
THEORETICAL AND APPLIED MECHANICS
Volume 51 (2024) Issue 1, 39–56 DOI: https://doi.org/10.2298/TAM240201003B

BURGERS TENSOR FLOW ACCOUNTING FOR
COLD WORK AND THERMAL ANNEALING
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O. P. Layeni, and A. P. Akinola

Abstract. This paper proposes a kinematical-thermal-based constitutive law
for the evolution of Burgers tensor during cold work and upon subsequent
thermal annealing of a polycrystalline. The proposal is based on the paper by
Anand et al. [L. Anand., M. E. Gurtin., B. D. Reddy, The stored energy of cold
work, thermal annealing, and other thermodynamic issues in single crystal
plasticity at small length scales, Int. J. Plast. 64 (2015), 1–25]. The principle
of virtual work and thermodynamic laws are employed to obtain balance of
forces, balance of energy, and free-energy imbalance. Non-recoverable energetic
microscopic stresses are obtained as features for materials that are cold-worked
whenever the defect energy is dependent on Burgers tensor. Consequently,
it is observed that internal-energetic plastic power is not less than entropic
plastic power. The recovery rate during thermal annealing is shown to mimic
dissipative behavior, leading to a reduction in the accumulation of dislocation
densities. Furthermore, the free energy function –approximated as a quadratic
form– is used to obtain the constitutive relations for the macroscopic and
microscopic stresses.

1. Introduction

The visualization of a polycrystalline metal at the microstructural level often
describes metal as an aggregate of grains with boundaries. The interiors of these
grains have structures similar to single crystals, and their boundaries are called
grain boundaries. At a temperature less than 0.35θm, where θm is the melting
temperature of a metal, the plastic behavior involves a process known as cold
working [3]. Within this temperature range, and for grain sizes with diameter
greater than 100 nm, the plastic response of the entire polycrystalline metal is
due to the plastic deformations of grain interiors with boundaries assumed to be
perfectly bonded [17]. The carriers of these deformations are dislocations, which
occur on crystallographic slip planes for each grain in the polycrystalline [28]. These
give rise to strain hardening because such deformations for cold-worked materials
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are often accompanied by an increase in the number of dislocation densities, leading
to resistance of plastic flows.

During cold working, a large portion of the plastic work perfomed is converted
into heat, while a certain amount is stored as energy of cold work in the material.
Experimental observations and theoretical studies on the stored energy of cold
work have shown that the ratio of stored energy to plastic stress power for metals
is often between 0 and 15% [7, 8, 23, 25]. This ratio plays a significant role in
determining the fraction of plastic power that is converted into heating. Upon
further heating to a temperature that is between 0.35θm and 0.5θm, the cold-worked
material undergoes a recovery process known as thermal annealing. During this
process, there is a significant reduction in the accumulation of dislocation densities,
thus allowing for plastic flow in the material. In this instance, the stored energy
is released, which implies that the fraction of plastic power converted to heating
changes with an increase in temperature, strain, and strain rates [3,17,19,23].

A theory of polycrystalline plasticity under cold working should couple thermal
effects with mechanical behavior in a thermodynamically consistent manner [1,21].
Furthermore, such a theory should be capable of accounting –within the energy
balance– for the increase in internal energy associated with the accumulation of
dislocation densities [28]. Anand et al. [3] proposed a thermo-mechanical gradient
theory of single-crystal plasticity for cold-worked materials, where a plastic internal
energy that is dependent on dislocation densities is introduced. The proposed for-
mulation expressed the evolution of the mean field of dislocation densities in terms
of quantities associated with an increase in the accumulation of dislocation densities
due to cold work, and quantities associated with a decrease in the accumulation of
dislocation densities during thermal annealing.

Within the context of polycrystalline plasticity, the physical quantity that is
known to measure dislocation densities is the Burgers tensor which can be expressed
in terms of the distribution of edge and screw dislocation densities [15]. This paper
aims to formulate a distortion gradient plasticity of a polycrystalline metal that
accounts for the energy due to cold work and thermal annealing through a consti-
tutively well-defined Burger tensor flow. In the paper of Borokinni et.al. [11] the
Burgers tensor is assumed to be skew-symmetric, while its rate assumes no con-
stitutive relation with the temperature, whereas in this paper, the Burgers tensor
is not constrained to be skew-symmetric, but it is assumed to be constitutively
dependent on the absolute temperature.

2. Basic kinematic relations

2.1. Decomposition of displacement gradient. Let u be the displacement
vector of a particle at a point x and time t in a region B that corresponds to a
plastic material. The displacement gradient of the material under small deformation
admits the standard additive decomposition

(2.1) ∇u = He +Hp

into elastic distortion He and plastic distortion Hp. The tensor He measures the
stretch and rotation of the underlying lattice structure of the plastic material,
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while Hp measures defects in the material structure arising from the formation and
motion of dislocations. Plastic deformation, for most metals, does not incur changes
in the volume of the material, thus we can assume the plastic incompressibility
constraint

(2.2) trHp = 0.

The elastic and plastic strains Ee and Ep are defined as

Ee =
1

2
(He +HeT ) and Ep =

1

2
(Hp +HpT )

respectively. Also, the elastic and plastic rotations We and Wp are

We =
1

2
(He −HeT ) and Wp =

1

2
(Hp −HpT )

respectively. The tensor We is called elastic rotation. It is the rotation of the
underlying lattice structure associated with the skew-symmetric part of the elastic
distortion tensor He. The tensor Wp is called plastic rotation arising from the
formation and motion of dislocations. It is the skew-symmetric part of the plastic
distortion tensor Hp.

Clearly, Ee and Ep are the symmetric parts of He and Hp, respectively and
We and Wp are the skew parts of He and Hp, respectively.
The total strain E and total rotation W are given by

E = Ee +Ep and W = We +Wp

respectively. From eqs. (2.1) and (2.2), a basic kinematic rate equation is

(2.3) ∇u̇ = Ḣe + Ḣp with tr Ḣp = 0,

where Ȧ is the time-derivative of a physical quantity.

2.2. Burgers tensor. The Burgers tensor will be denoted as G. This tensor
is a local characterization of the Burgers vector which measures the closure failure
of an infinitesimal circuit of a lattice on a plane with prescribed unit normal. The
Burgers tensor G is defined as1

(2.4) G = ∇×Hp or simply as Gij = εirsH
p
js,r,

where εirs is the permutation symbol.
This definition in eq. (2.4) shows that a constitutive theory involving the Burgers
tensor must account for plastic rotation Wp through ∇×Wp except if one assumes
from the outset that Wp = 0. Constitutive theories for distortion gradient poly-
crystalline plasticity that account for plastic rotation will better approximate the
single crystal gradient theories than those that ignore plastic rotation [2,6,9,15].
Thus, in this paper, we make no assumption of plastic irrotationality.

1Aij are the components of a second-order tensor A. We denote Ajs,r as the partial derivative
of Ajs with respect to xr, where xr are the components of the position vector x.



42 BOROKINNI, FADODUN, OLOKUNTOYE, LAYENI, AND AKINOLA

2.3. Densities of edge and screw dislocations. The single crystal hypoth-
esis allows the plastic distortion Hp to be written as

(2.5) Hp =
∑
α

γαsα ⊗mα,

where α indicates the slip system for a lattice with α = 1, 2, . . . , N . Each slip
system is described by a slip plane Πα with normal mα. The vector sα is called
slip direction and γα is the slip. The vectors sα and mα are unit, constant and
orthogonal vectors i.e. sα ·mα = 0 and sα| = |mα| = 1. With the choice of plastic
distortion Hp in eq. (2.5), it is observed that eq. (2.1) can be written as

∇u = He +
∑
α

γαsα ⊗mα.

Also, note that

trHp = tr

(∑
α

γαsα ⊗mα

)
=

∑
α

γαsα ·mα = 0.

Thus, the single-crystal theory naturally satisfies the plastic incompressibility con-
straint. Following Arsenlis and Parks [4], and within the framework of continuum
mechanics, the quantities

(2.6) ραE := −sα · ∇γα and ραS := (mα × sα) · ∇γα

mimic the edge and screw dislocation densities, respectively. Let lα = mα×sα, then
the set {lα,mα, sα} forms an orthonormal basis in the three-dimensional Euclidean
space. Thus, we have ∇γα = −ραEsα+ραSlα+(mα·∇γα)mα. The term −ραEsα+ραSlα
is known as the tangential slip gradient and is denoted as ∇α

tanγ
α, while the quantity

(mα · ∇γα)mα is known as the normal slip gradient. The normal slip gradient is
not a known measure of any macroscopic quantity that mimics dislocation density.

Using eqs. (2.5) and (2.6), the Burgers tensor can be written as

(2.7) G = ∇×Hp =
∑
α

(ραEl
α ⊗ sα + ραSs

α ⊗ sα).

Eq. (2.7) shows that the Burgers tensor can be additively decomposed into the
distribution of edge and screw dislocation densities on individual slip systems.

2.4. Constitutively defined flows of dislocation densities. In the paper
written by Anand et al. [3], a dislocation density ρα representing the mean field
of glide and geometrically necessary dislocation densities is defined through the
initial-value problem

(2.8) ρ̇α = Aα(θ, ρ⃗)Γ̇α −Rα(θ, ρ⃗) with ρα(x, 0) = ραo ,

where Aα(θ, ρ⃗), Rα(θ, ρ⃗) and Γ̇α are dislocation-accumulation modulus, recovery
rate and effective flow rate, respectively. The quantities θ and ρ⃗ are the absolute
temperature and list of dislocation densities (ρ1, ρ2, . . . , ρN ) respectively. Aα(θ, ρ⃗)
and Rα(θ, ρ⃗) satisfy

Aα(θ, ρ⃗) ⩾ 0, and Rα(θ, ρ⃗) ⩾ 0 with
∂Rα

∂θ
⩾ 0 for all θ > 0 and ρ⃗.
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The effective flow rate is defined as Γ̇ =
√
|γ̇α|2 + l2|∇α

tanγ̇
α|2. We shall assume,

for the moment, that dislocation densities (edge and screw) satisfy eq. (2.8) i.e.

(2.9) ρ̇αE = Aα
E(θ, ρ⃗E , ρ⃗S , ρ⃗G)Γ̇

α −Rα
E(θ, ρ⃗E , ρ⃗S , ρ⃗G) with ραE(x, 0) = ρ∗αE ,

and

(2.10) ρ̇αS = Aα
S(θ, ρ⃗E , ρ⃗S , ρ⃗G)Γ̇

α −Rα
S(θ, ρ⃗E , ρ⃗S , ρ⃗G) with ραS(x, 0) = ραS ,

where ρ⃗E , ρ⃗S and ρ⃗G are the list of edge, screw, and glide dislocation densities,
respectively. The quantities Aα

E and Aα
S are the dislocation-accumulation modulus

associated with edge and screw dislocation densities, respectively. Rα
E and Rα

S are
the recovery rates associated with edge and screw dislocation densities, respectively.
Using eqs. (2.7), (2.9) and (2.10), the flow of Burgers tensor can be written as

(2.11) Ġ =
∑
α

Aα(θ, ρ⃗E , ρ⃗S , ρ⃗G)Γ̇
α −

∑
α

Rα(θ, ρ⃗E , ρ⃗S , ρ⃗G),

where, Aα = Aα
El

α⊗ sα+Aα
Ss

α⊗ sα and Rα = Rα
El

α⊗ sα+Rα
Ss

α⊗ sα. Eq. (2.11)
serves as a guide to obtaining the constitutive relation for the flow of Burgers tensor
for a polycrystalline.

2.5. Burgers tensor rate for polycrystalline. It is not a basic assumption
in polycrystalline theory that the plastic distortion takes the form in eq. (2.5).
Thus, the single crystal and polycrystalline gradient theory are not the same [5,12,
14]. However, a polycrystalline is an aggregate of grains –similar in structure to
single-crystals– of different sizes and with grain boundaries. Hence, the constitutive
relation for the Burgers tensor rate would be assumed in an average sense in concert
with eq. (2.11). We propose a Burgers tensor rate Ġ of the form

(2.12) Ġ = A(θ,G)dp −R(θ,G) with G(x, 0) = Go,

where A(θ,G) and R(θ,G) will be referred to as accumulation modulus and re-
covery tensors, respectively, which are assumed to be positive semi-definite. Here,
the first term on the right-hand side of eq. (2.12) characterizes changes in Burgers
tensor due to plastic flow, while the second term characterizes changes in Burgers
tensor due to thermal annealing. The quantity dp is the effective flow rate defined as

(2.13) dp =

√
|Ḣp|2 + l2|∇Ḣp|2.

3. Virtual power principle

The local macroscopic and microscopic force balances for plastic flow are often
obtained as consequences of the principle of virtual power. Let P be an arbitrary
region of the body B called a sub-body of B and with boundary ∂P . The external
macroscopic forces on P are power-conjugate to velocity u̇. Let t(n) and b be
macro-traction on ∂P and body force on P , respectively, where n is the outward
unit normal on ∂P . Also, assume that a microscopic traction K(n) acts on ∂P
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and it is power-conjugate to the plastic distortion rate Ḣp. The power Wext(P )
expended on P by these external forces for a quasi-static process is

Wext(P ) =

∫
∂P

t(n) · u̇ da+
∫
P

b · u̇ dV +

∫
∂P

K(n) : Ḣpda.

The external power expenditure on P is balanced by power expended within P .
Consistent with the kinematic relation in eq. (2.3), the following can be assumed
[13,18,24,26,27]:

(i.) Macroscopic stress T is power-conjugate to the elastic distortion rate Ḣe;
(ii.) Plastic microscopic stress Tp is deviatoric and power-conjugate to the

plastic distortion rate Ḣp; and
(iii.) A third-order polar microscopic stress Kp is deviatoric in its first two

indices and power-conjugate to the gradient of plastic distortion rate ∇Ḣp.
The power Wint(P ) expended within P is given by

Wint(P ) =

∫
P

[T : Ḣe +Tp : Ḣp +Kp
...∇Ḣp]dV .

Let ν = (ũ, H̃e, H̃p) be a list of generalized virtual velocities consistent with

∇ũ = H̃e + H̃p; tr H̃p = 0.

The virtual power principle states that∫
∂P

t(n) · ũ da+
∫
P

b · ũ dV +

∫
∂P

K(n) : H̃pda

=

∫
P

[T : H̃e +Tp : H̃p +Kp
...∇H̃p]dV .

The consequences of the virtual power principle following Gurtin [15] and Anand
et al. [3] are:

(i.) Macroscopic force balance and macro-traction condition

divT+ b = 0 in P and t(n) = Tn on ∂P

respectively.
(ii.) Microscopic force balance and micro-traction condition

(3.1) To = Tp − divKp in P and K(n) = Kpn on ∂P

respectively, where

To = T− 1

3
(trT)I

is the deviatoric part of T and I is the second order unit tensor.
Also, as a consequence of frame-indifferent, the macroscopic stress T is symmetric
(i.e. T = TT ) so that we obtain

T : Ḣe = T : Ėe.
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4. Balance of energy and free-energy imbalance

Balance of energy is simply a statement of the first law of thermodynamics
which is written mathematically as∫

P

ϵ̇ dv = Wext(P )−
∫
∂P

q · n da+
∫
P

q dv,

where ϵ is the internal energy measured per unit volume, q is the heat flux through
∂P and q is the heat supply to P . Using the power balance principle and divergence
theorem, the global energy balance can be written as∫

P

ϵ̇ dv =

∫
P

[T : Ėe +Tp : Ḣp +Kp
...∇Ḣp − divq+ q]dv.

Since, P is an arbitrary portion of B, the local form of the energy balance is

(4.1) ϵ̇ = T : Ėe +Tp : Ḣp +Kp
...∇Ḣp − divq+ q.

The second law of thermodynamics is written as∫
P

η̇ dv ⩾ −
∫
∂P

q

θ
· n da+

∫
P

q

θ
dv,

where η is the entropy of P measured per unit volume and θ > 0. Following the
arbitrary nature of P , the entropy imbalance in local form is

η̇ ⩾ −div
(q
θ

)
+
q

θ
.

Introduce the free energy ψ defined via the Gibbs’ relation

(4.2) ψ = ϵ− θη.

A combination of eqs. (4.1), (4.2) and the above inequality gives the local free-
energy imbalance as

(4.3) ψ̇ + θ̇η −T : Ėe −Tp : Ḣp −Kp
...∇Ḣp +

1

θ
q · ∇θ ⩽ 0.

This imbalance will be useful in obtaining thermodynamically consistent constitu-
tive relations for the entropy, stresses, and heat flux.

5. Constitutive relations

Let the free energy be defined as ψ = ψ̂(θ,Ee,G), and assume a separable form
ψ̂(θ,Ee,G) = ψ̂e(θ,Ee) + ψ̂p(θ,G) into elastic free energy ψe and defect energy
ψp. With these choices, it is clear that

ψ̇ =
∂ψ̂e(θ,Ee)

∂Ee
: Ėe +

∂ψ̂(θ,Ee,G)

∂θ
θ̇ +

∂ψ̂p(θ,G)

∂G
: Ġ.

Let

Sp = Sp(θ,G) =
∂ψ̂p(θ,G)

∂G
,

then by eq. (2.12), we have

(5.1) Sp : Ġ = Sp : A(θ,G)dp − Sp : R(θ,G).
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Let F (θ,G) and R(θ,G) be defined as

(5.2) F (θ,G) = Sp(θ,G) : A(θ,G) and R(θ,G) = Sp(θ,G) : R(θ,G),

and assume that F (θ,G) ⩾ 0. Using eqs. (2.13) and (5.2), we can write eq. (5.1) as

(5.3) Sp : Ġ =
F (θ,G)

dp
[
|Ḣp|2 + l2|∇Ḣp|2

]
−R(θ,G).

Now introduce the microscopic stresses Tp
NR and Kp

NR defined as

(5.4) Tp
NR = F (θ,G)

Ḣp

dp
and Kp

NR = l2F (θ,G)
∇Ḣp

dp
, for dp ̸= 0,

then eq. (5.3) can be written as

(5.5) Sp : Ġ = Tp
NR : Ḣp +Kp

NR

...∇Ḣp −R(θ,G).

Since, F (θ,G) ⩾ 0, then the stresses Tp
NR and Kp

NR are non-recoverable in the
sense:

(5.6) Tp
NR : Ḣp +Kp

NR

...∇Ḣp ⩾ 0.

Eq. (5.4) holds provided dp ̸= 0. To accommodate dp = 0, a scalar function ϕ is
introduced and it is defined by ϕ(θ,G, dp) = F (θ,G)dp, for all dp ⩾ 0. Clearly,
when dp = 0, we have |Ḣp| = 0 and |∇Ḣp| = 0. Given that dp ̸= 0 and

(5.7) Tp
NR : H̃p +Kp

NR

...∇H̃p ⩽ ϕ(θ,G, d̃p) for all d̃p ⩾ 0,

where d̃p =
√
|H̃p|2 + l2|∇H̃p|2. Then by eqs. (5.4), (5.6), and (5.7), we obtain

(5.8) ϕ(θ,G, d̃p) ⩾ ϕ(θ,G, dp) +Tp
NR : (H̃p − Ḣp) +Kp

NR

...(∇H̃p −∇Ḣp)

for all d̃p ⩾ 0. Using chain rule, it is clear that

∂ϕ

∂Ḣp
=

∂ϕ

∂dp
∂dp

∂Ḣp
= F (θ,G)

Ḣp

dp

and
∂ϕ

∂∇Ḣp
=

∂ϕ

∂dp
∂dp

∂∇Ḣp
= l2F (θ,G)

∇Ḣp

dp
whenever dp ̸= 0.

Hence, in terms of ϕ, the non-recoverable stresses can be written as

Tp
NR =

∂ϕ(θ,G, dp)

∂Ḣp
and Kp

NR =
∂ϕ(θ,G, dp)

∂∇Ḣp
provided dp ̸= 0.

Following Anand et al. [3], we assume that the dissipative microscopic stresses Tp
dis

and Kp
dis are defined through

(5.9) Tp
dis = Tp −Tp

NR and Kp
dis = Kp −Kp

NR.

Thus, the free-energy imbalance eq. (4.3) can be written as(∂ψ̂e(θ,Ee)

∂Ee
−T

)
: Ėe +

(∂ψ̂(θ,Ee,G)

∂θ
+ η

)
θ̇
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−R(θ,G)−Tp
dis : Ḣ

p −Kp
dis

...∇Ḣp +
1

θ
q · ∇θ ⩽ 0.

By Coleman–Noll procedure, we have the constitutive relations for the macroscopic
stress and the entropy:

(5.10) T = T̂(θ,Ee) =
∂ψ̂e(θ,Ee)

∂Ee
and η = η̂(θ,Ee,G) = −∂ψ̂(θ,E

e,G)

∂θ
.

The dissipation inequality is given as

R(θ,G) +Tp
dis : Ḣ

p +Kp
dis

...∇Ḣp − 1

θ
q · ∇θ ⩾ 0.

As a constitutive choice, consistent with literature [3, 17], we assume that q =
q̂(θ,∇θ), where Tp

dis, K
p
dis and R(θ,G) are independent of temperature gradient,

then it is clear that we have the heat-conduction inequality to be given as

q̂(θ,∇θ) · ∇θ ⩽ 0 for all ∇θ, Ḣp,∇Ḣp, and G.

Because ∇θ can be chosen arbitrarily independent of Ḣp, ∇Ḣp and G, then we have
the mechanical dissipation inequality given as R(θ,G)+Tp

dis : Ḣ
p+Kp

dis

...∇Ḣp ⩾ 0.
Consistent with Gurtin et al. [17] for rate-independent plastic materials, we assume
the constitutive forms:

Tp
dis = T̂p

dis(θ, e
p, Ḣp,∇Ḣp) and Kp

dis = K̂p
dis(θ, e

p, Ḣp,∇Ḣp),

where ep is an hardening variable satisfying the equation ėp = dp with ep(x, 0) = 0.
With these constitutive choices, it is clear that Tp

dis and Kp
dis are independent of

G. Thus, for arbitrary choices of Ḣp and ∇Ḣp we have the important result

(5.11) R(θ,G) ⩾ 0 for all G.

The mechanical dissipation is defined as

δ := Tp
dis : Ḣ

p +Kp
dis

...∇Ḣp.

Consistent with Anand et al. [3], we assume that the material is strongly dissipative
in the sense that the mechanical dissipation δ satisfies δ ⩾ 0 for all dp, and δ > 0
for all dp ̸= 0.

Remark 5.1. The inequality (5.11) shows that if defect microscopic force Sp

and recovery tensor R are not orthogonal, then the recovery mimics a dissipative
process and will characterize a decrease in dislocation densities due to thermal
annealing.

6. Associative flow for dissipative microscopic stresses

Assume the material under consideration is rate-independent [16, 22]. We
define the yield function F (θ, ep,Tp

dis,K
p
dis) by

F (θ, ep,Tp
dis,K

p
dis) =

√
|Tp

dis|2 + l−2|Kp
dis|2 − Y (θ, ep),

where Y (θ, ep) is the flow resistance defined as Y (θ, ep) = δ
ėp for all ėp ̸= 0. Following

the assumption of strict dissipativity (i.e. δ>0 whenever ėp ̸=0), then Y (θ, ep)>0.
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For associative flow, the following normality relations hold:
Ḣp

ėp
=

Tp
dis√

|Tp
dis|2 + l−2|Kpdis|2

and
l∇Ḣp

ėp
=

l−1Kpdis√
|Tp

dis|2 + l−2|Kpdis|2
for ėp ̸= 0.

For plastic flow ėp ̸= 0, the yield criterion F (θ, ep, Ḣp,∇Ḣp) = 0 is satisfied, so that we
have √

|Tp
dis|2 + l−2|Kpdis|2 = Y (θ, ep) whenever ėp ̸= 0.

The consequences of the normality relations are the following constitutive relations for
dissipative microscopic stresses:

Tp
dis = Y (θ, ep)

Ḣp

dp
and Kpdis = l2Y (θ, ep)

∇Ḣp

dp
for dp ̸= 0.

The elastic range is given as F (θ, ep, Ḣp,∇Ḣp) ⩽ 0 for all ėp ⩾ 0. The no flow condition
is given by ėp = 0 whenever F (θ, ep, Ḣp,∇Ḣp) < 0.

Suppressing other arguments, the dissipation δ is defined as

(6.1) δ = δ(ėp) = Y (θ, ep)ėp for all ėp ⩾ 0.

According to the principle of maximum plastic dissipation, fields evolve so as to maximize
dissipation in the sense [10]

(6.2) δ(ẽp) ⩾ Tp
dis : H̃

p +Kpdis
...∇H̃p for all ẽp ⩾ 0.

Combining eqs. (6.1) and (6.2), we have

(6.3) δ(ẽp) ⩾ δ(ėp) +Tp
dis : (H̃

p − Ḣp) +Kpdis
...(∇H̃p −∇Ḣp).

Also, observe from eq. (6.1) that

Tp
dis =

∂δ(ėp)

∂Ḣp
and Kpdis =

∂δ(ėp)

∂∇Ḣp
for all Ḣp ̸= 0 and ∇Ḣp ̸= 0.

7. Energy balance in terms of heat capacity:
Energy and entropy of cold work

It is known that for many metals, dislocation changes do not contribute much to
changes in the heat capacity. Following Lubliner [20], Rosakis et al. [23], and Anand et
al. [3], we assume the heat capacity is independent of the Burgers tensor G. If c denotes
the heat capcity, then constitutively, we write c = c(θ,Ee). The heat capacity is defined
as

(7.1) c(θ,Ee) =
∂ϵ̂(θ,Ee,G)

∂θ
,

where ϵ = ϵ̂(θ,Ee,G) is the internal energy satisfying the Gibbs’ relation

(7.2) ϵ̂(θ,Ee,G) = ψ̂(θ,Ee,G) + θη̂(θ,Ee,G).

Using eqs. (7.1) and (7.2), the energy balance eq. (4.1) can be written as

cθ̇ +
∂ϵ

∂Ee
: Ėe +

∂ϵ

∂G
: Ġ = T : Ėe +Tp : Ḣp +Kp

...∇Ḣp − divq+ q

=⇒ cθ̇ − θ
∂T

∂θ
: Ėe −R(θ,G)− θ

∂Sp

∂θ
: Ġ = Tp

dis : Ḣ
p +Kpdis

...∇Ḣp − divq+ q.

Also, observe that by eqs. (3.1), (5.5) and (5.9), we have
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Tp
dis : Ḣ

p +Kpdis
...∇Ḣp +R(θ,G) + θ

∂Sp

∂θ
: Ġ

= T : Ḣp + div(KpḢp)−
(
Sp − θ

∂Sp

∂θ

)
: Ġ,

where the component of KpḢp is given by (KpḢp)k = Kp
ijkḢ

p
ij . The components of Kp

and Ḣp are Kp
ijk and Ḣp

ij , respectively. The stress-temperature modulus tensor M is
defined as

M = M(θ,Ee) =
∂T

∂θ
.

The energy balance can thus be written as

(7.3) cθ̇ + divq− q = T : Ḣp + div(KpḢp)−
(
Sp − θ

∂Sp

∂θ

)
: Ġ+ θM : Ėe.

Since c = ĉ(θ,Ee), we can assume that the internal energy ϵ has the additive decomposition
ϵ̂(θ,Ee,G) = ϵ̂e(θ,Ee) + ϵ̂p(G) into elastic part ϵ̂e(θ,Ee) and plastic part ϵ̂p(G), where

ĉ(θ,Ee) =
∂ϵ̂e(θ,Ee)

∂θ
and

∂ϵ̂p(G)

∂θ
= 0.

From eqs. (7.1) and (7.2), it is observed that

0 =
∂c(θ,Ee)

∂G
=

∂

∂G

(
θ
∂η̂(θ,Ee,G)

∂θ

)
= −θ ∂

2

∂θ2

( ∂ψ
∂G

)
.

This implies that there exist tensor functions P(G) and Q(G) such that

(7.4) ∂ψ

∂G
=
∂ψ̂p(θ,G)

∂G
= Sp = P(G)− θQ(G).

Suppose ψ̂p(θ,0) = 0, then upon integration, there exist functions E = E(G) and N =

N(G) such that ψ̂p(θ,G) = E(G) − θN(G). Based on the structure of the free-energy
in relation to the internal energy and entropy, we assume that the plastic internal energy
ϵ̂p(G) is defined as

(7.5) ϵ̂p(G) = ψ̂p(θ,G) + θη̂p(G),

where η̂p(G) is the plastic entropy assumed to be a function of the Burgers tensor G.
This structure implies that E(G) = ϵ̂p(G) and N(G) = η̂p(G).
It follows that by eqs. (7.4) and (7.5), we have

(7.6) P(G) =
∂ϵ̂p(G)

∂G
and Q(G) =

∂η̂p(G)

∂G
.

Also, by eqs. (4.2) and (7.5), the entropy must admit the additive decomposition

η̂(θ,Ee,G) = η̂e(θ,Ee) + η̂p(G)

into elastic part η̂e(θ,Ee) and the plastic part η̂p(G). Consequently, the plastic entropy
in terms of the plastic free-energy, and the heat capacity in terms of the elastic entropy
are defined as

η̂p(G) =
∂ψ̂p(θ,G)

∂θ
and c(θ,Ee) = θ

∂η̂e(θ,Ee)

∂θ
.

Furthermore, it is observed that by eqs. (5.1), (5.2), (5.4), and (7.4), we obtain Tp
NR :

Ḣp + KpNR
...∇Ḣp = P(G) : A(θ,G)dp − θQ(G) : A(θ,G)dp, where the terms P(G) :

A(θ,G)dp and θQ(G) : A(θ,G)dp are the internal-energetic plastic power, and the en-
tropic plastic power respectively. An immediate consequence of inequality in eq. (5.6) is

Internal-energetic plastic power ⩾ Entropic plastic power.
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We note that the definition of Sp through eq. (7.4) implies that
∂Sp

∂θ
= −Q(G) and Sp − θ

∂Sp

∂θ
= P(G).

Clearly by eq. (7.6), we have(
Sp − θ

∂Sp

∂θ

)
: Ġ = P : Ġ =

∂ϵ̂p(G)

∂G
: Ġ = ˙̂ϵp(G).

Thus, the energy balance eq. (7.3) in terms of heat capacity and internal energy due to
cold work has the form

c(θ,Ee)θ̇ + divq− q = T : Ḣp − ˙̂ϵp(G) + θM : Ėe + div(KpḢp).

Upon integration over the domain B occupied by the body, we have (where ϵp = ϵ̂p(G))∫
B

cθ̇ dv +

∫
∂B

q · n da−
∫
B

q dv

=

∫
B

T : Ḣpdv −
∫
B

ϵ̇pdv +

∫
B

θM : Ėpdv +

∫
∂B

KḢp · n da.

If thermal expansion is neglected (i.e. M : Ėe ≈ 0), and dividing through by∫
B

T : Ḣpdv +

∫
∂B

KḢp · nda,

we have

(7.7) βB = 1−
∫
B
ϵ̇pdv∫

B
T : Ḣpdv +

∫
∂B

KḢp · n da
,

where

βB =

∫
B
cθ̇ dv +

∫
∂B

q · n da−
∫
B
q dv∫

B
T : Ḣpdv +

∫
∂B

KḢp · n da
is the global fraction of plastic power that goes into heating. By eq. (7.7), it is clear
that βB deviates from unity provided that there is a temporal change in the global plastic
internal energy.

8. Complete initial and boundary value problem

Evolution of Burgers tensor G. The Burgers tensor G = G(x, t) is assumed
to satisfy the evolution equation Ġ = A(θ,G)dp − R(θ,G) with initial condition
G(x, 0) = Go.

Macroscopic force balance and associated boundary conditions. The macro-
scopic force balance and macro-traction condition are given as

(8.1) divT+ b = 0 in B and Tn = t∗(n) on ∂Btrac,

where t∗(n) is prescribed on ∂Btrac a portion of ∂B.
Given the free energy ψ = ψ̂e(θ,Ee), the stress T is defined constitutively by

T =
∂ψe(θ,Ee)

∂Ee
,

where Ee = E − Ep and E = 1
2
(∇u+ (∇u)T ). We shall assume that the displacement

u is specified on a portion ∂Bu of ∂B in the sense

(8.2) u(x, t) = uo on ∂Bu,

where ∂Bu and ∂Btrac are complementary subsurfaces of ∂B.
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Microscopic force balance and constitutive relation for microscopic stresses.
The microscopic force balance is given as

(8.3) To = Tp − divKp in B.

The Cauchy stress and microscopic forces are constitutively defined as follows

T =
∂ψe(θ,Ee)

∂Ee
;

and

(8.4) Tp = (F (θ,G) + Y (θ, ep))
Ḣp

dp
and Kp = l2(F (θ,G) + Y (θ, ep))

∇Ḣp

dp

for dp ̸= 0, where Y (θ,G) is the flow resistance and

F (θ,G) =
∂ψ̂p(θ,G)

∂G
: A(θ,G) ⩾ 0.

By substituting constitutive relations eq. (8.4) into the microscopic force balance eq. (8.3)
gives what is known as the plastic flow rule. The flow rule is to be accompanied by
appropriate initial and boundary conditions.

Initial-boundary conditions of flow rule. For the initial condition of the flow
rule, we assume that Hp(x, 0) = 0 for all x ∈ B. For the boundary conditions, it is
assumed that the body B is made up of time-dependent complementary sub-bodies Be(t)
and Bp(t) called the elastic and plastic region, respectively. These sub-bodies share an
interface I(t) in the sense:

B = Be(t) ∪Bp(t) and Be(t) ∩Bp(t) = I(t).

Let ∂Bp(t)be the boundary of Bp(t). We define the surface Sp(t) by

Sp(t) = ∂Bp(t) ∩ ∂B.

Now, suppose ∂Bevhard and ∂Bevfree are complementary subsurfaces of ∂B, such that ∂Bevhard
is the portion of ∂B that does not allow flow of dislocation, and ∂Bevfree is that portion of
∂B that allows flow of dislocation. We shall define the microscopic hard surface Sphard(t)
and microscopic free surface Spfree(t) as

Sphard(t) = Sp(t) ∩ ∂Bevhard and Spfree(t) = Sp(t) ∩ ∂Bevfree.

The microscopic-hard and microscopic-free boundary conditions specified on these micro-
scopic surfaces are given by

(8.5) Ḣp(x, t) = 0 on Sphard(t) and Kpn = 0 on Spfree(t)

respectively.

Balance of energy and associated initial-boundary conditions. The balance
of energy is given as

c(θ,Ee)θ̇ + divq− q = T : Ḣp − ϵ̇p + θM : Ėe + div(KpḢp),

where,

c(θ,Ee) = −θ ∂
2ψ̂(θ,Ee,G)

∂θ2
, M =

∂T(θ,Ee)

∂θ
and

ϵ̇p =
(∂ψ̂p(θ,G)

∂G
− θ

∂2ψ̂p(θ,G)

∂θ∂G

)
: Ġ.
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Given a known function θo(x), the initial condition for the temperature distribution is
assumed to take the form θ̂(x, 0) = θo(x) ∀ x ∈ B. Also, given the functions θ∗ defined
on portion ∂Bθ of the boundary ∂B and qn defined on portions ∂Bq of the boundary ∂B,
we choose as boundary conditions the following: θ(x, t) = θ∗ on ∂Bθ and q · n = qn on
∂Bq, where ∂Bθ and ∂Bq are complementary sub-surfaces of ∂B.

9. Weak formulation of the coupled problem

Let ũ, H̃p and ∇H̃p be kinematically admissible variables consistent with the bound-
ary conditions eqs. (8.2) and (8.5), and θ̃ be a thermally admissible variable in the sense
that θ̃ = 0 on ∂Bθ.
From eq. (8.1), the macroscopic force balance satisfies [3,16,22]∫

B

((ũ− u̇) · divT+ b · (ũ− u̇))dv = 0.

By Gauss divergence theorem, we have

(9.1)
∫
B

T : (E(ũ)−E(u̇))dv −
∫
∂Bt

t∗(n) · (ũ− u̇)da−
∫
B

b · (ũ− u̇)dv = 0,

where Ė = E(u̇) = 1
2
[∇u̇+ (∇u̇)T ] and Ẽ = E(ũ) = 1

2
[∇ũ+ (∇ũ)T ].

From eq. (8.3), the microscopic force balance satisfies the equation∫
B

T : (H̃p − Ḣp)dv =

∫
B

Tp : (H̃p − Ḣp)dv −
∫
B

(H̃p − Ḣp) : divKpdv.

Applying the Gauss divergence theorem and the use of eq. (8.5), we have

(9.2)
∫
B

[Tp : (H̃p − Ḣp) +Kp
...(∇H̃p −∇Ḣp)]dv −

∫
B

T : (H̃p − Ḣp)dv = 0.

Integrate eqs. (5.8) and (6.3) over B, and add to the sum of eqs. (9.1) and (9.2), we
obtain ∫

B

(δ̂(ẽp) + ϕ̂(ẽp))dv −
∫
B

(δ̂(ėp) + ϕ̂(ėp))dv(9.3)

+

∫
B

T : ((E(ũ)− H̃p)− (E(u̇)− Ḣp))dv

−
∫
∂Bt

t∗(n) · (ũ− u̇)da−
∫
B

b · (ũ− u̇)dv ⩾ 0.

Hence, the macroscopic and microscopic force balances in eqs. (8.1)1 and (8.3), the consti-
tutive relations for the macroscopic stress T, the microscopic stresses Tp and Kp together
with the natural boundary conditions in eqs. (8.1)2 and (8.5)2 are equivalent to the weak
form represented as a variational inequality in eq. (9.3).

The weak form of the energy equation is simply given as∫
B

cθ̇θ̃ dv +

∫
∂Bq

θ̃qn da−
∫
B

q · ∇θ̃ dv −
∫
B

qθ̃ dv

=

∫
B

T : Ḣpθ̃ dv −
∫
B

θ̃ϵ̇pdv +

∫
∂B

Kpn : Ḣpθ̃ da

−
∫
B

KpḢp · ∇θ̃ dv +
∫
B

θ̃θ̇M : Ėedv,

where
∫
B
θ̃ divq dv = −

∫
B
q · ∇θ̃ dv +

∫
∂Bq

θ̃qn da, qn = q · n on ∂Bq and θ̃ = 0 on ∂Bθ.
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10. Constitutive relation in a reference configuration
natural for a fixed temperature

Let ω = ω̂(θ,Ee,G) be Gibbs function defined as

ω̂(θ,Ee,G) = ψ̂(θ,Ee,G) + (θ − θo)η̂(θ,E
e,G),

where θo is a fixed temperature.
By definition, a reference configuration is said to be natural for a fixed temperature

θo if ω̂(θ,Ee,G) has a minimum at (θ,Ee,G) = (θo,0,0) (Gurtin et.al., [17]). The
consequences of this definition are:

(i.) The Cauchy stress T vanishes at (θo,0,0);
(ii.) The elasticity tensor ∂T

∂Ee = ∂2ψ
∂Ee2 is positive semi-definite at (θo,0,0);

(iii.) The specific heat capacity c = c(θ,Ee) is non-negative at θ = θo and Ee = 0.
For small deformation, let ε be define as

ε :=

√
|Ee|2 + |Hp|2 + l2|G|2 + (θ − θo)2

θ2o
+ L2

|∇θ|2
θ2o

,

where l and L are length scales.
Given an arbitrary field Φ = Φ(θ,Ee,G). We shall denote the value of Φ at (θo,0,0)

as Φ
∣∣
0

and assume that at this virgin state, Gibb’s function ω, free energy ψ, and entropy
η satisfy

(10.1) ω
∣∣
0
= ψ

∣∣
0
= η

∣∣
0
= 0.

By Taylor’s series expansion, the free energy is expanded about (θo,0,0) as

(10.2) ψ̂(θ,Ee,G) = ψ

∣∣∣∣
0

+
∂ψ

∂Ee

∣∣∣∣
0

: Ee +
∂ψ

∂θ

∣∣∣∣
0

(θ − θo) +
∂ψ

∂G

∣∣∣∣
0

: G

+
1

2
Ee :

(
∂2ψ

∂Ee2

∣∣∣∣
0

)
Ee +

1

2
G :

(
∂2ψ

∂G2

∣∣∣∣
0

)
G+

1

2

∂2ψ

∂θ2

∣∣∣∣
0

(θ − θo)
2

+
∂2ψ

∂θ∂Ee

∣∣∣∣
0

: Ee(θ − θo) +
∂2ψ

∂θ∂G

∣∣∣∣
o

: G(θ − θo) + o(ε2) as ε→ 0,

where,
∂2ψ

∂Ee∂G
= 0 since ψ = ψ̂e(θ,Ee) + ψ̂p(θ,G).

Recall that at (θo,0,0), ω is a minimum, so that we have

(10.3) ∂ω

∂Ee

∣∣∣∣
0

= 0 =
∂ψ

∂Ee

∣∣∣∣
0

,
∂ω

∂G

∣∣∣∣
0

= 0 =
∂ψ

∂G

∣∣∣∣
0

and
∂ψ

∂θ

∣∣∣∣
0

= 0.

The elasticity tensor C, specific heat capacity co, coefficient of thermal expansion tensor
due to elasticity M, a coefficient of thermal expansion due to defectiveness W and a
defective modulus B at (θo,0,0) are given as

C =
∂2ψ

∂Ee2

∣∣∣∣
0

, co = −∂
2ψ

∂θ2

∣∣∣∣
0

θo, M =
∂2ψ

∂θ∂Ee

∣∣∣∣
0

, W =
∂2ψ

∂θ∂G

∣∣∣∣
0

and B =
∂2ψ

∂G2

∣∣∣∣
0

respectively.
By eqs. (10.1) and (10.3), and ignoring higher-order terms in eq. (10.2), the free-

energy ψ has the quadratic form

ψ̂(θ,Ee,G) = 1
2
Ee : CEe − co

2θo
(θ − θo)

2 + (θ − θo)M : Ee(10.4)
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+ 1
2
G : BG+ (θ − θo)W : G.

It is clear that the elastic free energy ψe and the plastic free energy ψp are given as the
quadratic forms

(10.5)
ψ̂e(θ,Ee) = 1

2
Ee : CEe − co

2θo
(θ − θo)

2 + (θ − θo)M : Ee,

ψ̂p(θ,G) = 1
2
G : BG+ (θ − θo)W : G.

By eqs. (5.10), (7.4), (10.4), and (10.5) the Cauchy stress T, the microscopic stress Sp

and the entropy η are given as

T = CEe + (θ − θo)M, Sp = BG+ (θ − θo)W, and

η̂(θ,Ee,G) =
co
θo

(θ − θo)−M : Ee −W : G.

11. Conclusion

In this paper, a report on a thermo-mechanically coupled theory of polycrystalline
distortion gradient plasticity for cold working has been presented. A constitutively well-
defined Burger tensor rate, in terms of an accumulation modulus tensor A(θ,G) and
a recovery rate tensor R(θ,G) are proposed. It is observed that the Burgers tensor
flow is associated with changes in dislocation densities arising from cold working and
thermal annealing. The recovery rate tensor is shown to mimic a dissipative behavior,
thus resulting in a decrease in the accumulation of dislocation densities during thermal
annealing. Also, it is obtained that the non-recoverable energetic microscopic stresses
have well-defined constitutive relations during cold working whenever the effective flow
rate does not vanish. Other features associated with cold-worked polycrystalline are the
plastic internal energy and entropy which are obtained as functions of the Burgers tensor.

This proposed theory is shown to be thermodynamically consistent. Numerical im-
plementations of this theory using benchmark problems have been left for future work.
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БУРГЕРСОВ ТЕНЗОР ПРОТОКА, ХЛАДНИ РАД И
ТЕРМИЧКО ЖАРЕЊЕ

Резиме. У овом раду се предлаже кинематичко-термички конститутивни закон ево-
луциjе Бургерсовог тензора током хладног рада и након накнадног термичког жаре-
ња поликристала. Предлог jе заснован на раду L. Anand, M. E. Gurtin, B. D. Reddy,
The stored energy of cold work, thermal annealing, and other thermodynamic issues in
single crystalplasticity at small length scales, Int. J. Plast. 64 (2015), 1–25. Принцип
виртуелног рада и термодинамички закони се користе за постизање равнотеже сила,
равнотеже енергиjе и неравнотеже слободне енергиjе. Неповратни енергетски микро-
скопски напони се добиjаjу као карактеристике материjала коjи се обрађуjу хладно
кад год jе енергиjа дефекта зависна од Бургерсовог тензора. Сходно томе, примећуjе
се да унутрашња енергетска пластична снага ниjе мања од ентропиjске пластичне
снаге. Показано jе да стопа опоравка током термичког жарења опонаша дисипатив-
но понашање, што доводи до смањења акумулациjе густине дислокациjа. Штавише,
слободна енергиjа – апроксимирана квадратном формом – се користи за добиjање
конститутивних релациjа за макроскопске и микроскопске напоне.
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