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PLANE WITH AN UNILATERAL NONHOLONOMIC
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Abstract. The paper considers the procedure for determining the brachis-
tochronic motion of the Chaplygin sleigh in a vertical plane, where the blade
is such that it prevents the motion of the contact point in one direction only.
The position of the sleigh mass center and orientation at the final positions is
specified, as well as the initial value of mechanical energy. The simplest formu-
lation of a corresponding optimal control problem is given and it is solved by
applying Pontryagin’s maximum principle. For some cases, analytical solutions
of differential equations of the two-point boundary value problem (TPBVP)
of the maximum principle were found. Numerical integration was carried out
for other cases using the shooting method, where the assessment of missing
terminal conditions was given and it was shown that the solution obtained
represents the global minimum time for the brachistochronic motion. The
method of the brachistochronic motion by means of a single holonomic and a
single unilateral nonholonomic mechanical constraint is presented.

1. Introduction

Classical Bernoulli’s problem of determining the brachistochrone for the parti-
cle in a vertical plane [1] has experienced many attempts at this problem general-
izations for different, more complex, mechanical systems. A more detailed review
of literature devoted to these generalizations can be found in the PhD disserta-
tion [2], as well as in papers [3–14]. The results presented in [5,7,9,11,15,16]
represent the generalization of the classical brachistochrone problem to the case
of the brachistochronic motion of a rigid body. Our paper is dedicated to deter-
mining the brachistochronic motion of Chaplygin sleigh in a vertical plane, which
was also the research subject in [17]. However, our paper differs basically from the
mentioned paper by a unilateral nonholonomic constraint, unlike classical bilateral
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constraint of the blade type, that is present in [17]. Details about this type of
constraint can be found in paper [18], which presents an appropriate blade profile
that corresponds to a unilateral constraint. Note that the results published so far
for the Chaplygin sleigh motion are based on the assumption that Chaplygin sleigh
moves on a horizontal plane (see e.g. [8,19–27]), or on an inclined one [22].

Let us consider a Chaplygin sleigh of mass m and the radius of inertia i with
respect to the central axis moving in a vertical plane as it is shown in Fig. 1. The
sleigh position is defined by coordinates 𝑋 and 𝑌 of the mass center 𝐶 and angle
𝜙 between axis 𝑂𝑥 and blade at point 𝐶. The sleigh position is specified at the
initial and final instant, but the initial value of mechanical energy is also known,
𝐸 = 𝑚𝑔𝐿, which is large enough for the sleigh to reach the final position, where
𝑔 is acceleration of gravity. Let 𝑈 and 𝑉 be the projections of the velocity of
point 𝐶 onto a blade and perpendicular to a blade, respectively. If the constraint
is bilateral [17], then 𝑉 = 0, this paper will also consider the cases of unilateral
constraints, when 𝑉 ⩾ 0 or 𝑉 ⩽ 0, depending on two possible cases, related to the
side to which the constraint restrains. The same figure also shows profiles of the
corresponding blades for all mentioned cases.

Figure 1. A Chaplygin sleigh in a vertical plane.

During brachistochronic motion, which in the original understanding of this
problem is realized by ideal mechanical constraints, without action of the active
forces, the mechanical energy remains unchanged:

1

2
𝑚(𝑈2 + 𝑉 2 + 𝑖2Ω2) +𝑚𝑔𝑌 = 𝑚𝑔𝐿

where 𝐿 is a given constant, which has the dimension of length.
In this paper, the brachistochronic motion is determined using only kinematic

differential equations:

�̇� = 𝑈 cos𝜙− 𝑉 sin𝜙

�̇� = 𝑈 sin𝜙+ 𝑉 cos𝜙

�̇� = Ω

which significantly simplify this problem, considering the determination of the
brachistochronic motion itself. The variable Ω represents the angular velocity of
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the body. It is only remarked herein that when the reaction 𝑅𝑐 is defined from
dynamic equations, it must be checked whether its direction corresponds to the
unilateral constraint orientation.

To determine the brachistochronic motion, which corresponds to a minimum
time between two specified positions, Pontryagin’s maximum principle is applied
[28,29]. This paper is an expansion of [30], with a numerical example added on
which we have merging of subintervals, where 𝑉 = 0 or 𝑉 ̸= 0 , as well as the
possibility of analyzing realization of the brachistochronic motion, by the help of
a single holonomic and a single unilateral nonholonomic constraint. The paper
is organized as follows: Section 2 presents the simplest possible formulation of
the optimal control problem. Section 3 describes the procedure of solving this
optimization task with special reference to the possibility of obtaining analytical
solutions. Illustration of the procedure given by using concrete numerical examples
is reported in Section 4. Realization of the motion by means of ideal mechanical
constraints is shown in Section 5.

2. Formulation of the optimal control problem

Introducing dimensionless quantities:

𝑋 = 𝑖𝑥, Ω = 𝜔

√︂
𝑔

𝑖
, 𝑈 = 𝑢

√︀
𝑔𝑖, 𝐿 = 𝑖𝑙

𝑌 = 𝑖𝑦, 𝑉 = ±𝑣2
√︀
𝑔𝑖, 𝑡 = 𝜏

√︃
𝑖

𝑔
,

the equations of state are obtained:

𝑥′ = 𝑢 cos𝜙∓ 𝑣2 sin𝜙(2.1)

𝑦′ = 𝑢 sin𝜙± 𝑣2 cos𝜙

𝜙′ = 𝜔

where the appropriate sign, “+” or “−”, corresponds to the direction for the case of
a corresponding blade. The notation (. . .)′ represents differentiation with respect
to dimensionless time 𝜏 . The principle of conservation of mechanical energy for the
considered problem in dimensionless variables reads

(2.2) 𝑢(𝜏)2 + 𝑣(𝜏)4 + 𝜔(𝜏)2 + 2𝑦(𝜏)− 2𝑙 = 0.

The initial conditions of motion are:

(2.3) 𝜏0 = 0, 𝑥(𝜏0) = 0, 𝑦(𝜏0) = 0, and 𝜙(𝜏0) = 0

whereas the final position is defined according to:

(2.4) 𝑥(𝜏1) = 𝑥1, 𝑦(𝜏1) = 𝑦1, 𝜙(𝜏1) = 𝜙1

where 𝜏1 is unknown instant. The problem of determining the brachistochronic
motion consists of determining the optimal controls:

𝑢 = 𝑢(𝜏), 𝑣 = 𝑣(𝜏), 𝜔 = 𝜔(𝜏)
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and their corresponding final equations of motion of this system so that the system
is converted from the initial state (2.3) in a minimum time 𝜏1 into the state (2.4)
with the constraint (2.2). The optimal control problem has the form:

(min)𝐽0
(︀
𝑢(·), 𝑣(·), 𝜔(·), 𝑥(·), 𝑦(·), 𝜙(·)

)︀
=

∫︁ 𝜏1

0

𝑑𝜏 = 𝜏1

subject to the state equations (2.1) and the conditions (2.2)–(2.4).

3. Solving the optimal control problem

In order to solve this problem, let us write the appropriate Pontryagin’s function
H for the case of time minimization [28,29]:

𝐻 = −1 + 𝜆𝑥(𝑢 cos𝜙∓ 𝑣2 sin𝜙) + 𝜆𝑦(𝑢 sin𝜙± 𝑣2 cos𝜙)

+ 𝜆𝜙𝜔 − 𝜇(𝑢2 + 𝑣4 + 𝜔2 + 2𝑦 − 2𝑙)

where 𝜇 is the multiplier corresponding to the constraint of mechanical energy
(2.2) and 𝜆𝑥, 𝜆𝑦, 𝜆𝜙 are co-state variables. The co-state system of differential
equations [28,29] reads:

(3.1) 𝜆′
𝑥 = 0𝜆′

𝑦 = 2𝜇, 𝜆′
𝜙 = −

(︀
𝜆𝑥(−𝑢 sin𝜙∓ 𝑣2 cos𝜙) + 𝜆𝑦(𝑢 cos𝜙∓ 𝑣2 sin𝜙)

)︀
.

Optimality conditions of the maximum principle [28,29]:

𝜕𝐻

𝜕𝑢
= 0,

𝜕𝐻

𝜕𝑣
= 0,

𝜕𝐻

𝜕𝜔
= 0

yield expressions for optimal controls:

𝑢 =
1

2𝜇
(𝜆𝑥 cos𝜙+ 𝜆𝑦 sin𝜙)

𝑣2 = 0 ∨ 𝑣2 =
±1

2𝜇
(−𝜆𝑥 sin𝜙+ 𝜆𝑦 cos𝜙)

𝜔 =
1

2𝜇
𝜆𝜙

where the multiplier 𝜇, in cases when independent variable 𝜏 at the end of motion
is not specified, is defined from the condition:

(3.2) 𝐻(𝜏) = 0

and it has the value:

𝜇(𝜏) =
1

4(𝑙 − 𝑦(𝜏))
> 0

which is positive over the considered interval of motion.
In order to be the maximum of Pontryagin’s function, the corresponding second-

order derivatives must be negative:

𝜕2𝐻

𝜕𝑢2
< 0,

𝜕2𝐻

𝜕𝑣2
< 0,

𝜕2𝐻

𝜕𝜔2
< 0
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wherefrom the criterion is finally obtained for the choice of an appropriate control:

𝑢 = 2(𝑙 − 𝑦)(𝜆𝑥 cos𝜙+ 𝜆𝑦 sin𝜙)(3.3)

𝑣2 =

{︃
0,±(−𝜆𝑥 sin𝜙+ 𝜆𝑦 cos𝜙) ⩽ 0

±2(𝑙 − 𝑦)(−𝜆𝑥 sin𝜙+ 𝜆𝑦 cos𝜙), ±(−𝜆𝑥 sin𝜙+ 𝜆𝑦 cos𝜙) > 0

𝜔 = 2(𝑙 − 𝑦)𝜆𝜙.

It can be seen that, in choosing the solution of (3.3), the function 𝑆 = (−𝜆𝑥 sin𝜙+
𝜆𝑦 cos𝜙) has the major role, whose sign is the basis for distinguishing segments of
motion over which 𝑉 = 0 or 𝑉 ̸= 0.

Differential equations of the two-point boundary value problem (TPBVP) are
obtained by substituting (3.3) in (2.1) and (3.1). It is necessary to supplement
boundary conditions (2.3) and (2.4) with condition (2.2) at the beginning or end
of the interval of motion in order to, also, define unknown dimensionless time of
motion 𝜏1.

Here, it should be noted that, in a general case, different solutions of (3.3)
can be combined over different intervals of motion depending on the sign of a
corresponding expression. In a general case, there are no analytical solutions of
differential equations of the TPBVP if 𝑣2 = 0 over the entire interval of motion
or over some subintervals of motion. In those cases, the problem must be solved
numerically. If the shooting method is applied and backward numerical integration
is performed, by the choice of three parameters, 𝜆𝑥, 𝜆𝑦1, 𝜏1, three initial conditions
are guessed (2.3), where, based on (2.2), (3.2) and (3.3):

𝜆𝜙(𝜏1) = ±

√︃
1

2(𝑙 − 𝑦1)
− (𝜆𝑥 cos𝜙1 + 𝜆𝑦1 sin𝜙1)2

and it should be checked which sign corresponds to the task concrete parameters.
Assessment of the interval of parameters’ values is also obtained from (2.2):

|𝜆𝑥 cos𝜙1 + 𝜆𝑦1 sin𝜙1| ⩽
1√︀

2(𝑙 − 𝑦1)
(3.4)

|𝜆𝑥| ⩽
1√
2𝑙

|𝜆𝑦1| <
1√︀

2(𝑙 − 𝑦1)

and it significantly assists in shooting as well as in seeking the global minimum if
there are multiple solutions for TPBVP.

If the constraint is side-oriented so that the extremal solution over the entire
interval is on an open set, differential equations of TPBVP have a simpler form:

𝑥′ = 2(𝑙 − 𝑦)𝜆𝑥 𝜆′
𝑥 = 0

𝑦′ = 2(𝑙 − 𝑦)𝜆𝑦 𝜆′
𝑦 =

1

2(𝑙 − 𝑦)

𝜙′ = 2(𝑙 − 𝑦)𝜆𝜙 𝜆′
𝜙 = 0
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and have general solutions in the analytical form:

𝑦 = 𝑙 − 1 + cos(𝑝𝑡+ 𝛼)

𝑝2

𝑥 =
2𝜆𝑥

𝑝2

(︁
𝑡+

1

𝑝
sin(𝑝𝑡+ 𝛼)

)︁
+ 𝐶1

𝜙 =
2𝜆𝜙

𝑝2

(︁
𝑡+

1

𝑝
sin(𝑝𝑡+ 𝛼)

)︁
+ 𝐶2

where (𝑝, 𝛼, 𝜆𝑥, 𝜆𝜙, 𝐶1, 𝐶2) are determined together with unknown moment 𝜏1 from
(2.2), (2.3) and (2.4). It should be noted that these solutions also correspond to
the case when the blade does not exist at all, consequently for the general case of
the brachistochronic plane-parallel motion of a rigid body.

Form and structure of optimal controls will depend on whether the constraint
is bilateral, unilateral and whether it exists at all. If unilateral, it will depend on
corresponding direction, but also on initial conditions (2.3), final conditions (2.4)
and quantity 𝑙, as well.

4. Numerical examples

Let us show for the concrete parameters of the task:

(4.1) 𝑙 = 2, 𝑥1 = 𝜙1 =
𝜋 + 2

2
√
2
, 𝑦1 = 1

The procedure is described in previous section, particularly for the constraints
𝑉 ⩾ 0 (Case “+”) and 𝑉 ⩽ 0 (Case “−”).

In the case “−”, it is shown that over the entire interval of motion the solution is
on an open set and that there are analytical solutions of the corresponding TPBVP:

𝑥 =
(𝜏 + sin 𝜏)√

2
, 𝑦 = 1− cos 𝜏, 𝜙 =

(𝜏 + sin 𝜏)√
2

(4.2)

𝜆𝑥 =
1

2
√
2
, 𝜆𝑦 =

sin 𝜏

2(1 + cos 𝜏)
, 𝜆𝜙 =

1

2
√
2
, 𝜏−1 =

𝜋

2

It can be also noticed that the mass center trajectory is a deformed cycloid
with the coefficient 1√

2
.

In the case “+”, it is shown that over the entire interval of motion the extremal
solution is on the boundary 𝑉 = 0. Based on the assessments (3.4) of all possible
values of the missing parameters, considering their positive signs, graphical repre-
sentation can be given of the surfaces that correspond to obtaining the appropriate
initial conditions. Figure 2 shows three surfaces of different colors, each of which
corresponds to the fulfillment of one of the initial conditions (2.3).

These surfaces have been obtained based on numerical calculations of the cor-
responding TPBVP in the program Wolfram Mathematica [31] using commands
NDSolve[. . .],ContourPlot3D[. . .] and they represent numerical dependencies:

𝑥0(𝜆𝑥, 𝜆𝑦1, 𝜏1) = 0, 𝑦0(𝜆𝑥, 𝜆𝑦1, 𝜏1) = 0, 𝜙0(𝜆𝑥, 𝜆𝑦1, 𝜏1) = 0
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Figure 2. Representation of the global minimum time of motion.

The parametric values sought are at their intersection:

(4.3) 𝜆𝑥 = 0.499037, 𝜆𝑦1 = 0.369326, 𝜏+1 = 1.76731

and it can be also seen that the point of intersection is at the lowest position along
the axis of dimensionless moment 𝜏1, whereby it is numerically shown that the
obtained solution represents the global minimum time of motion. This method
of graphical representation for any three-parameter shooting is very useful when
TPBVP has multiple solutions, of which the one with the lowest time should be
chosen [8].

Numerical solutions correspond to parametric values (4.3), as shown in Fig. 3,
together with analytical solutions (4.2), which correspond to opposite orientation
of a unilateral constraint.

It can be noticed that the time of motion in Case “−”, 𝜏−1 , is lower compared to
𝜏+1 in Case “+”. The first case corresponds to the brachistochronic plane-parallel
motion of a rigid body in the vertical plane, while the second case corresponds
completely to the case of a classical double-sided blade, as analyzed in [17]. The
same figure depicts the trajectory of the mass center for both cases. In addition,
based on the numerical and analytical solution, it can be shown that the function
𝑆 = −𝜆𝑥 sin𝜙 + 𝜆𝑦 cos𝜙 is negative over the entire interval of motion and that
conditions (3.3) of the maximum principle are fully satisfied (see Fig. 4).

Such task parameters can be defined, contour conditions and initial mechan-
ical energy, so that the brachistochronic motion contains segments where optimal
solution is from an open set and segments on which 𝑉 = 0. Let the numerical
parameters (4.1) be slightly modified

𝑙 = 2, 𝑥1 = 𝜙1 = 1.25, 𝑦1 = 1
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Figure 3. Final equations of motion and mass center trajectory
of the Chaplygin sleigh.

Figure 4. Function 𝑆 = −𝜆𝑥 sin𝜙+ 𝜆𝑦 cos𝜙.

where only Case “+” will be considered. Solving the TPBVP defined by (2.1)–(2.4),
(3.1) and (3.3) yields values of the parameters (4.3):

𝜆𝑥 = 0.378358, 𝜆𝑦1 = 0.475233, 𝜏1 = 1.18207

for which Fig. 5 shows the diagram of changes in dimensionless velocities and an-
gular velocity, where it is seen that there are segments on which 𝑉 = 0 or 𝑉 > 0.
The same figure gives the function 𝑆 = −𝜆𝑥 sin𝜙+ 𝜆𝑦 cos𝜙, whose sign conditions
the optimal change of velocity (3.3).

5. Realization of motion by means of ideal mechanical constraints

Also, it would be necessary to show the method of realization by the help of
ideal constraints, which would also be the generalization of paper [24], for the case
of guides, or paper [7], if motion is realized by rolling of the moving centroid along
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Figure 5. Diagrams of dimensionless velocities, angular velocity
and function 𝑆.
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Figure 6. Constraint reactions for the case of an additional guide:
a) at point 𝐴, b) at point 𝐵.

the stationary one. This additional research would require the usage of dynamical
differential equations of the Chaplygin sleigh motion.

The brachistochronic motion (4.2) in case “−” can be fully realized like in
paper [7].

In this section, we opt for the realization of the brachistochronic motion using
an additional holonomic constraint of the guide type. Two cases are considered,
when the guide is at point 𝐴 or at point 𝐵, where 𝐴𝐶 = 𝐵𝐶 = 𝑖 (see Fig. 6).

Let’s limit ourselves to the case “+” where the solutions of earlier considered
TPBVP with parameters (4.3) are known now. On this solution, for the entire time
of motion 𝑉 = 0. If the guide is at point 𝐴, dynamical equations have dimensionless



180 OBRADOVIĆ, CHERKASOV, MILIČIĆ, AND ŠALINIĆ

form (𝑅𝐶 = 𝑚𝑔𝑟𝐶 , 𝑅𝐴 = 𝑚𝑔𝑟𝐴, 𝑅𝐵 = 𝑚𝑔𝑟𝐵):

𝑢′ = 𝑟𝐴1 − sin𝜙, 𝜔𝑢 = 𝑟𝐴2 + 𝑟𝐶 − cos𝜙, 𝜔′ = 𝑟𝐴2

whereas the same equations for the case of guides at point 𝐵 are:

𝑢′ = 𝑟𝐵1 − sin𝜙, 𝜔𝑢 = 𝑟𝐵2 + 𝑟𝐶 − cos𝜙, 𝜔 = −𝑟𝐵2

where 𝑢′ and 𝜔𝑢 are dimensionless projections of point 𝐶 acceleration onto corre-
sponding directions and a 𝜔′ is body’s dimensionless angular acceleration.

From above mentioned equations, all reactions of constraints can be also de-
fined, but for further analysis it is needed to determine the laws of change in reaction
𝑅𝐶 in both cases:

𝑟𝐶 = 𝜔𝑢+ cos𝜙− 𝜔′(5.1)

𝑟𝐶 = 𝜔𝑢+ cos𝜙+ 𝜔′(5.2)

and check its sign (𝑅𝐶 > 0).
Figure 7 presents the laws of change (5.1) and (5.2), which indicate that the

brachistochronic motion is impossible to realize if the guide is at point 𝐴. At the
initiation of motion, it is necessary that 𝑅𝐶 < 0, which this constraint is unable to
realize. In contrast, it is possible to position the guide at point 𝐵, because then it
is 𝑅𝐶 > 0 over the entire interval of motion.

This is the essential difference compared to the case of a classical blade con-
sidered in paper [17], where both methods of realization are possible because the
nonholonomic constraint is bilaterally restraining. Also, note that in the mentioned
paper [17] one of the two additionally imposed holonomic constraints is redundant.
The brachistochronic planar motion of the body is possible to achieve only by
means of two ideal mechanical constraints, the third one being unnecessary. In a
unilateral restricting nonholonomic constraint of the blade type [18] the position
of another constraint, the guide, must be chosen in such way that necessary force
at the contact point must correspond to condition 𝑅𝐶 > 0 over the entire time
interval.

Figure 7. Dimensionless reaction of constraint for the case of
guides at points 𝐴 and 𝐵.
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In the third case from Section 4, on different segments of brachistochronic
motion, it is possible to combine guides at different points on the segment where
𝑉 = 0, depending on the check of conditions 𝑅𝐶 > 0. On the segments where
𝑉 > 0, 𝑅𝐶 = 0 the brachistochronic motion can be realized by the help of centroids
[7] or guides at two different points, where the considered points 𝐴 and 𝐵 can
be used.

6. Conclusions

The paper contributes to the unexplored area of optimal control of the motion
of nonholonomic mechanical systems with unilateral restricted constraint reaction.
The simplification of the optimal control task is also the originality of our work,
based only on kinematic equations. A special contribution represents the analyt-
ical solution of differential equations for individual cases of unilateral constraints,
when the solution is on an open set. It also entirely corresponds to the case of
brachistochronic plane-parallel motion of a rigid body in the vertical plane, when
the blade does not exist. The mass center trajectory is a deformed cycloid, unlike
ordinary cycloid, in the case of a classical brachistochrone. It is shown that in the
concrete case, with numerical solution of TPBVP, the obtained solution represents,
for specified task parameters, the global minimum time of motion.

A special contribution of this work is a detailed analysis of the possibility
of realizing planar motion of the rigid body by means of two ideal mechanical
constraints, of which one is a unilateral restricting nonholonomic constraint.

Continuing research can take place in several directions. It is also possible, as
indicated in a classical paper by Caratheodory [20], to impose maximum possible
value of the unilateral constraint reaction of the blade. In that regard, the results
of [24], which considered constrained classical nonholonomic bilateral constraint
of the blade type, could be generalized to the motion in the vertical plane with
unilateral constraint.
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РЕАЛИЗАЦИJА БРАХИСТОХРОНОГ КРЕТАЊА
ЧАПЛИГИНОВИХ САОНИЦА У ВЕРТИКАЛНОJ
РАВНИ СА JЕДНОСТРАНО ЗАДРЖАВАJУЋОМ

НЕХОЛОНОМНОМ ВЕЗОМ

Резиме. Дат jе поступак одређивања брахистохроног кретања Чаплигинових
саоница у вертикалноj равни, где jе сечиво такво да спречава бочно померање
у тачки контакта само у jедном смеру. Задати су положаj центра масе саоница
и угаона ориjентациjа у краjњим положаjима као и почетна вредност механич-
ке енергиjе. Дата jе наjпростиjа могућа формулациjа одговараjућег задатка
оптималног управљања, коjи jе решаван применом Понтрjагиновог принципа
максимума. У поjединим случаjевима нађена су аналитичка решења двотачка-
стог граничног проблема принципа максимума. У осталим случаjевима извр-
шено jе нумеричко решавање методом погађања. Дате су процене недостаjућих
граничних услова, на основу коjих jе утврђено да добиjено решење предста-
вља глобални минимум времена кретања. Анализирана jе пасивна реализациjа
брахистохроног кретања помоћу две идеалне механичке везе, jедне обострано
задржаваjуће холономне и jедне jеднострано задржаваjуће нехолономне.
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