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Abstract. When dimensions of the flow domain become small, such as in
the micro-electro-mechanical systems (MEMS) and nano-electro-mechanical
systems (NEMS), rarefaction effects become more prominent. Flows that we
consider are in the continuum and rarefied gas flow regimes. We provide ana-
lytical solutions for compressible nonisothermal flows between parallel plates,
with different temperatures. Comparison of results between our analytical so-
lutions and commercial CFD code Ansys Fluent is performed. We analyze
four cases with constant and variable transport coefficients in both continuum
and rarefied gas flow regimes. The analysis reveals that very good agreement
is present in the continuum flow regime, as well as in the slip flow regime. This
outcome not only validates the present study but also opens up opportunities
to investigate cases where analytical solutions are unobtainable.

1. Introduction

The characteristics of fluid flow through small domains, at micro or nano scales,
have been extensively studied. Devices operating under these conditions are known
as micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems
(NEMS). This topic has been extensively explored in many books that provide com-
prehensive reviews of analytical solutions, experimental investigations, and numer-
ical methods applied to these problems [1, 2]. Furthermore, many review papers
have delved into this subject [3, 4, 5].

In the domain of rarefied gas flow regimes, a variety of Computational Fluid
Dynamics (CFD) codes are available for their modeling. In particular, Scanlon et
al. [6] coded a new module named dsmcFoam for open CFD code OpenFOAM,
based on Direct simulation Monte Carlo (DSMC). They modeled both transient
and steady flows of arbitrary 2D and 3D geometries.
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In the slip flow regime, numerical solutions based on continuum equations,
supplied with velocity slip and temperature jump boundary conditions, have been
proven to be highly effective. Some commercial CFD codes incorporate this to solve
problems in the slip flow regime. Spiga and Vocale [7] used COMSOL Multiphysics
to simulate flow in the slip regime with constant heat flux for rectangular and tubu-
lar cross sections. Pitakarnnop et al. [8] used Ansys Fluent to model isothermal
flows in the slip flow regime, also for both rectangular and tubular flow domains.
Ansys Fluent has also been used to model nonisothermal flows with streamwise
temperature gradient (creep flow) [9].

In this paper, we derive analytical solutions for nonisothermal problems in both
rarefied and continuum flow domains. The nonisothermal effects are driven by
temperature difference between the walls. We also examine these problems using
Ansys Fluent and compare the results to the corresponding analytical solutions.
This analysis enables us to explore the potential and reliability of Ansys Fluent for
expanding its applicability to rarefied gas flow domains, which is especially valuable
for cases where obtaining analytical solutions proves challenging.

We begin by introducing the problem, including the governing equations,bound-
ary conditions, and underlying assumptions. Subsequently, analytical solutions are
provided, covering both the continuum and rarefied gas flow regimes. Following
this, setup of numerical analysis is presented. Finally, we conclude with an in-
depth analysis of the results and the conclusions drawn from this study.

1.1. Problem description. We will consider nonisothermal and compress-
ible gas flows between parallel plates, for continuum and rarefied regimes (Figure 1).
It is nonisothermal, since the top and bottom walls are at different temperatures,
while it is compressible since we are studying flows of gases. This is pressure driven
flow where inlet pressure is 𝑝𝑖 and outlet pressure is 𝑝𝑜. The components of velocity
are represented in Cartesian coordinate system where 𝑢 represents streamwise com-
ponent and 𝑣 crosswise component. In our case we consider only channels whose
length 𝑙 is significantly larger than their height ℎ.

𝑥

𝑦

𝑝𝑖 𝑝𝑜
𝑇w2

𝑇w1

ℎ

𝑙

𝑢

𝑣

Figure 1. Flow domain
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1.2. Governing equations. To describe this problem mathematically, laws
of conservation of mass, momentum, and energy, as well as the equation of state, and
appropriate boundary conditions will be implemented. Since the flows considered in
this paper are in the continuum and slip flow regimes, i.e. Kn < 0.1, it is sufficient
to use equations and boundary conditions of order of Knudsen number, 𝒪(Kn) [2].

1.2.1. Governing equations in dimensional form. For steady two-dimensional
flows of viscous fluid, equations of conservation of mass, momentum, and energy
take the following form:

(1.1)
𝜕(𝜌�̃�)

𝜕�̃�
+

𝜕(𝜌𝑣)

𝜕𝑦
= 0

(1.2) 𝜌
(︁
�̃�
𝜕�̃�

𝜕�̃�
+ 𝑣

𝜕�̃�

𝜕𝑦

)︁
= − 𝜕𝑝

𝜕�̃�
+

𝜕

𝜕�̃�

[︁
2�̃�

𝜕�̃�

𝜕�̃�
− 2

3
�̃�
(︁𝜕�̃�
𝜕�̃�

+
𝜕𝑣

𝜕𝑦

)︁]︁
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𝜕
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𝜕𝑦
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𝜕𝑣

𝜕�̃�

)︁]︁

(1.3) 𝜌
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�̃�
𝜕𝑣

𝜕�̃�
+ 𝑣

𝜕𝑣

𝜕𝑦
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= −𝜕𝑝

𝜕𝑦
+

𝜕
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[︁
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𝜕𝑣
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3
�̃�
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+
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𝜕
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+
𝜕𝑣
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𝜌𝑐𝑝
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𝜕𝑇
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+ 𝑣

𝜕𝑇

𝜕𝑦
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𝜕𝑝
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𝜕𝑝

𝜕𝑦
+

𝜕

𝜕�̃�
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𝑘
𝜕𝑇
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𝜕𝑦
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𝑘
𝜕𝑇

𝜕𝑦

)︁
(1.4)
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𝜕�̃�

)︁2
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(︁𝜕𝑣

𝜕𝑦
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+
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𝜕𝑦
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(1.5) 𝑝 = 𝜌�̃�𝑇

Here, and in all subsequent sections, dimensional quantities are denoted with
tilde sign over (∼), while nondimensional quantities are not.

1.2.2. Nondimensionalization of equations and assumptions. All equations will
be nondimensionalized with their reference values. In this paper, the following
values are used as reference values: channel length �̃� for streamwise coordinate �̃�,
channel height ℎ̃ for crosswise coordinate 𝑦, the average value of the velocity at out-
let cross section �̃�r for velocity, outlet pressure 𝑝𝑜 for pressure, average temperature
between channel walls 𝑇𝑟 = (𝑇w2 + 𝑇w1)/2 for temperature.

Reference values of transport coefficients, dynamic viscosity �̃�r, and thermal
conductivity 𝑘r, were calculated with reference temperature, 𝑇𝑟. Nondimensional
values of transport coefficients were defined according to the hard sphere model
[10] with viscosity-temperature index 𝑎 as:

(1.6) 𝜇 =
�̃�

�̃�r
= 𝑇 𝑎, 𝑘 =

𝑘

𝑘r
= 𝑇 𝑎

Reference Mach, Reynolds and Prandtl numbers, that appear in nondimensional
form of equations (1.1)–(1.5), are defined in the following way:

Mar =
�̃�r√︀
𝜅�̃�𝑇𝑟

, Rer =
�̃�rℎ̃r𝑝𝑜

�̃�r�̃�𝑇𝑟

, Prr = Pr =
𝑐𝑝�̃�

𝑘

where 𝑐𝑝 is specific heat at constant pressure.
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Now system of governing equations (1.1)–(1.5), has the following nondimen-
sional form:

(1.7)
𝜕(𝜌𝑢)

𝜕𝑥
+

�̃�

ℎ̃

𝜕(𝜌𝑣)

𝜕𝑦
= 0
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣
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𝜕𝑦

)︁
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𝜕𝑝

𝜕𝑥
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𝜅Ma2r
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𝜕𝑥
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𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇
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+
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𝜕𝑥
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+
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𝜕𝑦
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𝜕𝑦

)︁
+ (𝜅− 1)Ma2rPr

[︁2ℎ̃2

�̃�2

(︁𝜕𝑢
𝜕𝑥

)︁2

+ 2
(︁𝜕𝑣
𝜕𝑦

)︁2

+
(︁𝜕𝑢
𝜕𝑦

+
ℎ̃

�̃�

𝜕𝑣

𝜕𝑥

)︁2
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)︁2]︁
(1.11) 𝑝 = 𝜌𝑇

In order to simplify this system of governing equations, the following assump-
tions and relations between the parameters are introduced.

In this paper, we are considering channels whose height is significantly smaller
than their length. Thus we can define small parameter 𝜀 ≪ 1, as the ratio of
channel height to length:

(1.12) 𝜀 = ℎ̃/�̃�

We will only consider channels with parallel plates, where the crosswise velocity
projection, 𝑣, is much smaller than the streamwise component. Thus, the following
can be assumed [11, 12]:

(1.13) 𝑣 = 𝜀𝑉

where 𝑉 = 𝒪(1). This ensures that both terms in the continuity equation are of
the same order. Since fluid flow is strictly subsonic, the following can be supposed:

(1.14) 𝜅Ma2r = 𝛽𝜀m,
𝜅Ma2r
Rer

= 𝛾𝜀

where 𝛽 = 𝒪(1), 𝛾 = 𝒪(1), and exponent 𝑚 has positive value, m > 0. Moreover,
from assumptions (1.14), for small Reynolds numbers, parameter m is 𝑚 > 1.
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Now by applying assumptions (1.12)–(1.14) to the system of governing equa-
tions (1.7)–(1.11), and by neglecting terms of order 𝒪(𝜀𝑚) and smaller, we obtain
the system of equations for small Reynolds numbers:

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑉 )

𝜕𝑦
= 0(1.15)

𝜕𝑝

𝜕𝑥
= 𝛾

𝜕

𝜕𝑦

(︁
𝜇
𝜕𝑢

𝜕𝑦

)︁
(1.16)

𝜕𝑝

𝜕𝑦
= 0(1.17)

𝜕

𝜕𝑦

(︁
𝑘
𝜕𝑇

𝜕𝑦

)︁
= 0(1.18)

𝑝 = 𝜌𝑇(1.19)

2. Analytical solutions

From the system of governing equations and their boundary conditions, so-
lutions for both continuum and slip flow regimeswill be presented. We will start
with the flow in the continuum regime, first introducing flow with constant, and
then with variable transport coefficients. Afterward, the same procedure will be
repeated for the flow in the slip regime. In all cases, expressions for mass flow rate,
pressure, velocity and temperature distributions will be given.

2.1. Continuum gas flow. In the continuum flow regime, we apply no ve-
locity slip and no temperature jump boundary conditions. This ensures that gas
velocity and temperature match the velocity and the temperature of the wall. In
the case of fixed walls, the boundary conditions are as follows:

(2.1)
𝑢|𝑦=0 = 0, 𝑉 |𝑦=0 = 0

𝑢|𝑦=1 = 0, 𝑉 |𝑦=1 = 0

(2.2)
𝑇 |𝑦=0 = 𝑇w1

𝑇 |𝑦=1 = 𝑇w2

2.1.1. Flow in the continuum regime with constant transport coefficients. In
this subsection, we neglect the dependence of dynamic viscosity and thermal con-
ductivity on temperature, so viscosity-temperature index 𝑎 = 0. Consequently,
relations (1.6) simplify to 𝜇 = 1 and 𝑘 = 1. We begin by solving energy equa-
tion (1.18) with appropriate temperature boundary conditions (2.2), from which
we obtain temperature distribution:

(2.3) 𝑇 = (𝑇w2 − 𝑇w1)𝑦 + 𝑇w1

Next, from the equation of conservation of momentum (1.16) and the application
of no-slip boundary conditions (2.1), velocity distribution is obtained:

(2.4) 𝑢 =
𝑝′0
2𝛾

(𝑦2 − 𝑦)
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Here, the prime symbol (′) denotes a derivative along the streamwise coordinate 𝑥.
From the integral form of the continuity equation:∫︁ 1

0

𝑝𝑢

𝑇
d𝑦 = �̇�

a differential equation for pressure distribution is obtained. By integrating this
equation, from an arbitrary (𝑥, 𝑝) cross section to the outlet (𝑥 = 1, 𝑝𝑜 = 1) cross
section, pressure distribution along the channel is obtained:

(2.5) 𝑝 =

√︂
1− �̇�

𝐶𝐼
(1− 𝑥)

Before we define constant 𝐶𝐼 , in order to simplify our notation, the following
convention for denoting constants will be adopted: the difference 𝑇𝑛

w2−𝑇𝑛
w1 will be

denoted as Δ𝑇𝑛, while the addition 𝑇𝑛
w2 + 𝑇𝑛

w1 will be denoted as Δ𝑇𝑛+. Now, 𝐶𝐼

is defined in the following way:

𝐶𝐼 = − Δ𝑇1+

8𝛾Δ𝑇 2
1

+
𝑇w1𝑇w2

4𝛾Δ𝑇 3
1

ln
𝑇w2

𝑇w1
.

When we evaluate equation (2.5) at the inlet cross section, i.e. 𝑥 = 0, we obtain
a correlation between the mass flow rate and the pressure ratio between channel
inlet and outlet pressures, Π = 𝑝𝑖

𝑝𝑜
= 𝑝𝑖.

(2.6) �̇� = 𝐶𝐼(1−Π2)

There are two ways we can approach this problem. If the pressure ratio at the
channel inlet and outlet is given, we can calculate the mass flow rate, and than
determine other quantities of interest. The other possibility is if initial mass flow
rate is known. Thus, pressure ratio at channel inlet and outlet can be obtained,
and other relevant quantities can be obtained in a similar manner.

2.1.2. Flow in the continuum regime with variable transport coefficients. The
flow considered in this section is also in the continuum regime, but this time with
variable transport coefficients. Here, the dependence of transport coefficients on
temperature is defined by (1.6).

The procedure for obtaining analytical solutions remains the same as for the
constant transport coefficients. The analytical solution to this problem is given
below:

𝑇 = (Δ𝑇𝑎+1𝑦 + 𝑇 𝑎+1
w1 )

1
𝑎+1(2.7)

𝑢 =
(𝑎+ 1)𝑝′0

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1

(︁
𝑇 𝑎+2 − Δ𝑇𝑎+2

Δ𝑇1
𝑇 +

Δ𝑇𝑎+1𝑇w1𝑇w2

Δ𝑇1

)︁
(2.8)

𝑝 =

√︃
1− 2

𝐶
II

�̇�(1− 𝑥)(2.9)

�̇� =
𝐶II

2
(1−Π2)(2.10)
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where constant 𝐶
II

is:

𝐶
II
= − 𝑎+ 1

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1

(︁𝑇w1𝑇w2Δ𝑇𝑎

𝑎Δ𝑇1
+

Δ𝑇𝑎+1+

2

)︁
2.2. Rarefied gas flow. In the case of rarefied gas flow, the continuum hy-

pothesis is violated, and the level of rarefaction will be determined by the Knudsen
number. We define a reference Knudsen number as:

Knr =
�̃�𝑟

ℎ̃𝑟

where �̃�𝑟 = �̃�𝑟/𝑝𝑜
√︀
0.5𝜋�̃�𝑇𝑟 is mean free path.

In this paper, we focus on the slip flow regime, where Knudsen numbers range
from 0.01 to 0.1. To maintain the Knudsen number within this regime across the
entire channel, we defined reference Knudsen number at the outlet cross section.
This choice has been made due to the fact that the pressure decreases along the
streamwise direction, and has the lowest value at the outlet cross-section. This
ensures that the value of the Knudsen number is highest at the outlet cross section,
and thus that the flow in the entire channel stays within the slip regime.

In the slip flow regime, equations (1.15)–(1.19) can still be used, but with
suitable boundary conditions. Since velocity slip and temperature jump are present,
we will use Maxwell [14] and Smoluchowski [15] boundary conditions. In our case,
these boundary conditions take the following nondimensional form:

𝑢|𝑦=0 = 𝛼𝑣Knr
𝑇 (0.5+𝑎)

𝑝

𝜕𝑢

𝜕𝑦

⃒⃒⃒
𝑦=0

, 𝑉 |𝑦=0 = 0

𝑢|𝑦=1 = 𝛼𝑣Knr
𝑇 (0.5+𝑎)

𝑝

𝜕𝑢

𝜕𝑦

⃒⃒⃒
𝑦=1

, 𝑉 |𝑦=1 = 0

𝑇 |𝑦=0 = 1 +Θ+ 𝛼𝑇Knr
𝑇 (0.5+𝑎)

𝑝

𝜕𝑇

𝜕𝑦

⃒⃒⃒
𝑦=0

𝑇 |𝑦=1 = 1−Θ− 𝛼𝑇Knr
𝑇 (0.5+𝑎)

𝑝

𝜕𝑇

𝜕𝑦

⃒⃒⃒
𝑦=1

where parameter Θ is defined in the following way:

Θ = −Δ𝑇1

2
=

𝑇w1 − 𝑇w2

𝑇w1 + 𝑇w2

Parameters 𝛼𝑣 and 𝛼𝑇 are defined as:

𝛼𝑣 =
(2− 𝜎𝑣)

𝜎𝑣
, 𝛼𝑇 =

(2− 𝜎𝑇 )

𝜎𝑇

2𝜅

𝜅+ 1

1

𝑃𝑟

where 𝜎𝑣 and 𝜎𝑇 are momentum and temperature transport coefficients (see refs.
[11, 12]). Their values range from 0 for specular reflection to 1 for diffuse reflection.

Exact analytical solutions in the slip regime are impossible to obtain, thus,
they are obtained with the perturbation method. Here pressure, velocity, and
temperature are assumed as perturbation expansion:

(2.11) 𝜙 = 𝜙0 +Knr𝜙1 +𝒪(Knr
2),
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where 𝜙 is solution, while 𝜙0 and 𝜙1 are the first and the second approximation,
respectively. The first approximation, 𝜙0, corresponds to the exact solution in the
continuum flow regime, while all the subsequent approximations correspond to the
corrections for the slip flow regime. In this paper, we will use only the first two
approximations.

By substituting pressure, velocity and temperature as perturbation expansions
(2.11), into the system of equations and boundary conditions, and by extracting
terms of 𝒪(1) and 𝒪(Knr), we obtain two systems of equations. The second system
of equations, where all terms of 𝒪(Knr) are extracted, corresponds to the system
of equations for the second perturbation:

𝜕

𝜕𝑥

(︁𝑝0𝑢1

𝑇0
− 𝑝0𝑇1𝑢0

𝑇 2
0

+
𝑝1𝑢0

𝑇0

)︁
+

𝜕

𝜕𝑦

(︁𝑝0𝑉1

𝑇0
− 𝑝0𝑇1𝑉0

𝑇 2
0

+
𝑝1𝑉0

𝑇0

)︁
= 0(2.12)

𝑝′0 =
𝜕

𝜕𝑦

(︁
𝑇 𝑎
0

𝜕𝑢1

𝜕𝑦
+ 𝑎𝑇1𝑇

𝑎−1
0

𝜕𝑢0

𝜕𝑦

)︁
(2.13)

𝜕

𝜕𝑦

(︁
𝑇 𝑎
0

𝜕𝑇1

𝜕𝑦
+ 𝑎𝑇1𝑇

𝑎−1
0

𝜕𝑇0

𝜕𝑦

)︁
= 0(2.14)

𝑢1|𝑦=0 =
𝛼𝑣𝑇

𝑎+0.5
w1

𝑝0

𝜕𝑢0

𝜕𝑦

⃒⃒⃒
𝑦=0

, 𝑉1|𝑦=0 = 0

𝑢1|𝑦=1 =
−𝛼𝑣𝑇

𝑎+0.5
w2

𝑝0

𝜕𝑢0

𝜕𝑦

⃒⃒⃒
𝑦=1

, 𝑉1|𝑦=1 = 0

(2.15)

𝑇1|𝑦=0 =
𝛼𝑇𝑇

𝑎+0.5
w1

𝑝0

𝜕𝑇0

𝜕𝑦

⃒⃒⃒
𝑦=0

𝑇1|𝑦=1 =
−𝛼𝑇𝑇

𝑎+0.5
w2

𝑝0

𝜕𝑇0

𝜕𝑦

⃒⃒⃒
𝑦=1

(2.16)

This system of equations and boundary conditions will be used for both cases with
constant and variable transport coefficients.

2.2.1. Flow in the slip regime with constant transport coefficients. As was the
case in subsection 2.1.1, dependence of dynamic viscosity and thermal conductivity
on temperature is neglected, so viscosity-temperature index 𝑎 = 0. The solution
for the first approximation is the same as the solution obtained for the continuum
regime (2.3)–(2.6). The solution for the second approximation is obtained from the
modified system of equations (2.12)–(2.14) and boundary conditions (2.15),(2.16)
obtained for 𝑎 = 0:

𝜕

𝜕𝑥

(︁𝑝0𝑢1

𝑇0
− 𝑝0𝑇1𝑢0

𝑇 2
0

+
𝑝1𝑢0

𝑇0

)︁
+

𝜕

𝜕𝑦

(︁𝑝0𝑉1

𝑇0
− 𝑝0𝑇1𝑉0

𝑇 2
0

+
𝑝1𝑉0

𝑇0

)︁
= 0(2.17)

𝜕

𝜕𝑥

∫︁ 1

0

(︁𝑝0𝑢1

𝑇0
− 𝑝0𝑇1𝑢0

𝑇 2
0

+
𝑝1𝑢0

𝑇0

)︁
d𝑦⏟  ⏞  

�̇�1

= 0(2.18)

𝑝′1 = 𝛾
𝜕2𝑢1

𝜕𝑦2
(2.19)
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𝜕2𝑇1

𝜕𝑦2
= 0(2.20)

(2.21)
𝑢1|𝑦=0 =

𝛼𝑣𝑇
0.5
w1

𝑝0

𝜕𝑢0

𝜕𝑦

⃒⃒⃒
𝑦=0

, 𝑉1|𝑦=0 = 0

𝑢1|𝑦=1 =
−𝛼𝑣𝑇

0.5
w2

𝑝0

𝜕𝑢0

𝜕𝑦

⃒⃒⃒
𝑦=1

, 𝑉1|𝑦=1 = 0

(2.22) 𝑇1|𝑦=0 =
𝛼𝑇𝑇

0.5
w1

𝑝0

𝜕𝑇0

𝜕𝑦

⃒⃒⃒
𝑦=0

𝑇1|𝑦=1 =
−𝛼𝑇𝑇

0.5
w2

𝑝0

𝜕𝑇0

𝜕𝑦

⃒⃒⃒
𝑦=1

Here, continuity equation (2.18) is an integral form of equation (2.12). This sys-
tem of equations and boundary conditions will be solved in the same way as in
the continuum regime. The final solution, which comprises both approximations,
according to (2.11), follows:

(2.23) 𝑇 = 𝑇0 +Knr𝑇1 = Δ𝑇1𝑦 + 𝑇w1 +Knr
𝛼𝑇Δ𝑇1

𝑝0

(︀
−Δ𝑇0.5+𝑦 +

√︀
𝑇w1

)︀

𝑢 = 𝑢0 +Knr𝑢1 =
𝑝0

′

2𝛾
(𝑦2 − 𝑦)(2.24)

+Knr

[︁ 𝑝′1
2𝛾

𝑦2 −
(︁𝛼𝑣

𝑝0

𝑝′0
2𝛾

Δ𝑇0.5 +
𝑝′1
2𝛾

)︁
𝑦 − 𝛼𝑣

√
𝑇w1

2𝛾

𝑝′0
𝑝0

]︁

(2.25) 𝑝 = 𝑝0 +Knr𝑝1 = 𝑝0 +Knr
𝐶III

2𝐶𝐼

(︁Π− 1

𝑝0
(1− 𝑥) +

1

𝑝0
− 1

)︁

(2.26) �̇� = 𝐶𝐼(1−Π2) + Knr(1−Π)𝐶
III

where 𝑝0 is solution in the continuum regime with constant transport coefficients
(2.5). Constant 𝐶

III
is defined as:

𝐶
III

=− 𝛼𝑣Δ𝑇0.5

2𝛾Δ𝑇 2
1

(︁√︀
𝑇w1𝑇w2 ln

𝑇w2

𝑇w1
+Δ𝑇1

)︁
+

𝛼𝑇Δ𝑇0.5+

2𝛾Δ𝑇 3
1

[︁√︀
𝑇w1𝑇w2

(︁
Δ𝑇1+ ln

𝑇w2

𝑇w1
− 2Δ𝑇1

)︁
+ 4𝛾Δ𝑇 3

1𝐶𝐼

]︁
The relation between ratios of mass flow rates in the slip (2.26) and continuum
(2.6) flow regimes, and pressure ratios Π, for constant transport coefficients is:

(2.27)
�̇�

�̇�0
= 1 +Knr

𝐶
III

𝐶𝐼(1 + Π)
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2.2.2. Flow in the slip regime with variable transport coefficients. In this case,
the dependence of dynamic viscosity and thermal conductivity on temperature is
defined according to relations (1.6). As was the case in the previous subsection,
the solution for the first approximation is the same as the exact solution in the
continuum regime (2.7)–(2.10). In order to obtain a solution for the second ap-
proximation, the system of equations (2.12)–(2.14) and boundary conditions (2.15),
(2.16) has to be solved. This time, it is convenient to transform 𝑦 coordinate with
𝑇0 from equation (2.3). Now, this system of equations and boundary conditions
takes the following form:

𝜕

𝜕𝑥

∫︁ 𝑇w2

𝑇w1

(𝑝0𝑢1𝑇
𝑎−1
0 − 𝑝0𝑇1𝑢0𝑇

𝑎−2
0 + 𝑝1𝑢0𝑇

𝑎−1
0 )d𝑇0⏟  ⏞  

�̇�1

= 0(2.28)

𝑝′1 =
𝛾Δ𝑇 2

𝑎+1

(𝑎+ 1)2𝑇 𝑎
0

𝜕

𝜕𝑇0

(︁𝜕𝑢1

𝜕𝑇0
+ 𝑎

𝑇1

𝑇0

𝜕𝑢0

𝜕𝑇0

)︁
(2.29)

𝜕

𝜕𝑇0

(︁
𝑎
𝑇1

𝑇0
+

𝜕𝑇1

𝜕𝑇0

)︁
= 0(2.30)

(2.31)
𝑢1|𝑦=0 =

𝛼𝑣𝑇
0.5
w1 𝑝

′
0

𝛾(𝑎+ 2)Δ𝑇1Δ𝑇𝑎+1𝑝0
((𝑎+ 2)𝑇 𝑎+1

w1 Δ𝑇1 −Δ𝑇𝑎+2), 𝑉1|𝑦=0 = 0

𝑢1|𝑦=1 =
−𝛼𝑣𝑇

0.5
w2 𝑝

′
0

𝛾(𝑎+ 2)Δ𝑇1Δ𝑇𝑎+1𝑝0
((𝑎+ 2)𝑇 𝑎+1

w2 Δ𝑇1 −Δ𝑇𝑎+2), 𝑉1|𝑦=1 = 0

(2.32)
𝑇1|𝑦=0 =

𝛼𝑇𝑇
0.5
w1 Δ𝑇𝑎+1

(𝑎+ 1)𝑝0

𝑇1|𝑦=1 =
−𝛼𝑇𝑇

0.5
w2 Δ𝑇𝑎+1

(𝑎+ 1)𝑝0

Here, continuity equation (2.12) is written only in its integral form (2.28). The sec-
ond approximations for pressure, velocity and temperature are obtained for system
(2.28)–(2.32) in the same way as in the first approximation (continuum). The final
solution is obtained when both approximations are substituted into the perturba-
tion expansion (2.11), and it takes the following form:

(2.33) 𝑇 = 𝑇0 +Knr𝑇1 = 𝑇0 +Knr

[︁
− 𝛼𝑇Δ𝑇𝑎+0.5+

(𝑎+ 1)𝑝0
𝑇0 +

𝛼𝑇𝑇
𝑎+0.5
w1 𝑇 𝑎+0.5

w2 Δ𝑇0.5+

(𝑎+ 1)𝑝0
𝑇−𝑎
0

]︁

𝑢 = 𝑢0 +Knr𝑢1 =
(𝑎+ 1)𝑝′0

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1

(︁
𝑇 𝑎+2
0 − Δ𝑇𝑎+2

Δ𝑇1
𝑇0 +

Δ𝑇𝑎+1𝑇w1𝑇w2

Δ𝑇1

)︁
(2.34)

+Knr(𝑓1𝑇
𝑎+2
0 + 𝑓2𝑇0 + 𝑓3𝑇

−𝑎
0 + 𝑓4)

(2.35) 𝑝 = 𝑝0 +Knr𝑝1 = 𝑝0 +Knr

[︁𝐶IV

𝐶
II

(︁ 1

𝑝0
− 1

)︁
+

𝐶
IV

(︁
1−Π

)︁
𝐶

II
𝑝0

(𝑥− 1)
]︁

(2.36) �̇� =
𝐶II

2
(1−Π2) + Knr𝐶IV

(1−Π)
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where 𝑇0, and 𝑝0 are solutions in the continuum regime with variable transport
coefficients (2.7) and (2.9) respectively. Functions of the streamwise coordinates 𝑥,
𝑓1, 𝑓2, 𝑓3, 𝑓4, and 𝐶IV are constant:

𝑓1 =
(𝑎+ 1)𝑝′1

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1

+
𝑎𝛼𝑇Δ𝑇𝑎+0.5+𝑝

′
0

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1𝑝0

𝑓2 =− (𝑎+ 1)Δ𝑇𝑎+2𝑝
′
1

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1Δ𝑇1

+
𝛼𝑣𝑝

′
0

𝛾Δ𝑇𝑎+1Δ𝑇1𝑝0

(︁Δ𝑇𝑎+2Δ𝑇0.5+

(𝑎+ 2)Δ𝑇1
−Δ𝑇𝑎+1.5+

)︁
+

𝛼𝑇Δ𝑇𝑎+2𝑝
′
0

𝛾(𝑎+ 2)Δ𝑇 2
𝑎+1Δ𝑇1𝑝0

(︁𝑇 𝑎+0.5
w1 𝑇 𝑎+0.5

w2 Δ𝑇0.5+Δ𝑇−𝑎

Δ𝑇1
− 𝑎Δ𝑇𝑎+0.5+

)︁
𝑓3 = −𝛼𝑇𝑇

𝑎+0.5
w1 𝑇 𝑎+0.5

w2 Δ𝑇0.5+Δ𝑇𝑎+2𝑝
′
0

𝛾(𝑎+ 2)Δ𝑇1Δ𝑇 2
𝑎+1𝑝0

𝑓4 =
𝑇w1𝑇w2

𝛾(𝑎+ 2)Δ𝑇1Δ𝑇𝑎+1

(︁
(𝑎+ 1)𝑝′1 +

(𝑎𝛼𝑇 + 2𝛼𝑣 + 𝑎𝛼𝑣)Δ𝑇𝑎+0.5+𝑝
′
0

𝑝0

− 𝛼𝑇𝑇
𝑎+0.5
w1 𝑇 𝑎+0.5

w2 Δ𝑇𝑎+2Δ𝑇−𝑎−1Δ𝑇0.5+𝑝
′
0

Δ𝑇1Δ𝑇𝑎+1𝑝0
− 𝛼𝑣Δ𝑇−0.5+Δ𝑇𝑎+2𝑝

′
0

Δ𝑇1𝑝0

)︁
𝐶

IV
=

𝛼𝑣Δ𝑇𝑎+1

(𝑎+ 1)Δ𝑇1

[︁ (𝑎+ 1)Δ𝑇0.5+Δ𝑇𝑎+2

𝛾(𝑎+ 2)Δ𝑇1Δ𝑇 2
𝑎+1

(︁
1− (𝑎+ 1)𝑇 0.5

w1 𝑇
0.5
w2 Δ𝑇𝑎

𝑎Δ𝑇𝑎+1

)︁
− 𝑎+ 1

𝛾Δ𝑇 2
𝑎+1

(︁
Δ𝑇𝑎+1.5+ − (𝑎+ 1)𝑇w1𝑇w2Δ𝑇𝑎Δ𝑇𝑎+0.5+

𝑎Δ𝑇𝑎+1

)︁]︁
+ 𝛼𝑇

[︁𝑇 0.5
w1 𝑇

0.5
w2 Δ𝑇0.5

𝛾Δ𝑇 2
𝑎+1

(︁ Δ𝑇𝑎Δ𝑇𝑎+2

𝑎(𝑎+ 2)Δ𝑇 2
1

− 𝑇 𝑎
w1𝑇

𝑎
w2

)︁
+Δ𝑇𝑎+0.5+𝐶II

]︁
The relation between ratios of mass flow rates in the slip (2.36) and continuum
(2.10) flow regimes, and pressure ratios Π, for variable transport coefficients can be
expressed as:

(2.37)
�̇�

�̇�0
= 1 +Knr

2𝐶
IV

𝐶
II
(1 + Π)

.

3. Numerical analysis

All four problems that have been previously analyzed have been conducted
with commercial CFD code Ansys Fluent. Generally, two main types of solvers
are available: pressure-based and density-based. The problems in both continuum
and slip flow regimes can be solved with each solver. In the present paper, a
density-based solver has been selected. With this solver problems in the continuum
and slip flow regimes can be solved by selecting proper boundary conditions. For
flows in the slip flow regime, there is partial slip boundary condition for rarefied
gases (PSRG)[13]. This boundary condition incorporates the velocity slip and
temperature jump, and is applied at the top and bottom walls of the microchannel.
It is automatically applied if the flow is in the slip regime, i.e. Knudsen number is
between 0.01 < Kn < 0.2 [13].
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Figure 2. Effect of mesh refinement to non-dimensional gas tem-
perature

In this study, argon, a monoatomic gas, has been selected as the working gas.
Now the process of configuring software for both continuum and rarefied gas flow
regimes, with both constant and variable dynamic viscosity and thermal conduc-
tivity is going to be presented. In the case of variable transport coefficients, power
law (1.6) has been used. Ansys Fluent has some predefined methods for defining
both transport coefficients. The power law is available for dynamic viscosity, while
for thermal conductivity it has to be inserted manually as an expression. In the
slip flow regime, values of Knudsen numbers are within Kn < 0.1. To ensure that
values of reference Knudsen number remain within this domain throughout the en-
tire channel, appropriate values of pressure and temperature have been specified at
the outlet cross section.

3.1. Numerical mesh. A numerical mesh has been generated with Ansys
Meshing for the flow domain shown in Figure 1, for the channel length of 1000𝜇m
and height of 1𝜇m.

The quality of the mesh has been assessed for the most demanding case-the slip
flow with variable transport coefficients. The mesh independence has been checked
for the reference (outlet) cross section, for values of gas temperature at the upper
wall. This is due to the largest temperature jump at this point. Values of nondi-
mensional temperature for different numbers of elements are shown in Figure 2.
The mesh independence has been observed for grids with more than 150000 ele-
ments. In the present study, all numerical calculations have been conducted with
numerical mesh with 300000 elements.

3.2. Boundary conditions and solution methods. For the boundary con-
ditions at the inlet and outlet of the flow domain, pressure inlet and pressure outlet
have been selected. Linear temperature distribution has been applied at both inlet
and outlet of the flow domain. This has been done to speed up the transition from
a specified temperature profile to an actual, numerically obtained profile. This lin-
ear distribution is also the exact analytical solution in the continuum regime with
constant transport coefficients. For top and bottom walls, no-slip and no-jump
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(a) (b)

Figure 3. Numerical mesh: a) section of the numerical mesh, b)
cropped view, near the bottom wall

boundary conditions have been selected for the continuum regime, and PSRG has
been selected for the slip flow regime. The temperature on the bottom wall has
been set to 300K, while on the top wall it was set to 366.67K (Θ = −0.1). In this
paper, both momentum and thermal accommodation coefficients have been set to
unity (𝜎𝑣 = 1 and 𝜎𝑇 = 1).

A density-based solver has implicit and explicit formulations. In the present
paper, the implicit formulation has been selected. The flux type has been set to
Roe-FDS, under spatial discretization, the gradient has been set to the least squares
cell-based, and flow has been set to Third-Order MUSCL [13]. In order to speed
up convergence, pseudo time step has been used.

4. Results and discussion

The comparison between analytical and numerical results of pressure, velocity,
and temperature distributions, obtained in this paper, is given for four cases that
were considered. Both the momentum and thermal accommodation coefficients
were set to unity (𝜎𝑣 = 1 and 𝜎𝑇 = 1), which corresponds to diffuse reflection. The
ratio of channel height to length was set to 𝜀 = 0.001, the reference value of the
Prandtl number to Prr = 2/3 (monoatomic gas, as the working fluid [12]), and the
temperature difference between the walls was set to Θ = −0.1.

Here, we address the effect of temperature boundary conditions at the inlet
cross section. It is important to note that when we refer to the numerical results at
𝑥 = 0, they were, in fact, obtained at the slightly downstream location of 𝑥 = 0.05.
The reason for this adjustment is that in the Ansys Fluent temperature boundary
condition is required. It has been confirmed the full development of the temperature
profile is present at this cross section.

The results in the continuum flow regime with constant transport coefficients
are presented in Figures 4 and 5. Figure 4 presents a comparison between analyti-
cal and numerical pressure distributions for various pressure ratios at the inlet and
outlet cross-sections (Π ∈ {2, 3, 5, 10}). In Figure 5, the velocity and temperature
distribution is depicted, with a chosen pressure ratio of Π = 5. Overall, excel-
lent agreement in both pressure, velocity and temperature distributions is present.
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Figure 4. Pressure distribution in the continuum flow regime
with constant transport coefficients
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Figure 5. Continuum flow regime with constant transport coef-
ficients: a) velocity and b) temperature distribution

Temperature distribution is linear and remains the same at all cross sections, ac-
cording to analytical solution (2.3).

The results in the continuum flow regime with variable transport coefficients
are presented in Figures 6 and 7. In the power law expression (1.6), as well as
in the numerical analysis, viscosity-temperature index 𝑎 was set to 0.8. In Figure
6 pressure distribution is given for pressure ratios at the inlet and outlet cross
sections Π ∈ {2, 3, 5, 10}, while in figure 7 velocity and temperature distribution
are presented for Π = 5. The temperature distribution remains the same across all
cross sections, but is now nonlinear. This nonlinearity arises from the dependence
of transport coefficients on temperature (2.7).

In Figures 8–11 we present results in the rarefied gas flow regime, where refer-
ence Knudsen number was set to Knr = 0.1. This ensures that flow remains in the
slip flow regime.
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The results for the rarefied gas flow regime with constant transport coefficients
are presented in Figures 8 and 9. In Figure 8 comparison between analytical and
numerical results for pressure distribution is given for Π ∈ {2, 3, 5, 10}. In Figure
9 the velocity and temperature distributions are shown for a pressure ratio of Π =
5. The results for all pressure ratios exhibit excellent agreement. Temperature
distribution is nonlinear, and is different in all cross sections (2.23). In the velocity
and temperature distributions, excellent agreement is evident at the inlet and 𝑥 =
0.8 cross-sections, with slight deviation at the outlet cross-section.

The results in the rarefied gas flow regime with variable transport coefficients
are presented in Figures 10–11. Again, in the power law expression (1.6), and in
the numerical analysis, viscosity-temperature index 𝑎 was set to 0.8. In Figure
10 pressure distribution is given for Π ∈ {2, 3, 5, 10}. Velocity and temperature
distributions are shown in Figure 10 for Π = 5. All pressure ratios are in excellent
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Figure 6. Pressure distribution in the continuum flow regime
with variable transport coefficients
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Figure 7. Continuum flow regime with variable transport coeffi-
cients: a) velocity and b) temperature distribution
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Figure 8. Pressure distribution in the rarefied gas flow regime
with constant transport coefficients
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Figure 9. Rarefied gas flow regime with constant transport coef-
ficients: a) velocity and b) temperature distribution

agreement. Again, temperature distribution is nonlinear (2.33). Similarly, a good
agreement is observed for the velocity and temperature distributions, with a slight
deviation at the outlet cross section.

The largest absolute differences between analytical and numerical solutions for
the continuum and rarefied gas flow regimes for velocity, pressure and temperature
distributions were calculated according to the following expression:

‖𝜑an − 𝜑num‖∞ = sup𝑦∈[0,1] |𝜑an − 𝜑num|
where 𝜑 represents the velocity, pressure and temperature fields. All absolute dif-
ferences were calculated for pressure ratio Π = 5. In the continuum flow regime,
with and without constant transport coefficients, the largest absolute difference in
velocity distribution is 0.004697, in pressure distribution it is 0.000056, while the
largest absolute difference in temperature distribution is 0.000627. In the rarefied
gas flow regime, with both constant and variable transport coefficients, the largest
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Figure 10. Pressure distribution in the rarefied gas flow regime
with variable transport coefficients
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Figure 11. Rarefied gas flow regime with variable transport co-
efficients: a) velocity and b) temperature distribution

absolute difference in velocity distribution is 0.146788, in pressure distribution it
is 0.032965, while the largest absolute difference in temperature distribution is
0.011032.

These discrepancies in the rarefied gas flow regime can be attributed to differ-
ences in the analytical system of equations (1.15)–(1.19) where some terms were
neglected, and the full system of equations which was applied to the numerical
simulation. Also, the approximate approach in the analytical solutions led to the
differences in the analytical and numerical results. Finally, the deviation could be
reduced by improving the numerical scheme.

The analytically and numerically obtained ratios of mass flow rates in the rar-
efied and continuum flow regimes for various pressure ratios are provided in Figure
12. Dependence of transport coefficients on temperature was applied, which corre-
sponds to analytical expression (2.37). The influence of rarefaction manifests as an



202 VULIĆEVIĆ, MILIĆEV, AND STEVANOVIĆ
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Figure 12. Ratio of mass flow rates for different pressure ratios
in the rarefied gas flow and continuum flow regimes

excess in mass flow rate, which is more pronounced for smaller pressure ratios. In
general, we observe excellent agreement between analytical and numerical solutions
for all pressure ratios. Despite slightly larger disagreements are observed in the ve-
locity profile at the outlet cross section for the rarefied gas flow regime between
analytical and numerical results, the mass flow rates exhibit excellent agreement,
with absolute differences between analytical and numerical results remaining be-
low 0.002666.

5. Conclusions

In this paper, we obtained analytical solutions for nonisothermal compressible
problems in the continuum and the rarefied gas flow regimes. The analytical solu-
tions in the continuum regime were exact, while the solutions in the slip flow regime
were obtained using the perturbation method. We compared those analytical solu-
tions with numerical results obtained with Ansys Fluent.

It has been shown that for problems in the continuum flow regime, with both
constant and variable transport coefficients, there is a perfect matching between
analytical and numerical results. In the case of rarefied gas flows, there is also a
good agreement for pressure, velocity, and temperature fields between analytical
and numerical solutions. A slight difference is present for velocity and temperature
profiles at the channel outlet, which is attributed to the differences in the analyt-
ical and numerical systems of equations that are being solved, as well as that the
analytical solution is an approximate one, and finally due to imperfections in the
numerical scheme. Furthermore, the ratios of mass flow rates in the rarefied and
continuum flow regimes, across varying ratios of inlet and outlet pressures is ana-
lyzed analytically and numerically. A very good consistency is present. Notably,
the increase in mass flow rate due to rarefaction is more pronounced for smaller
pressure ratios.

In conclusion, Ansys Fluent is a suitable tool for both continuum and slip flow
regimes. This CFD code allows future exploration of flow domains where exact
analytical solutions are either impossible to obtain or the process of obtaining
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them is quite demanding. This also opens up possibilities to explore flows with
more complex geometries and boundary conditions.
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АНАЛИТИЧКА И НУМЕРИЧКА АНАЛИЗА
НЕИЗОТЕРМСКОГ СТИШЉИВОГ СТРУJАЊА

РАЗРЕЂЕНОГ ГАСА ИЗМЕЂУ ПАРАЛЕЛНИХ ПЛОЧА

Резиме. Када су димензиjе струjног домена мале, као што jе случаj у микро-
електро-механичким системима (МЕМС) и нано-електро-механичким системи-
ма (НЕМС), ефекти разређености постаjу значаjни. Овде се разматраjу стру-
jања гаса у условима континуума и разређености. Добиjена су решења за сти-
шљива неизотермска струjања између паралелних плоча различитих темпера-
тура. Врши се поређење резултата добиjених нашим аналитичким приступом
и резултата добиjених нумерички комерциjалним CFD кодом Ansys Fluent.
Анализирана су четири случаjа у условима континуума и разређености са кон-
стантним и променљивим транспортним коефициjентима. Постигнуто веома
добро слагање аналитичких и нумеричких резултата како у области конти-
нуума, тако и у области струjања гаса са клизањем. То потврђуjе могућност
решавања проблема анализираних у овом раду применом комерциjалног CFD
кода Ansys Fluent, као и примену овог кода за истраживање случаjева за коjе
нема аналитичког решења.
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