—increases, when its min-
uend becomes larger—increases. You also
know that a difference becomes smaller—
decreases, when its minuend becomes
smaller—decreases.

Let us denote by x that variable min-
uend. Then, a difference, for example
x − 1111 changes its value depending on
the change of value of its minuend x.
Thus, when

minuend

difference subtrahend
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the value of x is: the value of x− 1111 is:
5831 − 1111 =
8225 − 1111 =
17141 − 1111 =

8.2.1. Which value does x take, when the difference x− 1111 takes the value:

(a) 33? (b) 854? (c) 24801?
x− 1111 = 33
x = 1111 + 33

x = x = x =

8.2.2. Write the inequality which expresses the following:
(a) The value of the difference x−2315 is smaller than 72:

(x− 2315 < 72),
(b) The value of the difference x− 2315 is larger than 72:

(x− 2315 > 72).
Now we will see how the inequalities:

(a) x− 2315 < 72 (b) x− 2315 > 72

are solved. For example, when x takes the value 1000, the difference x − 2315
becomes 1000 − 2315 and such a subtraction is not feasible. And as you know
it, the subtraction is not feasible whenever minuend is smaller than subtrahend.
Therefore, all solutions of these two inequalities must belong to the set of numbers

D = {2315, 2316, . . . }.
Here we also solve first the equation:

x− 2315 = 72
x = 2315 + 72

x = 2387.

Thus, we see that the difference x−2315 takes the value 72, when x takes the value
2387. Then, the difference x− 2315 will be

(a) smaller than 72, when (b) larger than 72, when
x < 2387 x > 2387

and all solutions of the inequality and all solutions of the inequality
x− 2315 < 72 x− 2315 > 72

belong to the set D. belong to the set D.
Hence, the set of its solutions is Hence, the set of its solutions is
{2315, 2316, . . . , 2386} {2388, 2389, . . . }.
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8.3. The case of variable subtrahend

You already know that a difference
becomes larger—increases, when its sub-
trahend becomes smaller—decreases.
You also know that a difference becomes
smaller—decreases, when its subtrahend
becomes larger—increases.

Let us denote by x that variable sub-
trahend. Then the value of a difference,
for example, 876 − x changes when the
value of x changes. Thus, when

minuend

subtrahenddifference

the value of x is: the value of 876− x is:
50 876− = ,
200 876− = ,
500 876− = .

8.3.1. Which value does x take when the difference 9987− x takes the value:
(a) 33? (b) 900? (c) 9000?

9987− x = 33
x = 9987− 33

x = x = x =

8.3.2. Write the inequality which expresses the following:
(a) The value of the difference 1876−x is smaller than 200:

(1876− x < 200),
(b) The value of the difference 1876−x is larger than 200:

(1876− x > 200).
Now we will see how the inequalities:

(a) 1876− x < 200 (b) 1876− x > 200

are solved.
The subtraction 1876 − x is feasible only when x takes values which are not

larger than 1876. Thus, all solutions of these inequalities belong to the set

D = {0, 1, 2, . . . , 1876}.
First we solve the equation:

1876− x = 200
x = 1876− 200

x = 1676.
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We see that the difference 1876 − x takes the value 200, when x takes the value
1676. Then, the value of the difference 1876− x will be

(a) smaller than 200, when (b) larger than 200, when
x > 1676 x < 1676

and the solutions of the inequality and the solutions of the inequality
1876− x < 200 1876− x > 200

belong all to the set D. belong all to the set D.
Hence, the set of its solutions is Hence, the set of its solutions is
{1677, 1678, . . . , 1876}. {0, 1, 2, . . . , 1675}.

Etc.
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