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THE PROBLEM OF ACCELERATION IN THE
DYNAMICS OF A DOUBLE-LINK WHEELED
VEHICLE WITH ARBITRARILY DIRECTED

PERIODIC EXCITATION

Evgeniya Mikishanina

Abstract. This study investigates the motion of a nonholonomic mechanical
system that consists of two wheeled carriages articulated by a rigid frame.
There is a point mass which oscillates at a given angle 𝛼 to the main axis of
one of the carriages. As a result, periodic excitation occurs in the system. The
equations of motion in quasi-velocities are obtained. Eventually, the dynamics
of a double-link wheeled vehicle is modeled by a system that defines a non-
autonomous flow on a three-dimensional phase space. The behavior of integral
curves at large velocities depending on the angle 𝛼 is investigated. We use the
generalized Poincaré transformation and reduce the original problem to the
stability problem for the system with a degenerate linear part. The proof
of stability uses the restriction of the system to the central manifold and
averaging by normal forms up to order 4. The range of values of 𝛼 for which
one of the velocity components increases indefinitely is found and asymptotics
for the solutions of the initial dynamical system is determined.

1. Introduction

We study the dynamics of a double-link wheeled vehicle (leading carriage and
trailer) moving along a plane with an arbitrarily directed periodic excitation. The
periodic excitation occurs due to oscillations of the point mass along a straight line
located at a given angle 𝛼 to the main axis of the leading carriage. One wheelset
is rigidly fixed on each carriage. Nonholonomic constraints on wheels prohibit the
motion of each carriage in a direction perpendicular to its main axis.

The first scientific papers on the dynamics of vehicles, including wheel systems,
are dated to the middle of the XX century. For example, these are the papers of
Y. Rocard [1], B. Stückler [2,3] and O. Bottema [4]. The results of modern studies
of free dynamics of wheeled vehicles were published in [5–9]. The dynamics and
control of mobile wheeled robots were considered and investigated in [10,11].
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A well-studied model imitating the behavior of a simple two-wheeled robot on
the horizontal plane is Chaplygin sleigh model [12–15]. The equivalence of the
problem of any wheeled carriage and the problem of a similar carriage with a sharp
blade instead of a wheel was proved in [13]. The dynamics of Chaplygin sleigh
with parametric excitation was studied in [14,15]. In [15], it was shown that, in
some cases, the mass oscillating perpendicular to the main axis of Chaplygin sleigh
is capable of indefinitely increasing the linear velocity of the sleigh.

More complex systems are vehicles with two bodies. One of these systems
consists of two articulated Chaplygin sleighs and is called as Roller Racer. Free
dynamics of Roller Racer was studied, for example, in [16]. The problem of the
existence of regimes with unlimited energy growth (non-conservative Fermi accel-
eration) in the dynamics of Roller Racer was considered in [17].

We have published several papers on this sphere [18–20]. The free motion of
a multibody wheeled system was investigated in [18] and the controlled motion of
a multibody wheeled system was investigated in [19]. The results of a qualitative
analysis of the motion of a two-link vehicle were presented in [20]. In [20], periodic
excitation occurs due to an oscillation of a pair of point masses only along the main
axis of one of the carriages. The center of mass of this carriage does not change. It
is analytically proved that all velocities are bounded functions of time.

In this study, we investigate the dynamics of the double-link vehicle with pe-
riodic excitation, that occurs when there is a point mass, which oscillates in an
arbitrary direction. We derive the equations of motion of this system based on the
equations of motion in quasi-velocities with indefinite multipliers [21]. Thereafter,
we investigate the problem of an unbounded increase of one of the velocity com-
ponents (linear velocity). We call this fact as acceleration. To study the problem
of speedup at large velocities, we use the Poincaré transformation [22–24], reduce
the original problem to the stability problem, and to prove the stability we use the
restriction of the system to the central manifold and normal forms up to order 4.
The Poincaré transformation reflects the phase space of a dynamical system to the
so-called “Poincaré sphere”. The integral curves of the phase space pass into the
corresponding curves on the sphere, and fixed points of higher orders correspond-
ing to infinitely distant points of the phase space appear on the sphere. In [24],
the Poincaré transformation was generalized for a non-autonomous system of dif-
ferential equations and speedup effect in the Chaplygin sleigh problem was shown.
It should be borne in mind that the method in our study is somewhat different
from the method proposed in [24]. Firstly, the dimension of the dynamical system
in our study is higher. Secondly, we do not provide the rigorous estimates of the
region of the initial conditions for which there exist unbounded trajectories. Also,
we determine the values of mechanical parameters for which speedup of the double-
link wheeled vehicle takes place. To illustrate the results, graphs of velocities and
trajectories of the first carriage are constructed.

In general, a deep understanding of the dynamics of Chaplygin sleigh and the
simplest wheeled carriages allows to create control algorithms [25,26] and extend
them to simple (toys) and more complex mechanisms (garden wheeled equipment,
transport wheeled equipment and others) with a variable center of mass.
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The authors often limit themselves to the derivation of the equations of motion,
because further investigation of the obtained dynamical systems turns out to be
quite difficult. We hope that the results presented in this paper will be useful in
solving various mechanical problems, including the problems of multibody systems
described, for example, in [27,28].

2. Mathematical model and equations of motion

2.1. Schematic design and key assumptions. A bundle of two carriages
(first link ℒ1, second link ℒ2) moves along the plane (See Fig. 1).
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Figure 1. Schematic design of the double-link wheeled vehicle

We introduce the assumptions that we need to build a mathematical model.
∙ One balanced wheelset is rigidly attached to each carriage in the points
𝑂𝑖, 𝑖 = 1, 2.

∙ Each wheel rolls without slipping and contacts with the reference plane
only at one point.

∙ The carriages are connected at the points 𝑂1 and 𝑂2 by a rigid frame of
length 𝑙. The second carriage (trailer) ℒ2 is rigidly articulated with the
frame. The frame connects to the first (leading) carriage ℒ1 by a hinge
and can freely rotate around a vertical axis passing through 𝑂1.

∙ The center of mass 𝐶 of the carriage ℒ1 is shifted as illustrated in the
Fig. 1 and 𝐶𝑂1 = 𝑑1. The center of mass of the carriage ℒ2 coincides
with the point 𝑂2.

∙ The point mass 𝑚𝑝 moves along the first carriage ℒ1. It performs peri-
odic oscillations according to the law 𝑏 sinΩ𝑡 along a straight line that
intersects the main axis of the carriage at an angle 𝛼 at some point 𝑃 and
𝑂1𝑃 = 𝑎. We assume that Ω > 0, 𝑏 > 0. These conditions can always be
fulfilled if the angle 𝛼, 𝛼 ∈ [0, 2𝜋) is chosen appropriately.

We introduce a fixed coordinate system 𝑂𝑋𝑌 and a moving coordinate system
𝑂1𝑋1𝑌1 associated with the center of the wheelset 𝑂1 on the plane (See Fig. 1).
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Table 1. Key notations

r1 radius-vector of the point 𝐶

r2 radius-vector of the point 𝑂2

r𝑝 radius-vector of the point mass 𝑚𝑝

v = (𝑣1, 𝑣2)
velocity vector of the center

of the first wheelset 𝑂1

𝜔 angular velocity of the carriage ℒ1

u𝑖
velocity vectors of the center of mass

of the carriage ℒ𝑖, 𝑖 = 1, 2

u𝑝 velocity vector of the point mass 𝑚𝑝

The axis 𝑂1𝑋1 coincides with the main axis of the carriage ℒ1. The axis 𝑂1𝑌1
passes through the wheel centers.

The orientations of the carriages ℒ1 and ℒ2 on the plane 𝑂𝑋𝑌 are set by the
angles 𝜓 and 𝜃 respectively. The angle 𝜙 is the angle between the main axes of the
carriages and

𝜙 = 𝜃 − 𝜓, �̇� = 𝜔, 𝜃 = 𝜔 + �̇�.

The angle 𝜙 takes positive value when the carriage ℒ2 rotates around the point
𝑂1 counterclockwise, otherwise it takes negative value.

We work in the 𝑂1𝑋1𝑌1 coordinate system. Key notations in this coordinate
system are given in Tab. 1.

2.2. Nonholonomic constraints. The coordinates of the radius-vectors r1,
r2, r𝑝 are

r1 = (𝑑1, 0), r2 = (−𝑙 cos𝜙,−𝑙 sin𝜙), r𝑝 = (𝑎+ 𝑏 sinΩ𝑡 cos𝛼, 𝑏 sinΩ𝑡 sin𝛼).

The velocity vectors u1, u2,u𝑝 are

u1 = (𝑣1, 𝑣2 + 𝑑1𝜔),

u2 = (𝑣1 + 𝑙(𝜔 + �̇�) sin𝜙, 𝑣2 − 𝑙(𝜔 + �̇�) cos𝜙),

u𝑝 = (𝑣1 +Ω𝑏 cosΩ𝑡 cos𝛼− 𝜔𝑏 sinΩ𝑡 sin𝛼, 𝑣2

+Ω𝑏 cosΩ𝑡 sin𝛼+ 𝜔(𝑎+ 𝑏 sinΩ𝑡 cos𝛼)).

Because velocity vector of the wheelset is always directed along the main axis
of the carriage, the nonholonomic constraints are

(2.1)
𝑣2 = 0,

𝑣1 sin𝜙− 𝑣2 cos𝜙+ 𝑙(𝜔 + �̇�) = 0.
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2.3. Kinetic energy and equations of motion. The kinetic energy of each
carriage (𝑇1, 𝑇2) and the kinetic energy of the moving point mass (𝑇𝑝) are

𝑇1 = 1
2𝐼1𝜔

2 + 1
2𝑚1(𝑣

2
1 + 𝑣22) +𝑚1𝑣2𝑑1𝜔,

𝑇2 = 1
2 (𝐼2 +𝑚2𝑙

2)(𝜔 + �̇�)2 +
1

2
𝑚2(𝑣

2
1 + 𝑣22) +𝑚2𝑙(𝜔 + �̇�)(𝑣1 sin𝜙− 𝑣2 cos𝜙),

𝑇𝑝 = 1
2𝑚𝑝[𝑣

2
1 + 𝑣22 + 𝜔2(𝑎2 + 2𝑎𝑏 sinΩ𝑡 cos𝛼+ 𝑏2 sin2 Ω𝑡)

+ 2𝜔𝑏 sinΩ𝑡(−𝑣1 sin𝛼+ 𝑣2 cos𝛼) + 2𝑎𝜔𝑣2

+ 2Ω𝑏 cosΩ𝑡(𝑣1 cos𝛼+ (𝑣2 + 𝑎𝜔) sin𝛼) + Ω2𝑏2 cos2 Ω𝑡],

where 𝑚𝑖 is the mass and 𝐼𝑖 is the moment of inertia of the carriage ℒ𝑖 relative to
the geometric center of its wheelset.

The kinetic energy of the whole system is

(2.2) 𝑇 = 𝑇1 + 𝑇2 + 𝑇𝑝.

We do not give the full expression of kinetic energy here, because it is volumetric.
The general equations of motion in quasi-velocities with indefinite multipliers

𝜆1, 𝜆2 is in [20]. We write down those equations for kinetic energy (2.2), solve them
together with time derivatives of nonholonomic constraints (2.1) and obtain the
equations of motion in the variables 𝜙, 𝑣1, 𝜔 in dimensionless quantities, counting
𝑏 = 1,𝑚𝑝 = 1:

(2.3)
�̇� = −𝑣1

�̃�
sin𝜙− 𝜔,(︂

�̇�1
�̇�

)︂
= Σ ·

(︂
− 1

2𝐽2(𝜙)𝑣1 + 𝜔2(𝑐+ 𝑔1) + 2𝜔Ω𝑓2 +Ω2𝑔1
−𝑣1𝜔(𝑐+ 𝑔1)− 𝜔𝐽1(𝑡) + Ω2�̃�𝑓1

)︂
,

where

Σ =

(︃
𝐽1(𝑡)
Δ

𝑓1(𝑡)
Δ

𝑓1(𝑡)
Δ

𝐽2(𝜙)
Δ

)︃
,

𝑓1 = 𝑓1(𝑡) = sin𝛼 sinΩ𝑡, 𝑓2 = 𝑓2(𝑡) = sin𝛼 cosΩ𝑡,

𝑔1 = 𝑔1(𝑡) = cos𝛼 sinΩ𝑡, 𝑔2 = 𝑔2(𝑡) = cos𝛼 cosΩ𝑡,

𝐼1 =
𝐼1 +𝑚𝑝𝑎

2

𝑚𝑝𝑏2
, 𝐼2 =

𝐼2 −𝑚2𝑙
2

𝑚𝑝𝑙2
, 𝑐 =

𝑑1𝑚1 + 𝑎𝑚𝑝

𝑏𝑚𝑝
,

𝑚 =
𝑚1 +𝑚2 +𝑚𝑝

𝑚𝑝
, �̃� =

𝑎

𝑏
, �̃� =

𝑙

𝑏
,

𝐽1(𝑡) = 𝐼1 + 2�̃�𝑔1 + 𝑓21 + 𝑔21 , 𝐽1(𝑡) = 2Ω(�̃�𝑔2 + 𝑓1𝑓2 + 𝑔1𝑔2),

𝐽2(𝜙) = 𝐼2 sin
2 𝜙+𝑚, 𝐽2(𝜙) = 2𝐼2 sin𝜙 cos𝜙�̇�, Δ = 𝐽1(𝑡)𝐽2(𝜙)− 𝑓21 .

The equations (2.3) define the non-autonomous flow on a three-dimensional
phase space

ℳ3 = {(𝜙, 𝑣1, 𝜔) | 𝜙 mod 2𝜋, (𝑣1, 𝜔) ∈ R2}.
We assume that

𝑐+ 𝑔1 > 0
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or
𝑐 > | cos𝛼|.

As a rule, this case is realized in nonholonomic mechanics [24].

Remark 2.1. In general case, the system (2.3) has neither symmetries nor
involutions. However, for example, for 𝛼 ∈ {0, 𝜋}, the equations are invariant with
respect to substitution

𝑡→ 𝑡, 𝜙→ −𝜙, 𝑣1 → 𝑣1, 𝜔 → −𝜔.

For 𝛼 ∈
{︀

𝜋
2 ,

3𝜋
2

}︀
the equations are invariant with respect to substitution

𝑡→ −𝑡, 𝜙→ −𝜙, 𝑣1 → −𝑣1, 𝜔 → 𝜔,

that is, the system is reversible. Under the influence of this transformation, any
trajectory of the system becomes the trajectory with the opposite direction of
motion.

The trajectory of motion. For a complete analysis of the dynamics, we can
construct the trajectory of the carriage ℒ1 (the trajectory of the point 𝑂1). To do
this, we need to supplement the equations (2.3) with the following equations

(2.4)
(︂
�̇�

�̇�

)︂
= 𝑣1

(︂
[1.3] cos𝜓

sin𝜓

)︂
, �̇� = 𝜔.

Next, we will determine the behavior of integral curves at large velocities for
arbitrary parameters �̃�, 𝛼 under the early assumptions. For this purpose, we will
use the Poincaré transformation [22], which was generalized for non-autonomous
systems in [24].

3. Poincaré transformation and reduction to the stability problem

3.1. Poincaré transformation. In this section, we perform the Poincaré
transformation and reduce the problem of investigating the behavior of integral
curves of the system (2.3) at large velocities to the stability problem for a dynamical
system with a degenerate linear part. In order to do this, we introduce an angular
coordinate

𝜏 = 𝑡 mod
2𝜋

Ω
and rewrite the system (2.3) in the autonomous form

(3.1)

𝑑𝜙
𝑑𝑡 = −𝑣1

�̃�
sin𝜙− 𝜔, 𝑑𝜏

𝑑𝑡 = 1,(︂
𝑑𝑣1

𝑑𝑡
𝑑𝜔
𝑑𝑡

)︂
= Σ ·

(︂
−𝐼2 sin𝜙 cos𝜙𝑑𝜙

𝑑𝑡 𝑣1 + 𝜔2(𝑐+ 𝑔1) + 2𝜔Ω𝑓2 +Ω2𝑔1
−𝑣1𝜔(𝑐+ 𝑔1)− 2𝜔Ω(2�̃�𝑔2 + 𝑓1𝑓2 + 𝑔1𝑔2) + Ω2�̃�𝑓1

)︂
,

Σ =

(︂
𝐽1

Δ
𝑓1
Δ

𝑓1
Δ

𝐽2

Δ

)︂
,

where functions 𝑓1 = 𝑓1(𝜏), 𝑓2 = 𝑓2(𝜏), 𝑔1 = 𝑔1(𝜏), 𝑔2 = 𝑔2(𝜏), 𝐽1 = 𝐽1(𝜏),
𝐽2 = 𝐽2(𝜙), Δ = Δ(𝜙, 𝜏) are written with new variables. The system is defined on
R2{𝑣1, 𝜔} × T2{𝜙, 𝜏}.
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Then, we make the Poincaré transformation:

𝑣1 =
1

𝑥
, 𝜔 =

𝑦

𝑥

and rescale the time (for 𝑣1 > 0)

𝑑𝑠 = 𝑣1𝑑𝑡.

The system (3.1) is rewritten with the new variables as

(3.2)

𝑑𝜙

𝑑𝑠
= −

[︁ sin𝜙
�̃�

+ 𝑦
]︁
,

𝑑𝜏

𝑑𝑠
= 𝑥,

𝑑𝑥

𝑑𝑠
= −Δ−1

[︁
𝐽1

(︁
− 𝐼2 sin𝜙 cos𝜙

𝑑𝜙

𝑑𝑠
𝑥+ (𝑐+ 𝑔1)𝑥𝑦

2 + 2Ω𝑓2𝑥
2𝑦 +Ω2𝑔1𝑥

3
)︁

+𝑓1(−(𝑐+ 𝑔1)𝑥𝑦 − 2Ω(�̃�𝑔2 + 𝑓1𝑓2 + 𝑔1𝑔2)𝑥
2𝑦 +Ω2�̃�𝑓1𝑥

3)
]︁
,

𝑑𝑦

𝑑𝑠
= Δ−1

[︁
𝑓1

(︁
− 𝐼2 sin𝜙 cos𝜙

𝑑𝜙

𝑑𝑠
+ (𝑐+ 𝑔1)𝑦

2 + 2Ω𝑓2𝑥𝑦 +Ω2𝑔1𝑥
2
)︁

+𝐽2(−(𝑐+ 𝑔1)𝑦 − 2Ω(�̃�𝑔2 + 𝑓1𝑓2 + 𝑔1𝑔2)𝑥𝑦 +Ω2�̃�𝑓1𝑥
2)

−𝐽1
(︁
− 𝐼2 sin𝜙 cos𝜙

𝑑𝜙

𝑑𝑠
𝑦 + (𝑐+ 𝑔1)𝑦

3 + 2Ω𝑓2𝑥𝑦
2 +Ω2𝑔1𝑥

2𝑦
)︁

−𝑓1(−(𝑐+ 𝑔1)𝑦
2 − 2Ω(�̃�𝑔2 + 𝑓1𝑓2 + 𝑔1𝑔2)𝑥𝑦

2 +Ω2�̃�𝑓1𝑥
2𝑦)
]︁
.

The phase space of the system (3.2) is four-dimensional:

ℳ4 =
{︁
(𝜙, 𝑥, 𝑦, 𝜏) | 𝑥 ∈ [0,+∞), 𝑦 ∈ (−∞,+∞), 𝜙 mod 2𝜋, 𝜏 mod

2𝜋

Ω

}︁
.

Thus, the infinitely distant points (𝑣1 → +∞) of the phase space of the system
(3.1) are transformed to the points of the submanifold 𝑥 = 0 of the system (3.2).

3.2. Fixed points. The system (3.2) has a one-parameter family of fixed
points

(3.3) 𝜙 = 0, 𝑥 = 0, 𝑦 = 0, 𝜏 = 𝜏0.

This family forms a one-dimensional invariant submanifold of the system. We will
find the conditions at which it is asymptotically stable and thereby we will obtain
an acceleration criterion for the initial dynamical system.

The system (3.2) can be represented as two systems:

𝑑

𝑑𝑠

(︂
𝜙

𝑦

)︂
= A

(︂
𝜙

𝑦

)︂
+Ψ(𝜙, 𝑥, 𝑦, 𝜏), A =

(︃
− 1

�̃�
−1

0 −𝐽2(0)(𝑐+𝑔1(𝜏))
Δ(0,𝜏)

)︃
,

𝑑

𝑑𝑠

(︂
𝑥

𝜏

)︂
= B

(︂
𝑥

𝜏

)︂
+Φ(𝜙, 𝑥, 𝑦, 𝜏), B =

(︂
0 0
1 0

)︂
in a neighborhood of the points (3.3). Both eigenvalues of the matrix A have
negative real part and both eigenvalues of the matrix B have zero real parts for
any 𝜏 . The linearization of the equations (3.2) does not accurately determine the
nature of fixed points. Therefore, we reduce the stability problem to the analysis
of the behavior of the system on the central manifold [29,30].
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4. Restriction of the system to the central
manifold and asymptotic expansion

4.1. Restriction of the system to the central manifold. According to
[29], in the neighborhood of (3.3) there is a two-dimensional central invariant
manifold

ℳ2
0 =

{︁
(𝜙, 𝑥, 𝑦, 𝜏) | 0 < 𝑥 < 𝜀, 𝑦 = 𝑦(𝜏, 𝑥) = 𝑂(𝑥𝑛), 𝜙 = 𝜙(𝜏, 𝑥) = 𝑂(𝑥𝑛), 𝜏 mod

2𝜋

Ω

}︁
,

𝑛 ⩾ 2, on which we approximate the functions 𝜙 and 𝑦 using series in power of 𝑥:

(4.1)
𝑦 = 𝜉2(𝜏)𝑥

2 + 𝜉3(𝜏)𝑥
3 + 𝜉4(𝜏)𝑥

4 +𝑂(𝑥5),

𝜙 = 𝜂2(𝜏)𝑥
2 + 𝜂3(𝜏)𝑥

3 + 𝜂4(𝜏)𝑥
4 +𝑂(𝑥5).

According to the reduction theorem (Theorem 5.5 in [29]), the trajectories
are exponentially rapidly attracted to the central manifold ℳ2

0. Therefore, the
asymptotic stability of the original family (3.3) will follow from the asymptotic
stability of the set 𝑥 = 0 when the system is restricted to the central manifold.

So, we substitute (4.1) in the first and last equation of (3.2). The coefficients
in the series (4.1) are equal

𝜉2 =
Ω2(𝑔1 + �̃�𝐽2(0))𝑓1
𝐽2(0)(𝑐+ 𝑔1)

,

𝜉3 = − 1

𝐽2(0)(𝑐+ 𝑔1)
· 𝑑
𝑑𝜏

(Δ(0, 𝜏) · 𝜉2),

𝜉4 = − 1

𝐽2(0)(𝑐+ 𝑔1)
· 𝑑
𝑑𝜏

(Δ(0, 𝜏) · 𝜉3) +
𝑓1𝜉

2
2

𝐽2(0)
− Ω2Δ(0, 𝜏)𝑔1𝜉2
𝐽2(0)2(𝑐+ 𝑔1)

,

𝜂2 = −𝜉2 �̃�,

𝜂3 = −�̃�
(︁
𝜉3 +

𝑑𝜂2
𝑑𝜏

)︁
,

𝜂4 = −�̃�
(︁
𝜉4 +

𝑑𝜂3
𝑑𝜏

)︁
.

The restriction of the system (3.2) has the following form:

(4.2)
𝑑𝑥

𝑑𝑠
= 𝜁3𝑥

3 + 𝜁4𝑥
4 + 𝜁5𝑥

5 +𝑂(𝑥6),
𝑑𝜏

𝑑𝑠
= 𝑥,

where

𝜁3 = −Ω2𝑔1
𝐽2(0)

,

𝜁4 = − 1

𝐽2(0)

(︁
2Ω𝑓2𝜉2 + 𝑓1

𝑑𝜉2
𝑑𝜏

)︁
,

𝜁5 = − 1

𝐽2(0)

(︁𝑓1Ω2(2𝑔1 + 𝐽2(0)�̃�)

𝐽2(0)
𝜉2 + 2Ω𝑓2𝜉3 + 𝑓1

𝑑𝜉3
𝑑𝜏

)︁
.

We have the following cases depending on the parameters 𝛼 and �̃�.
If 𝛼 ∈ {0, 𝜋} and �̃� ∈ R, then

𝑦 ≡ 0, 𝜙 ≡ 0.
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We obtain the restriction of the system (3.2):

(4.3)
𝑑𝑥

𝑑𝑠
= 𝜁3𝑥

3,
𝑑𝜏

𝑑𝑠
= 𝑥,

where 𝜁3 = −Ω2𝑔1(𝜏)
𝐽2(0)

.
Let 𝑥 ≪ 1. Dividing the first equation (4.3) by the second equation, after

averaging over 𝜏 and moving to the initial time 𝑡, we obtain the equation

𝑑𝑥

𝑑𝑡
= ⟨𝜁3⟩𝑥2.

Remark 4.1. Here and further, the average value of the 𝑇 -periodic function
𝑓(𝑡) is the value of the integral

⟨𝑓⟩ = 1

𝑇

∫︁ 𝑇

0

𝑓(𝑡)𝑑𝑡.

Because ⟨𝜁3⟩ = 0, we could not make an unambiguous conclusion referring
to the Theorem 2 in [30] and have analyzed the behavior of integral curves in
numerical experiments. The integral curves of the system (2.3) were bounded in
numerical experiments. Similar conclusions can be drawn if 𝛼 ∈

{︀
𝜋
2 ,

3𝜋
2

}︀
and �̃� = 0.

The projections of the typical phase curves of the system (2.3) with 𝛼 = 0 on the
plane (𝑣1, 𝜔) are shown in Fig. 2.

v1

w

Figure 2. Projections of the typical phase curves on the plane
(𝑣1, 𝜔) with 𝛼 = 0

Then, we consider all the other values of the parameters 𝛼, �̃�, with the exception
of those that have been described earlier.

Dividing the first equation (4.2) by the second equation we obtain the equation

(4.4)
𝑑𝑥

𝑑𝜏
= 𝜁3𝑥

2 + 𝜁4𝑥
3 + 𝜁5𝑥

4 +𝑂(𝑥5)

and ⟨𝜁3⟩ = ⟨𝜁4⟩ = 0.
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We perform the transformation for averaging of the coefficients. Averaging the
coefficients using normal forms up to order 4 and moving to the initial time 𝑡, we
bring the equation (4.4) to the form

(4.5)
𝑑𝑥

𝑑𝑡
= 𝑍3𝑥

2 + 𝑍4𝑥
3 + 𝑍5𝑥

4 +𝑂(𝑥5)

where 𝑍3, 𝑍4, 𝑍5 are constants.

4.2. Averaging up to order 4. We make the following change of variable in
the equation (4.4)

𝑥 = 𝑅+ 𝑠2𝑅
2 + 𝑠3𝑅

3 + 𝑠4𝑅
4 +𝑂(𝑅5).

This gives the equation

𝑑𝑅

𝑑𝜏
= (𝜁3 − 𝑠′2)𝑅

2 + (𝜁4 + 2𝑠2𝑠
′
2 − 𝑠′3)𝑅

3

+ (𝜁5 + 2(𝑠3𝑠2)
′ + 𝑠′3𝑠2 − 5𝑠22𝑠

′
2 − 𝑠′4)𝑅

4 +𝑂(𝑅5).

We choose 𝑠1, 𝑠2, 𝑠3 as the periodic antiderivatives with zero averages from the
equations

𝑠′2 = 𝜁3,

𝑠′3 = 𝜁4 + (𝑠22)
′,

𝑠′4 = 𝜁5 + 2(𝑠3𝑠2)
′ + 𝜁4𝑠2 − (𝑠32)

′ − ⟨𝜁5⟩ − ⟨𝜁4𝑠2⟩.

The equation describing the evolution of 𝑅 is

𝑑𝑅

𝑑𝜏
= (⟨𝜁5⟩+ ⟨𝜁4𝑠2⟩)𝑅4 +𝑂(𝑅5).

So we obtain the coefficients in the expantion (4.5) for 𝑥:

𝑍3 = 0, 𝑍4 = 0, 𝑍5 = ⟨𝜁5⟩+ ⟨𝜁4𝑠2⟩.

4.3. Conclusions about the stability of fixed points. If the first non-zero
coefficient 𝑍5 takes a negative value, according to [30] the family of fixed points
(3.3) is asymptotically stable and the asymptotics for 𝑥 as 𝑡→ +∞ is obtained by
solving the equation (4.5). We analytically find 𝑍5. Let 𝛼 ∈

{︀
𝜋
2 ,

3𝜋
2

}︀
and �̃� ̸= 0. In

this case 𝜁3 = 0, then 𝑠2 = 0 and ⟨𝜁4𝑠2⟩ = 0. Calculating ⟨𝜁5⟩ we find the coefficient

𝑍5 = 𝑍(1) =
�̃�Ω4

8𝑚2𝑐2
(4𝐼1𝑚+ 3(𝑚− 1)− 4�̃�𝑐𝑚).

The coefficient 𝑍(1) takes negative value when

�̃� ∈ (−∞, 0) ∪
(︁4𝐼1𝑚+ 3(𝑚− 1)

4𝑐𝑚
,+∞

)︁
.

Then, according to the Theorem 2 in [30], the family of fixed points (3.3) is asymp-
totically stable and one can obtain the asymptotics for 𝑥, 𝑦, 𝜙. Now we can
formulate the following statement.
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Proposition 4.1. The one-parameter family of fixed points

𝜙 = 0, 𝑥 = 0, 𝑦 = 0, 𝜏 = 𝜏0

of the system (3.2) with the numeric parameters

𝛼 ∈
{︁𝜋
2
,
3𝜋

2

}︁
, �̃� ∈ (−∞, 0) ∪

(︁4𝐼1𝑚+ 3(𝑚− 1)

4𝑐𝑚
,+∞

)︁
is asymptotically stable and on the ℳ2

0 we have the following asymptotics as 𝑡 →
+∞:

𝑥(𝑡) = (−3𝑍(1)𝑡)−1/3 + 𝑜(𝑡−1/3),

𝑦(𝑡) =
�̃�𝑓1Ω

2

𝑐
· (−3𝑍(1)𝑡)−2/3 + 𝑜(𝑡−2/3),(4.6)

𝜙(𝑡) = − �̃�𝑓1Ω
2 �̃�

𝑐
· (−3𝑍(1)𝑡)−2/3 + 𝑜(𝑡−2/3).

Let 𝛼 ̸= 𝜋𝑘
2 , 𝑘 ∈ Z, and �̃� ∈ R. In this case ⟨𝜁4𝑠2⟩ ̸= 0. Calculating ⟨𝜁5⟩ and

⟨𝜁4𝑠2⟩ we find the coefficient

𝑍5 = 𝑍(2) = −Ω4 sin2 𝛼

𝑚3
·𝐺

where

𝐺 =
𝐹1 + 𝐹2

𝑟3(𝑐+ 𝑟)2
+

(𝑐− 𝑟)(𝑐− �̃�𝑚)

𝑟
,

𝐹1 = (𝑐− 𝑟)
(︁
𝐼1𝑚(𝑐+ 𝑟)3 + 𝐼1𝑚𝑟

2(𝑐+ 𝑟) + (𝑚− 1)𝑐𝑘1 + 𝑐(𝑐+ 𝑟)𝑘2

)︁
,

𝐹2 = 2�̃�2𝑚2(𝑐+ 𝑟)𝑘3 − �̃�𝑚
(︁
𝐼1𝑚𝑐(𝑐+ 𝑟)2 + (𝑚− 1)𝑘4 + 3(𝑐2 − 𝑟2)𝑘5

)︁
,

𝑘1 = 𝑐2 + 3𝑐𝑟 + 5𝑟2 > 0,

𝑘2 = 𝑐3 + 2𝑐2𝑟 + 6𝑐𝑟2 − 3𝑟3 > 0,

𝑘3 = 𝑐3 + 𝑐2𝑟 + 𝑐𝑟2 − 2𝑟3 > 0,

𝑘4 = 𝑐3 + 2𝑐2𝑟 + 2𝑐𝑟2 − 2𝑟3 > 0,

𝑘5 = 𝑐3 + 2𝑐2𝑟 + 4𝑐𝑟2 − 𝑟3 > 0,

0 < 𝑟 =
√︀
𝑐2 − cos2 𝛼 < 𝑐.

The coefficient 𝑍(2) takes negative value when 𝐺 > 0.
Then, according to the Theorem 2 in [30], the family of fixed points (3.3) is

asymptotically stable and one can obtain the asymptotics for 𝑥, 𝑦, 𝜙. Now, we can
formulate the following statement:

Proposition 4.2. The one-parameter family of fixed points

𝜙 = 0, 𝑥 = 0, 𝑦 = 0, 𝜏 = 𝜏0

of the system (3.2) with the numeric parameters 𝛼 ̸= 𝜋𝑘
2 , 𝑘 ∈ Z, and �̃� ∈ R,

for which 𝐺 > 0, is asymptotically stable and on the ℳ2
0 we have the following
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asymptotics as 𝑡→ +∞:

𝑥(𝑡) = (−3𝑍(2)𝑡)−1/3 + 𝑜(𝑡−1/3),

𝑦(𝑡) =
(𝑔1 + �̃�𝑚) 𝑓1Ω

2

𝑚(𝑐+ 𝑔1)
· (−3𝑍(2)𝑡)−2/3 + 𝑜(𝑡−2/3),(4.7)

𝜙(𝑡) = − (𝑔1 + �̃�𝑚) 𝑓1Ω
2 �̃�

𝑚(𝑐+ 𝑔1)
· (−3𝑍(2)𝑡)−2/3 + 𝑜(𝑡−2/3).

Remark 4.2. Using the methods of normal forms [24], it is possible to show
not only the asymptotic stability of the equilibrium points, but also to estimate the
initial conditions, for which the trajectories of the system (3.2) have the asymptotic
behavior by the formulas (4.1) or (4.2). According to Fenichel’s theorem [31], in
the neighborhood of the central invariant manifold, all trajectories exhibit similar
asymptotic behavior.

5. Acceleration criteria

5.1. Acceleration criteria. Returning to the initial variables 𝑣1, 𝜔, 𝜙, we
formulate acceleration criteria that are given without rigorous proof, but will be
verified with numerical experiments.

There exist a sufficiently small 𝜀 > 0 and 𝜔0, 𝜙0 are some constants, so that,
for the trajectories of the system (2.3) with the numeric parameters

𝛼 ∈
{︁𝜋
2
,
3𝜋

2

}︁
, �̃� ∈ (−∞, 0) ∪

(︁4𝐼1𝑚+ 3(𝑚− 1)

4𝑐𝑚
,+∞

)︁
and the initial conditions 𝑣1 > 𝜀−1, |𝜔| < 𝜔0𝜀

2, |𝜙| < 𝜙0𝜀
2 we have 𝑣1 → +∞,

𝜔 → 0, 𝜙→ 0 as 𝑡→ +∞ and

𝑣1(𝑡) = (−3𝑍(1)𝑡)1/3 + 𝑜(𝑡1/3),

𝜔(𝑡) =
�̃�𝑓1Ω

2

𝑐
(−3𝑍(1)𝑡)−1/3 + 𝑜(𝑡−1/3),

𝜙(𝑡) = − �̃�𝑓1Ω
2 �̃�

𝑐
(−3𝑍(1)𝑡)−2/3 + 𝑜(𝑡−2/3).

There exist a sufficiently small 𝜀 > 0 and 𝜔0, 𝜙0 are some constants, so that, for
the trajectories of the system (2.3) with the numeric parameters 𝛼 ̸= 𝜋𝑘

2 , 𝑘 ∈ Z, and
�̃� ∈ R, for which 𝐺 > 0, and the initial conditions 𝑣1 > 𝜀−1, |𝜔| < 𝜔0𝜀

2, |𝜙| < 𝜙0𝜀
2,

we have 𝑣1 → +∞, 𝜔 → 0, 𝜙→ 0 as 𝑡→ +∞ and

𝑣1(𝑡) = (−3𝑍(2)𝑡)1/3 + 𝑜(𝑡1/3),

𝜔(𝑡) =
(𝑔1 + �̃�𝑚) 𝑓1Ω

2

𝑚(𝑐+ 𝑔1)
(−3𝑍(2)𝑡)−1/3 + 𝑜(𝑡−1/3),

𝜙(𝑡) = − (𝑔1 + �̃�𝑚) 𝑓1Ω
2 �̃�

𝑚(𝑐+ 𝑔1)
(−3𝑍(2)𝑡)−2/3 + 𝑜(𝑡−2/3).

Thus, we have indicated cases when nonlinear speedup at large velocities takes
place. Now, we verify the obtained results using numerical experiments.
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5.2. Numerical experiments. To illustrate the conclusions, graphs of solu-
tions of the equations (2.3) are constructed. Graphs of 𝑣1(𝑡), 𝜙(𝑡), 𝜔(𝑡) and the
trajectory of the point 𝑂1 with

𝐼1 = 0.8, 𝐼2 = 0.2, 𝑚 = 4, �̃� = 3, 𝑐 = 0.5, Ω = 0.5, �̃� = −0.5, 𝛼 =
𝜋

2

are shown in Fig. 3. These parameters correspond to the case when there is accel-
eration in the system (𝑍(1) < 0). The asymptotic behavior of the function 𝑣1

𝑡1/3
is

shown.

v1

t
t(-3Z

(1) 1/3
)

t
1/3

v1

(a)

j

t

w

t

(b)

XY

(c)

Figure 3. Illustration of the numerical experiment with �̃� = −0.5,
𝛼 = 𝜋

2 and the initial conditions 𝑣1(0) = 3, 𝜙(0) = 0.05, 𝜔(0) =

0.05: (a) graph of 𝑣1(𝑡) and graph of 𝑣1(𝑡)
𝑡1/3

(the red curve sets the
asymptotics for function 𝑣1(𝑡)

𝑡1/3
); (b) graphs of 𝜙(𝑡), 𝜔(𝑡); (c) the

trajectory of the point 𝑂1 on the plane 𝑂𝑋𝑌

The results of the numerical experiment and the trajectory of the point 𝑂1 on
the plane 𝑂𝑋𝑌 with 𝛼 = 0.785, �̃� = 0 (𝑍(2) < 0) corresponding to the unbounded
increase of the velocity 𝑣1 are shown in Fig. 4. The results of the numerical ex-
periment and the trajectory of the point 𝑂1 on the plane 𝑂𝑋𝑌 with 𝛼 = 0.785,
�̃� = 0.3 (𝑍(2) > 0) corresponding to the bounded velocity 𝑣1 are shown in Fig. 5.
Other mechanical parameters are

𝐼1 = 0.8, 𝐼2 = 0.2, 𝑚 = 4, �̃� = 3, 𝑐 = 0.8, Ω = 0.5.

The results of numerical experiments are consistent with analytical calculations.
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v1

t
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t

w

t X

Y

Figure 4. Illustration of the numerical experiment with 𝛼 =
0.785, �̃� = 0 and the initial conditions 𝑣1(0) = 1, 𝜙(0) = 0.1,
𝜔(0) = 0.1
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t

j
t

0

w

t

Y

X

Figure 5. Illustration of the numerical experiment with 𝛼 =
0.785, �̃� = 0.3 and the initial conditions 𝑣1(0) = 1, 𝜙(0) = 0.1,
𝜔(0) = 0.1

6. Conclusion

The dynamics of the double-link wheeled vehicle with arbitrarily directed pe-
riodic excitation was investigated in this paper. The equations of motion were
derived. The values of the mechanical parameters, for which velocity 𝑣1 increases
indefinitely, were found, that is, there is acceleration in the system.

Some results obtained during this study may be consistent with the results
obtained in [24]. For example, the case 𝛼 = 𝜋

2 or 𝛼 = 3𝜋
2 and �̃� = 0 corresponds

to the case 𝑓0 ≡ 0, 𝑔 ≡ 0 in [24]. In this case, the linear velocity 𝑣 is bounded
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in [24]. We have observed similar results in numerical experiments for 𝑣1. There
is an interesting fact. Let the point mass oscillates perpendicular to the main axis
of the carriage along a straight line passing through the geometric center of the
wheelset or along the main axis of the carriage and there is no acceleration in the
system. But if we rotate the axis of oscillation by any small angle or shift it by
certain distance, speedup appears at large velocities.
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ПРОБЛЕМ УБРЗАЊА У ДИНАМИЦИ ПАРА ВАГОНА
СПОJЕНИХ КРУТОМ ВЕЗОМ СА ПРОИЗВОЉНО

УСМЕРЕНОМ ПЕРИОДИЧНОМ ПОБУДОМ

Резиме. Ова студиjа истражуjе кретање нехолономног механичког система
коjи чини пар вагона на точковима споjених крутом везом. При томе jе поста-
вљена материjална тачка коjа осцилуjе под датим углом 𝛼 у односу на главну
осу jедног од вагона. Као резултат, у систему се jавља периодична побуда. До-
биjене су jедначине кретања у квази-брзинама. Испоставља се да jе динамика
возила на точковима са двоструком кариком моделована неаутономним током
у тродимензионалном фазном простору. Истражуjе се понашање интегралних
кривих при великим брзинама у зависности од угла 𝛼. Помоћу генерализо-
ване Поенкареове трансформациjе оригинални проблем jе сведен на проблем
стабилности система са дегенерисаним линеарним делом. Доказ стабилности
користи ограничавање система на централну многострукост и усредњавање
нормалним формама до реда 4. Нађен jе опсег вредности 𝛼 за коjи се jедна
од компоненти брзине неограничено повећава и одређена jе асимптотика за
решења инициjалног динамичког система.
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