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ABsTrRACT. We examine the conditions for synchronization of landslide sto-
chastic chain model with delayed coupling. Firstly, a new chain model for
landslide dynamics is proposed, with the included effect of delayed coupling
and background noise. The model is of the microscopic type, where the state
of each block in the chain is influenced by the previous state of the same block
and its neighbors as well as by noise. Secondly, we examine the stochastic
synchronization of such a system of stochastic delay-differential equations. A
sufficient condition for the exponential mean square stability of the synchro-
nization is obtained. The sufficient condition indicates that the uni-directional
asymmetric coupling induces the synchronization much more efficiently than
the bi-directionally symmetric one. From the practical viewpoint, the results
obtained confirm that different parts of the large unstable slope could exhibit
synchronized activity under certain conditions, which indicates their possible
larger influence on the structures (and generation of corresponding deforma-
tion) compared to the individual effect of unsynchronized activities.

1. Introduction

Slow-moving, the so-called creeping landslides are usually represented as large
earth masses moving permanently and slowly down the slope, with variable rate
of movement, depending on the influence of precipitation, groundwater, oscillation
of surface water levels and impact of river flow and dynamic conditions [1]. In
Serbia, creeping landslides are abundant in the Neogene silty-clay sedimentary for-
mations, like Mramor, Razanj, Begaljicko brdo, Umka, Duboko, etc., whose impact
on the urban environment and infrastructure is at high financial rate, requiring
complex and expensive mitigation and remediation measures [2], some of which
include cutting-edge early warning methods [3] or anti-sliding piles [4]. However,
as a rule, if applied, these measures do not secure the absolute stability of the un-
stable slope, since, besides the influence of constant moving of the large creeping
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landslide on the occurrence of structural deformation, there is a significant impact
of many shallow landslides which are commonly activated within the same unstable
slope (large creep landslide) and which exhibit more frequent activity with more
rapid movement compared to the activity of the whole unstable slope. Activi-
ties of these “isolated” landslides are usually not correlated. However, it would be
of great practical significance to provide the conditions for their synchronization,
since synchronized activity of many smaller landslides within the same unstable
slope indicates the conditions for the activity of the whole large landslide, thus,
presenting greater threat to the nearby structures. From the viewpoint of non-
linear dynamics, the problem of synchronization has been in the focus for many
decades. Although synchronization in natural systems could lead to unwanted
states, including neurological diseases, involuntary muscle contraction, or networks
of routers to pedestrians on the Millenium bridge, in some cases, synchronization
represents a favorable state of a dynamical system. In particular, in the case of
synchronization many connected (or isolated) units start to behave in the same
way, which makes the system controllable and easily described. Therefore, there
is a great interest in the analysis of conditions necessary for the synchronization

to occur. For instance, Xie et al. [5] confirmed the conditions for finite-time syn-
chronization in complex delayed networks with Markovian jumping parameters and
stochastic perturbations. Liu et al. [6] designed an adaptive controller for clus-

ter synchronization in complex network models, influenced by coupling delays and
perturbed by noise, also by applying Ito’s formula, as in the present case. Cong et
al. [7] used the Lyapunov stability theory and the Ito formula in order to obtain
new sufficient conditions for the synchronization of two chaotic systems, with in-
cluded influence of stochastic noise and time-varying delay. In our previous papers,
we investigated the conditions for synchronization of noisy excitable systems with
coupling and internal delays [8]. For the pair of interacting units, it is shown that
the external /internal character of noise primarily influences frequency synchroniza-
tion and the competition between the noise-induced and delay-driven oscillatory
modes, while coherence of firing and phase synchronization substantially depend
on internal delay. Ren et al. [9] examined the synchronization stability of sto-
chastic linearly coupled differential equation systems, with signal-dependent noise
perturbation. In order to examine the possible conditions for synchronization of
activity of different slope parts, one needs to represent the landslide activity in a
form of convenient dynamical system. Such model for landslides has been initially
suggested by Davis [10], who proposed a spring-block model (composed of two
blocks connected with damped spring) as a dynamical system of an accumulation
slide, where two blocks represent feeder and accumulation part of the slope. Soon
afterwards, Chau [11] also suggested a spring-block model as a convenient dynam-
ical system for dynamics of a creeping land-slide. Helmestter et al. [12] examined
landslide as a slider-block model, under the assumption of state and velocity de-
pendent friction law. They established four different dynamical regimes, two of
which are ascribed to the Vaiont landslide (velocity weakening unstable regime)
and the La Clapiere (velocity strengthening stable regime). In our previous paper
[13], we examined the dynamics of the model initially suggested by Chau [11], with
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included delay coupling. Morales et al. [14] examined the landslide dynamics by
studying dynamics of a mechanical block-spring slider model with three different
friction laws.

To the best of our knowledge, although we previously examined the synchro-
nization of neurons [15], there were no previous attempts in defining the conditions
of synchronization for any of the previously suggested landslide mechanical mod-
els. Moreover, previously suggested landslide spring-block models have not taken
into account the delayed coupling, as suggested by Davis [10], nor did they con-
sider the influence of the background noise. Concerning the important impact of
time delay on the generation of complex dynamics and possibly significant effect of
noise, especially in the case where the dynamical system under study is near the
transition between different dynamical regimes, or in the case where the system ex-
hibits excitable behavior (which could be the case for landslide dynamics), we feel
that the new model proposed in this paper addresses the landslide dynamics prop-
erly and enables revealing the background mechanism of complex displacements of
unstable slope.

One should note that two properties of delay-differential systems make the
study of the influence of noise on such systems nontrivial. Firstly, a deterministic
delay-differential system has a nonzero memory, i.e., it does not satisfy the Markov
property. Consequently, some of the well-established methods to study stochastic
systems which are valid for Markov processes, like Fokker-Planck equations, can-
not be used [16]. Secondly, a single nonlinear scalar deterministic delay-differential
equation with a single fixed time-lag 7 gives an infinite dimensional dynamical sys-
tem on the phase space C(—7,0) of continuous functions on the interval (—,0)
[17]. Large 7 usually implies high-dimensional chaotic attractor, first studied in
[18]. Apart from hyperchaos, an important effect of large delay is also the multi-
stability of periodic attractors, see e.g. the classical reference [19].

In this paper we firstly suggest a new landslide mechanical model, with delayed
coupling and background noise. Such model could be considered as microscopic
because the structure of the landslide flow is considered discrete with the main
ingredients being the individual blocks (several landslides within the same slope or
parts of the same unstable slope). Secondly, we provide a sufficient condition for
synchronization of a land-slide chain model, with different time lags and background
random noise.

Paper is structured as follows. In Section 2 we provide a brief description of
the examined model. In Section 3 we postulate the theorem, which is proved in
Section 4. Conclusions are provided in the final section, together with the directions
for further research.

2. Model Description

We shall examine the general open chain model of spring-block elements as
the phenomenological model for landslide dynamics, expressed by scalar delay-
differential equations (DDE) of the following form:

(2.1) & = ygle(t —m)] - {ax(t) - Bflx@®)]}-



16 VASOVIC, KOSTIC, TODOROVIC, AND KUZMANOVIC

This model describes the local dynamics of units. One should note that f and g
are quite general nonlinear functions, which satisfy Lipschitz conditions, as given
further in the text, Eq. (2.3), and «, 3, v are parameters. Parameters a and 8
represent general friction parameters, qualitatively the same as parameters a and b
in Dieterich-Ruina friction law. In particular, parameters a and b represent material
properties, e.g. the direct velocity effect and evolutionary friction effect, which
depend on the temperature and size of the normal stress [20]. Hence, the whole
term ax(t)— B f[x(t)] represents a general expression for the nonlinear friction term.
On the other hand, parameter v denotes the strength of the effect of the delayed
term. The delayed self-feedback 7 qualitatively describes the effect of the state of
the sliding surface on the dynamics of the landslide model ("memory effect”).

We consider N dynamical systems (2.1) with bi-directional coupling between
the neighboring units of the form ¢y (z; —x;_1) + ca(x; — z;+1). In real applications,
the influence of the neighboring systems on the system x;(¢) involves a nonzero
time-lag.

In this specific landslide model, the state (velocity) z;(t) depends on the dif-
ferences between the states (velocities) z;(t — 71) and x;1(t — 71) and the states
(velocities) z;(t — 72) and x;—1(t — 72). In other words, the previous coupling be-
comes c;[x;(t — 12) — xi—1(t — 72)] + cozi(t — T2) — x;_1(t — 72)]. Feedback and
transmission time lags 71 and 75 are not related in general.

It is also natural to assume that many features of real systems have been
neglected in making the model, but that they can be retaken into consideration as
different types of random perturbations of the deterministic model.

We thus arrive at the systems of Ito stochastic delay-differential equations
(SDDEs) of the following form:

(22) da(t) = {—awi(t) + Bf[xi(t)] + vglw:(t — )] }dt
—{ar[zi(t — 12) — xi—1(t — T2)] + co[xi(t — 72) — @ip1(t — 72)]}dt
+ 2;(t)V2DdW, where i=2.3,...,N —1.
In further analysis we shall consider an open chain of spring-block elements
with moving boundaries, i.e., the system (2.2).

We shall always assume that dW, formally written as dW = £(t)d¢, is the
stochastic increment of the Wiener process &(t) for which:

where E(-) denotes the mean with respect to the stochastic process. The increments
satisfy:
EdwW) =0, dWdWwW =dt.

We repeat that f(z) and g(x) are piece-wise continuous functions, «, 3, v, ¢1
and ¢y are parameters, and 71 and 75 are the feedback and transmission time-lags,
respectively.

In order to ensure the existence of solutions for (2.2), we shall require that the
functions f and g satisfy the usual uniform Lipschitz condition, i.e.

(2.3) B [wi(t)] +glai(t — )] = Bf[x; ()] — vglz; (t — )]
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Sl (t) — 2O + fai(t — 1) — a;(t = 7))

The Lipschitz condition (2.3) will prove to be crucial in obtaining the conditions
that guarantee the global stability of the exact synchronization in systems of the
form (2.2). Let

Ai(t) in(t)—l‘i_l(t), iZQ,S,...,N.

denote the difference (synchronization error) between the solution z;(t) and the
nearest neighbor solution x;_1(t), where ¢ = 2,3,...,N. Then, dAi(t) can be
estimated using the Lipschitz condition (2.3) as follows:

(2.4) dA;(t) < [—ali(t) + kA ()] + kA (t — 71)]
—(c1 4+ c2)Ai(t — 7o) + coli 1 (t — 72)
+ ClAifl(t — Tg)]dt + AAt)\/EdVV,

where A;j(t —7) =x;(t = 7) —x;_1(t —7) and i = 3,4,...,N — 1. For i = 2 we
obtain:

(2.5) dAs(t) < [— alq(t) + k| Ax(t)| + k| A (t — 1)
— (e1 4 e2)Ao(t — 73) + caAs(t — 73)]dt + Ay (t)V2D AW,
and for ¢ = N:
(2.6) dAN(t) < [— aAN(t) + k|AN()| + K| AN(t —T1)]—
— (€1 + c2)An(t — T2) + caAn_1 (t — 7)]dt + An(t)V2D dW.

In the case of deterministic DDE global asymptotic stability of £ ,A2(t) =0
which implies that the global attractor of the deterministic part of (2.2) satisfies
xr1 = --- = xy and, in that case, sufficient condition for the global asymptotic
stability of XY ,A2(¢t) = 0 could be found by applying a generalization of the
Lyapunov first method.

In the case of stochastic DDEs, the global exponential stability is replaced by
the analogous stability in the mean value with respect to the distribution given by
the stochastic process. The stability in the mean value for the given model (2.2) is
given by the Theorem in Section 3.

3. Theorem

If constants «, k, ¢1, ¢ and D (where k, ¢1, c2, a, D are real numbers, and k,
1, ¢2, @, D > 0) satisfy:

(3.1) 2k +2¢1 +2co+D —a<0,
then the system (2.4), (2.5), (2.6) is exponentially stable in the mean value of

N
> AR,
i=2

i.e., exponentially stable in mean square.
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Explicitly, if (3.1) is satisfied then the following inequality holds:
N N
E[ZA%@)] < CE{ZA?(O)]e”, t>0,
i=2 i=2

where A\ > 0 is a constant and C' is independent of ¢ but might depend on ¢y, ca,
k, a, 7, D and \.

4. Generalized Ito formula

Suppose that dX® = Fidt + G{dW, with F* € LY(0,7), G* € L2(0,7),

for i = 1,...,n. If u: R, x [0,T7] — R is continuous, with continuous par-

. . . ) F) o2 . _

tial derivatives [21]: Z, 5-, B0 (i,j = 1,...,n), then dlu(X", ..., X" t)] =
N ; N 2 i v

Grdt + 300, FEAX 4+ 53001 e G'GIdL, where we denote by L*(0,T) the

space of all real-valued progressively measurable stochastic processes G(-) such that
E( fOT G?dt) < co. Likewise, L*(0,T) is the space of all real-valued progressively
measurable processes F(-) such that E( fOT |F|dt) < oo.
5. Proof of the theorem
Applying the Ito formula to S, A%(t), we obtain:

N N N
(5.1) d[ZA?(t)] =2 Ay(t)dAi(t) + Y AF(t)2D dt,
=2 =2 =2
and
N N
(5:2) 2 Ai(t)dA(t) + > AF(t)2Ddt

< 2A2(t){[*0[A2(t> + k|A2(t)| + k|A2(t — Tl)‘
— (e1 4 ¢2)Aa(t — 73) + caAs(t — 73)]dt + Ag(t)V2D AW}
N-—-1
+2 ) A [—ali(t) + E|A(1)] + E|A(E— 7))
=3

— (Cl + CQ)Ai(t — TQ) =+ CQAiJrl(t — 7'2) + ClAifl(t — Tg)]dt
+ Ai(O)V2D AW} 4 2A N (D) {[—aAnN (1)
+ k|AN(t)| + ]{i|AN(t — T1)| — (C] + CQ)AN(t — T2)
N
+ 1Ay 1 (t = )ldt+ An (V2D AW} + Y AZ(H)2Ddt,

i=2
i.e., after some rearrangements, (5.1) and (5.2) become:

N N
d{z Af(t)} <) {2047 (1) + 25D (8)| A ()| + 26 (£)| A (t — 7))
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— 2(c1 + e2) Ai(H) A (t — 72)]dt + 2A2(£)V2D AW}

N N-1 N
+ Z QClAi(t)Ai_l(t — Tg)dt + Z 2C2Ai(t)Ai+1(t — Tg)dt + Z A?(t)QD dt,
3 1=2 =2

where k, ¢q, c2, a, D > 0.
Let us introduce the new variable U:

N
U(A3(s),-., =Y e TIAs)
=2
and, integrating with respect to s, we get:
K ou 19%U
(5.3) / dle720(=9)A2(s / —d + —dX; + = 202
0 ox; 2 Oz

where X; = A;(s) and dX; = dA;(s) = Fids + G;dW(s).
After the integration in (5.3), one gets:

N
e—2a(t—t)ZA12( o 20(t— O)ZAQ / 9oe—20(t— s)ZAz
1=2 =2
N

+/0 at—s {Z{ [—2aAZ(s) + 2kA;(8)| A (s)] + 2kA;(s)|Ai(s — 71)]
2(c1 + ¢2)Ai(8)Ai (s — 75)]ds + 2A2(s)V2D dW (s) + A2(s)2D ds}

N N-1
-+ Z QClAi(s)Aifl(S — TQ)dS + Z QCQAi(S)AiJrl(s — TQ)dS}.

=2

From the preceding expression, after some rearrangements, we obtain:

N N
D AN e Z A(0)
=2 i

+ te—2a<f S){Z{ [2kA2(s) + 2Kk Ay (s)]| Ai(s — 71)|
0
+2(c1 + 02)|A¢(s)||A-(5 — 7)|]ds + 2V2DA2(s)dW (s) + 2DA2Z(s)ds}

N-—-1
+2201|A ||A2 1(8—7’2 ‘d8+ ZQCQ‘A >||Ai+1(5—7’2)|d8}.

=2

From (3.1) there exists some sufficiently small positive constant A, a > A > 0,
such that:

(5.5) a—X—k—keM —2(c; + c2)e*™ — D >0,

where 7 = max (7, 72).
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Considering (5.4) and (5.5) and since the following holds:
t N
E {/ el2At=2a(t=s)9, /5 Z Af(s)dW} =0,
0 i=2

one obtains:

(5.6) E[ﬁ: A?(t)] e < e<2*—2a>tE[zN: A?(O)]

=2
t N
_|_/ e(2>\2a)(ts){QkZE[AZZ(S)]ezAs
0 =2
N
+ 2ke™™ Z E[|Ai(s)]|Ai(s — ) []eMerem)
=2
N
+2(c1 + €2)e’™ Y E[|Ai()]|Ai(s — o) [Jer* M)
=2
N
+2D ) E[A}(s)]e™
1=2

N
+ 2¢1e*™ Z E[|Ai(8)]| A1 (s — 72)|]e*er=2)
=3

N-1
+ 2c0eM™ Z E[|Ai(3)||Aigp1(s — 7o) [Jer3er 7T }ds.

i=2
Let us denote by:
(5.7) G(t)= sup E[A(0)|A;(p)]]eNe .
—7<LOLt
—TSYLL
2<i,J<N

Then, considering (5.6), we obtain:

E { i Af(t)} e L P20t {i A?(O)]
=2

1=2

t
+/ elPA=2el(=9) q5[2k(N — 1)G(t) + 2ke™ (N — 1)G(t)
0

+2(c1 + ¢2)e* (N — 1)G(t) + 2D(N — 1)G(t)
+ 2¢1e* (N — 2)G(t) + 2¢2e™ (N — 2)G(1)],
and after the integration in (5.7), one obtains:

(5.8) E[XN: Af(t)] e < E{XN:AZZ(O)}

=2
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+ Wiw{pk + 2ke ™ + 2(c1 + c2)e’ + 2D](N — 1)G(t)

+2(c1 + 2)e* (N — 2)G (1)}
Considering (5.7), it follows from (5.8):

(2a — 20)(N = 1)G(t) < (2a — 2\ E {ZN ]

+ {[2k + 2ke ™ 4 2(c1 + ¢2)e™ + 2D](N — 1)G(2)
+2(c1 + ) (N — 1)G(t)}.

and, after some rearrangements:

N
200 — 2\ — 2k — 2ke ™ — 4(cy 4 ca)e*™ —2D](N — 1)G(t) < (2a—2\)E [ > Af(O)] .

=2
Further, we can write
N
[2a — 2\ — 2k — 2ke*™ — 4(c; + ¢2)e* — 2D|E [ Z A?(t)] e
< 20— 2\ — 2k — 2ke™ — 4(cy + ¢2)e — 2D](N — 1)G(t)
N
(2a — 2\ E {ZAQ } {ZAE(O)},
i=2

which finally gives:

{ZN } 20E[ YN, A2(0)] e 2N

[2c — 2\ — 2k — 2ke*™ — 4(c1 + c2)er™ — 2D

The proof is completed.

6. Example

We show that our theorem is valid for the stochastic landslide chain model
with delayed coupling of the general form (2.2), composed of 96 units, where func-
tions f(v) and g(v) are of the following general forms: f(v) = arctanv(t) and
g(v) = sinwv(t), respectively. Inverse trigonometric function could be considered
as a qualitative representation of the plastic soil behavior, commonly referred to
normally consolidated clays. Both functions satisfy Lipschitz conditions (k = 1).
For the sake of numerical simulation, we adopted the following parameters: 8 =1,
T=1,c0=1¢c=1,D =0.1, 7 = 0.23, 72 = 0.42. In the case when condi-
tions of the theorem are not satisfied, we adopted the value of & = 1 (according
to our theorem, parameter o needs to be higher than 6.1 to satisfy the theorem
conditions). This case is shown in Figure la. In Figure 1b we show the results of
the computation when theorem conditions are satisfied (o = 6.2). Evidently, one
observes synchronization of units when theorem conditions are satisfied.
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FIGURE 1. Temporal evolution of the velocity difference between
the two randomly chosen units 27 and 72 in the array of 96 units of
the stochastic landslide chain model with delayed coupling of the
general form (2): (a) @ = 1 (theorem condition is not satisfied),
(b) @ = 6.2 (theorem condition is satisfied). Other parameters of
the model are set as follows: S =1,v=1,¢1=1,co =1, D =0.1,
7 = 0.23, 7 = 0.42.

7. Conclusions

We have studied the stochastic stability of exact synchronization in a novel
model of one-dimensional landslide dynamics. The model is formulated in terms
of the block’s velocities so that the acceleration of each block is determined by the
block’s velocity and the difference of the velocities of the nearest neighbors in front
and behind. The model explicitly considers the effect of noise and different types of
feedback delays. Quite a general form of nonlinear feedback is considered, and the
number of units in the chain is arbitrary. Mathematically, the system is described
by a set of N scalar nonlinear stochastic DDEs. The nonlinear functions charac-
terizing each unit in the chain are piece-wise continuous and satisfy the uniform
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Lipschitz condition but are otherwise arbitrary. Thus, the dynamics of each unit
when decoupled from the chain can be quite complex depending on the internal
parameters and the feedback delay. We have proved that exact synchronization
in the mean square can be achieved if an explicit sufficient condition is satisfied.
The sufficient condition for the global asymptotic in the mean square of the exact
synchronization involves the coupling constants ¢y, c¢; and the Lipschitz constant k.
The latter can be estimated in terms of the internal parameters and the feedback
delay 71. The sufficient condition does not depend at all on N and coupling delay
7o. The sufficient condition indicates that the uni-directional asymmetric coupling
induces the synchronization much more efficiently than the bi-directionally sym-
metric one. It means that by setting ¢; = 0 or ¢c; = 0, there is a larger range of
noise intensities where the synchronized solution is stable with other parameters
fixed. Also, the mean-square stability of the synchronized solution is independent
of the system size.

Acknowledgments. We devote this paper to the late professor Nikola Burié¢
whose original ideas in the study of synchronization in different dynamical systems
still inspire us.
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YCJIOBN CUHXPOHU3AIINJE ¥V JIAHYAHOM MOJAEJIY
KJINSUITITA CA IIIYMOM U KAIIMIBEBLEM YV BE3U

PE3BUME. V¥ pajy ucnuryjeMo ycjioBe 3a CHHXPOHU3AIH]Y JIAHATHOT MOJIEIa KIIU3H-
IITa ca IIyMOM U KallllbeiheM y Be3u. Kao npBo, mpe/ijiazke ce HOBH JIAHIAHHI MOIEJT
JIMHAMUKE KJIM3UINTA, & YKJbYIeHUM e(EKTOM KAaIlIbeha y Be3U U 1033 IMHCKOT
mryma. Mojes je MUKPOCKOIICKOT THUITA, TJe HA CTakhe CBAKOT OJIOKA y JIAHILY yTHIe
[IPETXO/IHO CTAbe UCTOr OJIOKA, KA0 M U CYCeIHUX OJIOKOBA, YKJBYUIyjyhu u yTHUIaj
myma. Kao apyro, ucnuryjeMo cToXacTUIKy CHHXPOHU3AIHU]Y TAKBOT CUCTEMa CTO-
XaCTUYKUX JudepeHInjaIHuX jeJHadnHa ca KammemeM. Kao pesysrar, nobuja ce
JIOBOJbAH YCJIOB 3a €KCIIOHEHIIMjAJIHY CPE/IIbe KBaJIPATHY CTaOUIHOCT CHHXPOHU3A~
nuje, KOju yKa3yje Ha TO Ja jeJHOCMEPHO aCHMETPUIHO IIOBE3UBaHE OJIOKOBA JIOBO/IH
JI0 CHHXPOHHU3AIINje MHOTO epUKACHUj€e OfI JBOCMEPHO cuMeTpudHor. Ca mpakTudaHe
TadKe TJIJUINTA, JOOUjeHN pe3yiaTaTi MOTBphyjy /fa 6u pa3induTh JeJIOBU BEJINKe
HecTabUJIHE TaJHE MOIJIU JIa UCIOJhaBajy CUHXPOHH30BAaHY AKTUBHOCT IIOJ OJipe-
Dennm ycioBuma, mito ykasyje Ha muxoB Moryhm Behm yrwiaj Ha KOHCTPYKIHje
(u renepucame oarosapajyhux gedopmanuja) y oqHOCY Ha MHIUBHIyaHU edekar
HECUHXPOHU30BAHUX aKTUBHOCTH PA3JIMIATHUX JEJI0BA IIAJIAHE.
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