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NONLINEAR EVOLUTION OF WATER
WAVES AND THEIR DISPERSION
RELATION IN COASTAL WATERS

Teodor Vrećica and Yaron Toledo

Abstract. Preliminary results of the derivation of a new phase-resolving (de-
terministic) spatio-temporal nonlinear model of water wave evolution in non-
deep waters with constant bathymetry are presented in this paper. The model
is the first of its kind to include a nonlinear dispersion relation and cubic (four-
wave) interactions. Simulations show the importance of nonlinear dispersion
for bound wave components which, if not properly accounted for, result in in-
accurate transfer of wave energy. We also investigate the relative importance
of cubic nonlinearity, as compared to a quadratic (three-wave interactions)
one, and show that it is non-negligible. The model provides the first step be-
fore the incorporation of these extensions into a phase-averaged (stochastic)
formulation, which can then be used as a more accurate nonlinear source term
for wave forecasting models.

1. Introduction

Waves are one of the most ubiquitous phenomena in nature, manifesting as
acoustic, electromagnetic, etc. Surface water waves, in particular, are one of the
most well-known, and have been capturing the minds of artists, poets, and scientists
for centuries. They are commonly generated via wind forcing [14, 16], which is
why they are often called wind waves. These waves act as an interface between the
oceans and the atmosphere making them instrumental in the exchange of various
fluxes [5, 6], and are one of the driving forces in the morphology of coastlines
[3]. Nonlinear wave-wave interactions are (together with dissipation, shoaling, and
wind forcing) one of the main processes governing the evolution of wave fields
[17]. Modeling the nonlinear evolution of wave fields in open seas and oceans is a
challenging task on its own [11]. This task is even more complicated in the rapidly
varying coastal environments.

For nonlinear interactions to exchange a significant amount of energy, the in-
teracting components need to close resonances in both wavenumber and frequency
domains. One rare property (as opposed to many other types of waves) of water
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160 VREĆICA AND TOLEDO

waves is their dispersive nature: waves of different frequencies travel at different
speeds. This can be easily deduced from the linear wave dispersion relation:

(1.1) 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ,

where 𝜔 is the angular frequency, 𝑔 the gravitational acceleration, 𝑘 is the wavenum-
ber, and ℎ is the bottom depth. This nonlinear relation makes it impossible for
groups of three waves to resonate in non-shallow depths (k1 = k2 + k3, 𝜔1 =
±𝜔2 ± 𝜔3), hence four-wave interactions are a primary mean of energy transfer
in deep waters. Three-wave interactions simply result in the formation of bound
waves (forced oscillations) which follow a different dispersion relation. However,
as waves enter the coastal areas, the changing bathymetry in intermediate waters
can act as an additional component enabling a class III Bragg resonance [12]. In
shallow waters (tanh 𝑘ℎ ≈ 𝑘ℎ), the nature of the dispersion relation changes to a
linear one, enabling a direct resonance between the three-wave pairs.

The difference between free and bound waves is illustrated in figure 1, using an
example of pendulum. We assume that the interacting waves close resonances in
the frequency domain, but not necessarily in the wavenumber domain as defined by
the dispersion relation. If a sum of wavenumbers of interacting waves does not fall
on the resonance circle (k1 ̸= k2 + k3), this results in the generation of a bound
wave. The most famous example of this is the second-order Stokes wave, in which
the bound wave modulates the shape of the wave that generated it. If however the
interacting wavenumbers resonate (e.g. k1 = k2 +k3 +k4), this results in transfer
of energy (𝐸) between the interacting waves. A similar analogy can be viewed
via a simple pendulum. If one were to apply forcing at non-resonant frequency

k ≠k +k1 2 3 k =k +k +k1 2 3 4
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Figure 1. An illustration of the qualitative difference between
bound and free waves.
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to a pendulum, it would result in small forced oscillations. However, a forcing
at the natural frequency of the pendulum would cause growth of the amplitude
of oscillation with time. In the water wave context each spectral bin relates to a
pendulum being forced by all other pendulums.

There are many approaches for modeling wave evolution in intermediate to
shallow waters over mild slope. These range from Boussinesq models which solve
the free surface elevation in the temporal domain [13,15], spectral deterministic
and stochastic models which describe the evolution of individual frequency com-
ponents [1,9,10,18], and even more complex numerical solvers of this free-surface
flow (e.g., [22]). The spectral approaches focus on the nonlinear three-wave inter-
actions, as they are the dominant source term in coastal areas, discarding the cubic
interactions. This includes mild-slope models of the authors [19,20] which account
for nonlinear interactions up to quadratic, although the potential importance of
cubic terms was briefly discussed. One unique property of these two models is that
they utilize a more accurate vertical velocity profile common in the Boussinesq
models (see [4]).

The simple linear dispersion relation from equation (1.1) is often used in the
models, which generally yields good agreement with the measurements. In this
paper, we investigate the difference in the nonlinear energy transfer for purely free
and bound waves. We also extend our previous works [19,20] to account for four-
wave interactions. The preliminary results presented in this paper show that the
contribution of cubic nonlinearity and the nonlinearity of the dispersion relation
can be significant.

The paper is structured as follows. In section 2, the governing equations are
defined and combined into a single equation. The nonlinear dispersion relation and
wave evolution equation are derived in section 3. Examples of the effect of nonlinear
dispersion and relative importance of cubic nonlinearity (compared to quadratic)
are given in section 4. Conclusions and closing remarks are given in section 5.

2. Governing equations

In this section, we present the governing equations. The flow under consid-
eration is assumed to be potential, with a still water level at 𝑧 = 0. The flow
is governed by the continuity (Laplace) equation, kinematic boundary condition
at the surface and the flat bottom, and by a dynamic boundary condition at the
surface:

∇2
𝑥𝜑+ 𝜑𝑧𝑧 = 0, − ℎ < 𝑧 < 𝜂,(2.1)

𝜑𝑧 −∇𝑥𝜑 · ∇𝑥𝜂 − 𝜂𝑡 = 0, 𝑧 = 𝜂,

𝜑𝑡 + 𝑔𝜂 + ((∇𝑥𝜑)
2 + 𝜑2

𝑧)/2 = 0, 𝑧 = 𝜂,

𝜑𝑧 = 0, 𝑧 = −ℎ.

Here, 𝜑 is the velocity potential, ∇𝑥 and subscript 𝑧 represents differentiation in
the direction of wave propagation and in 𝑧. Initial steps of the derivation, for the
most part, follow the works of [4] and [20], and are not shown here in detail. Three
major differences are that we assume that the bottom is flat, that all waves are
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propagating in the same direction, and that we extend nonlinearity to 𝜀2, where
𝜀 = 𝑘𝑎 is the wave slope. It is assumed that the wave field is discrete, with wave
components defined as a function of frequency: 𝜔𝑝 = 𝑝𝜔1, with 𝜔1 the lowest
frequency under consideration.

The velocity potential is defined as an infinite series as:

𝜑(𝑥, 𝑧, 𝑡) =

∞∑︁
𝑛=0

𝑧𝑛𝜑𝑛(𝑥, 𝑡).

By inserting this into the Laplace equation, a recursive relation can be obtained

𝜑𝑛+2 = −∇2
𝑥𝜑𝑛/((𝑛+ 1)(𝑛+ 2)),

where ∇𝑥 is horizontal gradient operator.

𝜑(𝑥, 𝑧, 𝑡) =

∞∑︁
𝑛=0

(−1)𝑛
𝑧2𝑛∇2𝑛

(2𝑛)!
Φ + (−1)𝑛

𝑧2𝑛+1∇2𝑛

(2𝑛+ 1)!
𝑊.

The velocity potential is expressed in terms of vertical velocity at the surface (𝑊 =
𝜑𝑧 (𝑥, 𝑧 = 0, 𝑡)) and surface velocity potential (Φ = 𝜑 (𝑥, 𝑧 = 0, 𝑡)). This is simply
an infinite Taylor series:

(2.2) 𝜑(𝑥, 𝑧, 𝑡) = cos(𝑧∇)Φ +
1

∇
sin(𝑧∇)𝑊.

With that in mind, the surface boundary conditions are expanded as a Taylor
series around the mean water level (𝑧 = 0, pointing upward). The next step is
to eliminate surface elevation and vertical velocity from the nonlinear terms, and
to substitute them with velocity potential. By substituting surface elevation (𝜂 =
−Φ𝑡/𝑔+𝑂(𝜀)+𝑂(𝜀2)) and vertical velocity at the surface (𝑊 = 𝜂𝑡+𝑂(𝜀)+𝑂(𝜀2))
for surface velocity potential (Φ) up to 𝜀2 in accuracy, the surface conditions are
combined into:

(2.3) −𝑊 − Φ𝑡𝑡

𝑔
= −𝜀𝑌 + 𝜀2𝐺, 𝑧 = 0,

where Φ is the velocity potential at the surface, and 𝑌 and 𝐺 terms account for
quadratic and cubic nonlinearity. Note that the continuity equation (2.1) was used
to eliminate double derivatives in 𝑧. For brevity, the definitions of 𝑌 and 𝐺 are
given in the appendix.

By Fourier expanding vertical velocity and velocity potential at the surface

Φ(𝑥, 𝑡) =

𝑁∑︁
𝑝=−𝑁

𝜑𝑝(𝑥)𝑒
𝑖𝜔𝑝𝑡, 𝑊 (𝑥, 𝑡) =

𝑁∑︁
𝑝=−𝑁

𝑤𝑝(𝑥)𝑒
𝑖𝜔𝑝𝑡

together with some additional simplifications, equation (2.3) takes the form

𝑤𝑝 =
𝜔2
𝑝

𝑔
𝜑𝑝 + 𝜀

𝑁∑︁
𝑠,𝑙=−𝑁

𝑌𝑠,𝑙𝛿(𝜔𝑝 + 𝜔𝑠 + 𝜔𝑙)𝜑𝑠𝜑𝑙(2.4)

+ 𝜀2
𝑁∑︁

𝑠,𝑙,𝑗=−𝑁

𝐺𝑠,𝑙,𝑗𝛿(𝜔𝑝 + 𝜔𝑠 + 𝜔𝑙 + 𝜔𝑗)𝜑𝑠𝜑𝑙𝜑𝑗 ,
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where 𝑤𝑝 and 𝜑𝑝 are Fourier amplitudes of vertical velocity and velocity potential
at 𝑧 = 0, 𝑔 is the acceleration due to gravity, and 𝛿 is the Kronecker delta. The 𝑌
and 𝐺 terms are lengthy expressions in terms of wavenumbers and frequencies, and
their formulation is given in the appendix. The subscripts denote the frequency,
where 𝑤𝑝 corresponds to the vertical velocity amplitude of a wave with frequency
𝜔𝑝 = 𝑝𝜔1. Note that the 𝜀 terms merely indicate the order of the nonlinearity, and
could be dropped from the equations.

The bottom boundary condition (after inserting eq. (2.2) into it) is defined as

sin(ℎ∇𝑥)∇𝜑𝑝 + cos(ℎ∇𝑥)𝑤𝑝 = 0.

By inserting the equation (2.4) into the bottom boundary condition and dividing
by cos(ℎ∇𝑥), the following governing equation is obtained:

(2.5)
(︁
tan(ℎ∇𝑥)∇𝑥 +

𝜔2
𝑝

𝑔

)︁
𝜑𝑝 = −𝜀

𝑁∑︁
𝑠,𝑙=−𝑁

𝑌𝑠,𝑙𝛿(𝜔𝑝 + 𝜔𝑠 + 𝜔𝑙)𝜑𝑠𝜑𝑙

− 𝜀2
𝑁∑︁

𝑠,𝑙,𝑗=−𝑁

𝐺𝑠,𝑙,𝑗𝛿(𝜔𝑝 + 𝜔𝑠 + 𝜔𝑙 + 𝜔𝑗)𝜑𝑠𝜑𝑙𝜑𝑗 +𝑂(𝜀3),

The trigonometric functions are to be understood as infinite Taylor series in ℎ∇𝑥,
where the terms representing a change of the wavenumber (∇𝑥𝑘) are discarded.

3. A discussion on nonlinear wave properties

3.1. Nonlinear dispersion. By expanding the velocity potential as

(3.1) Φ(𝑥, 𝑡) =

𝑁∑︁
𝑝=−𝑁

𝜑𝑝(𝑥)𝑒
𝑖𝜔𝑝𝑡 =

𝑁∑︁
𝑝=−𝑁

𝑏𝑝𝑒
𝑖(𝜔𝑝𝑡−𝑘𝑝𝑥),

and inserting it into equation (2.5), the following relationship between wavenumber
(𝑘) and frequency is obtained:

(−𝑔𝑘𝑝 tanh 𝑘𝑝ℎ+ 𝜔2
𝑝)𝑏𝑝 = 𝑂(𝜀2)

Note that the the 𝑏𝑝 term (amplitude of velocity potential) is still allowed to vary
in 𝑥, albeit at longer scales compared to the oscillatory behaviour.

The right-hand side (nonlinear part) of the equation (2.5) is often truncated,
which results in the well-known linear dispersion relation (equation 1.1). By includ-
ing the resonant components of a cubic order, an 𝑂(𝜀2) correction to the dispersion
relation can be obtained from the Zakharov equation [21]. This correction has
importance in deep waters which allows for large spatial and temporal evolution
scales. Note that terms of 𝑂(𝜀) are commonly disregarded.

The linear dispersion relation was shown to be a reasonable approximation in
most cases. However, modeling generation of infragravity (IG) waves using the
model of [4] can significantly overestimate the energy transfer, as shown in [2].
It is hypothesized that one of the reasons for this is that the IG wave regime
often has little free wave energy [7, 8], in which case the dispersion relation is
dominated by bound waves. The common approach practically approximates the
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spatial derivative in equation (2.5) using the linear solution of the wavenumber 𝑘𝑝
for free waves. Clearly this approach will cause discrepancies when bound wave
energy outweighs the free wave one. To accommodate this property in the IG
regime, the spatial derivative is simply defined as a difference or a sum of forcing
wavenumbers which represents the bound wavenumber:

(3.2) 𝑘𝑝 = 𝑘𝑙 ± 𝑘𝑠.

The simplest case is the famous Stokes wave solution, where a single wave (𝜔𝑠)
generates a bound wave (𝜔𝑝 = 2𝜔𝑠, 𝑘𝑝 = 2𝑘𝑠) which travels at a same speed as the
original wave and modulates the shape of the free surface (sharper crests).

This solution is only accurate for a single pair of forcing waves. In a more gen-
eral case, where bound and free energy are roughly proportional or when multiple
wave frequencies are contributing to the nonlinear forcing, it is necessary to com-
pute the evolution of dispersion relation in parallel to the wave evolution. However,
the derivation and analysis of the full dispersion evolution equation goes beyond
the scope of this paper.

3.2. Evolution model accounting for cubic nonlinearity. To obtain the
model of wave evolution in space, an operator is applied to equation (2.5). It is
defined as:

𝐻 =
∇𝑥 + 𝑖𝑘′𝑥𝑝,𝑙

tan(ℎ∇𝑥)∇𝑥 +
𝜔2

𝑝

𝑔

.

By applying the 𝐻 operator to the equation (2.5) with a fully expanded formulation
of velocity potential from the equation (3.1), it is possible to eliminate the fast
oscillatory terms. This results in an evolution equation describing a slow evolution
of the amplitude.

One thing to keep in mind is that the 𝑘′𝑝 term in the numerator is obtained
from the linear dispersion relation for 𝜔𝑝. In the case of the exact resonance, it is
necessary to take the limit for the 𝐻 operator:

𝐻 =
𝑖𝑔

2𝜔𝑝𝐶𝑔,𝑝
,

where 𝐶𝑔,𝑝 = 𝜕𝜔𝑝/𝜕𝑘𝑝 is the group velocity (speed of propagation of energy).
In both cases, the spatial evolution equation for the amplitude of velocity po-

tential is:

𝜕𝑏𝑝
𝜕𝑥

=−
𝑁∑︁

𝑠,𝑙=−𝑁

𝑊𝑠,𝑙𝛿(𝜔𝑝 + 𝜔𝑠 + 𝜔𝑙)𝑏𝑠𝑏𝑙𝑒
𝑖
∫︀
𝑘𝑝−𝑘𝑠−𝑘𝑙𝑑𝑥

−
𝑁∑︁

𝑠,𝑙,𝑗=−𝑁

𝑄𝑠,𝑙,𝑗𝛿(𝜔𝑝 + 𝜔𝑠 + 𝜔𝑙 + 𝜔𝑗)𝑏𝑠𝑏𝑙𝑏𝑗𝑒
𝑖
∫︀
𝑘𝑝−𝑘𝑠−𝑘𝑙−𝑘𝑗𝑑𝑥.

The surface amplitude of velocity potential was further expanded using 𝑏𝑝𝑒
𝑖𝑘𝑝𝑥 =

𝜑𝑝, and the 𝑊 and 𝑄 terms are defined as 𝑊𝑠,𝑙 = 𝐻𝑠,𝑙𝐹𝑠,𝑙 and 𝑄𝑠,𝑙,𝑗 = 𝐻𝑠,𝑙,𝑗𝐺𝑠,𝑙,𝑗

respectively. The approximation of the spatial derivatives in these nonlinear terms
should use equation (3.2) when appropriate.
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From here it is straightforward to incorporate either free or bound wave for-
mulation of the dispersion relation into the model. An example of the effect of
the nonlinear dispersion relation on the magnitude of the 𝑊 -terms and a com-
parison of magnitudes of quadratic and cubic nonlinear terms are given in the
following section.

4. Examples

4.1. Comparison of interaction terms for free and bound waves. In
this section, we investigate the differences in the nonlinear interaction term (𝑊𝑠,𝑙)
for purely bound and free waves. The overall energy transfer from three-wave
interactions is proportional to it, so it is imperative to accurately account for it.
For simplicity, we use a simple bichromatic wave field (two waves with periods
of 1 and 2/3 seconds), to evaluate differences due to different dispersion relation
for superharmonic (transfer of energy to higher frequency) and subharmonic (vice
versa) interactions. It is assumed that the wave at a difference frequency (period
of 2 seconds) is a bound wave.

While the magnitude of the interaction term for the transfer of energy from
free waves is identical to that from previous works (see figure 2), the magnitude of
energy transfer from a bound lower frequency harmonic to the waves that force it is
far stronger. An underestimation of back-transfer from low to high frequencies is a
potential explanation for the discrepancy observed in [2], however further validation
is needed.
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Figure 2. Nonlinear interaction terms for free and bound waves
as a function of bottom depth. a) The magnitude of the nonlinear
term governing subharmonic interaction of two free waves (𝑊3,−2).
b) The magnitude of the term governing superharmonic interaction
of a bound and free wave (𝑊1,2) is given in subfigure b. The results
shown with the black line are computed under the assumption that
all waves follow the linear dispersion relation, and for the results
shown with the blue line, it is assumed that wave components 2 and
3 (𝑘2 and 𝑘3) follow linear dispersion relation and wave component
1 (𝑘1 = 𝑘3 − 𝑘2) follows the bound wave dispersion relation.
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We note that the wave regime is often complex, and can not be described as a
purely free or purely bound wave. For the IG regime, for example, free and bound
wave energies are comparable. Here, as a first step, we limit our analysis to simple
test cases presented here to show that one cannot accurately model the combination
of both bound and free wave energy by assuming free wave coefficients.

4.2. Magnitudes of quadratic and cubic nonlinearity. Equation (2.4) is
used to evaluate the relative magnitudes of quadratic and cubic nonlinear terms
(𝑌𝑠,𝑙𝜑𝑠𝜑𝑙 and 𝐺𝑠,𝑙,𝑗𝜑𝑠𝜑𝑙𝜑𝑗), after expanding amplitudes of velocity potential in
wavenumber domain (𝜑𝑝 = 𝑏𝑝𝑒

−𝑖𝑘𝑝𝑥). A simple flat spectrum is used to define the
wave field, where the lowest frequency considered is 𝜔1 = 2𝜋/40, and all of the
energy is concentrated in wave components 6 to 10 with 𝑏6 = · · · = 𝑏10 = 1m2.
Results are computed as a function of depth, from 50m to 1.5 m (see figure 3).

ω2 - Q

ω2 - C

ω4 - Q

ω4 - C

0 5 10 15 20 25 30
10-6

10-5

10-4

0.001

0.010

0.100

1

h[m]

N
L
m
ag
ni
tu
de

a)
ω12 - Q

ω12 - C

ω14 - Q

ω14 - C

5 10 15 20 25 30

10-4

0.001

0.010

0.100

h[m]

N
L
m
ag
ni
tu
de

b)

Figure 3. Magnitude of the quadratic and cubic nonlinear terms.
a) Subharmonic interactions for wave components with frequencies
𝜔2 and 𝜔4. b) Superharmonic interactions for wave components
with frequencies 𝜔12 and 𝜔14. Note that 𝜔𝑝 = 𝑝𝜔1, and that the
Q and C in legend indicate quadratic and cubic interactions re-
spectively.

It should be stressed that quadratic and cubic interactions transfer most of the
energy to different frequencies. Quadratic interactions transfer energy to sum and
difference frequency of the two interacting components, while the cubic interactions
transfer energy to side-bands. To this end, we have showcased the results for two
amplitudes closer in frequency to the initial spectral components (𝜔4 and 𝜔12), and
two further away from it (𝜔2 and 𝜔14).

For the generation of low frequency components, the quadratic terms are domi-
nant throughout the range of depths. For superharmonic interactions, the quadratic
terms tend to zero in deep waters, but grow quickly in more shallow waters, over-
taking the cubic terms by an order of magnitude. Still, the overall contribution of
the cubic terms is not negligible, at least for certain frequencies.

5. Discussion and conclusions

We have presented preliminary findings in this paper, which lay down the foun-
dation for further development of a spectral shoaling model up to cubic nonlinearity.
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A new formulation of the quasi-Boussinesq model accounting for nonlinearity up to
the cubic order has been derived. The quadratic terms have shown to be dominant
as expected in a simple test case. Nevertheless, the contribution of the cubic terms
has been found to be non-negligible for superharmonic interactions. This stresses
the importance of including the cubic terms in the nonlinear models, as no mat-
ter how accurate the quadratic models are they can not account for cubic effects.
The main reason behind not considering cubic terms is computational efficiency,
however with an ever increasing availability of computational resources, inclusion
of cubic terms into models is becoming increasingly feasible.

We have investigated the effects of nonlinear dispersion relation on the transfer
of energy and shown a significant discrepancy in the magnitude of the interaction
terms for free and bound waves. The results showcasing the effect of the disper-
sion relation on the nonlinear generation of lower frequency waves are especially
interesting, as they significantly improve the accuracy of the model. Modeling of
IG waves (which are generated through subharmonic interaction) is becoming an
increasingly important task with the launch of satellite altimeters which are able to
measure their wavenumber range. Current operational global models for IG waves
are largely empirical, and do not give a full description of many parameters (e.g.
directionality). The end goal of this line of research is to implement a nonlinear
triad source term into WAVEWATCH III (currently being tested) and to develop
a dedicated model of IG wave evolution.
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Appendix

The full definition of the surface governing equation is:

−𝑊 − Φ𝑡𝑡

𝑔
= −𝜀

(︁2Φ𝑡𝑡Φ𝑡𝑡𝑡 +Φ𝑡Φ𝑡𝑡𝑡𝑡

𝑔3
+

2(∇𝑥Φ𝑡)(∇𝑥Φ) + Φ𝑡(∇2
𝑥Φ)

𝑔

)︁
+ 𝜀2

(︁−2Φ𝑡𝑡𝑡(∇𝑥Φ)(∇𝑥Φ𝑡)− 4Φ𝑡(∇𝑥Φ)(∇𝑥Φ𝑡𝑡𝑡) + 2Φ2
𝑡𝑡(∇2

𝑥Φ)
2 + 3Φ2

𝑡 (∇2
𝑥Φ𝑡𝑡)

2𝑔3

+
−3𝑔2(∇𝑥Φ)

2(∇2
𝑥Φ)− Φ𝑡𝑡(4(∇𝑥Φ)(∇𝑥Φ𝑡𝑡)− 6Φ𝑡(∇2

𝑥Φ𝑡))

2𝑔3

)︁
.

The nonlinear interaction terms are defined as:

𝑌𝑠,𝑙 =
𝑖𝜔2

𝑠𝜔
2
𝑙 𝜔𝑝

2𝑔3
−

𝑖𝜔𝑠𝜔𝑙𝜔
3
𝑝

2𝑔3
− 𝑖𝜔𝑝∇𝑠∇𝑙

𝑔
− 𝑖𝜔𝑙∇2

𝑠

2𝑔
− 𝑖𝜔𝑠∇2

𝑙

2𝑔
,

2𝑔3𝐺𝑠,𝑙,𝑗 = 𝜔𝑗(𝜔𝑙(3𝜔
2
𝑠 + 𝜔𝑙𝜔𝑗 + 6𝜔𝑠(𝜔𝑙 + 𝜔𝑗))∇2

𝑠

− 2(2(𝜔3
𝑠 + 𝜔3

𝑙 ) + 2(𝜔2
𝑠 + 𝜔2

𝑙 )𝜔𝑗)∇𝑠∇𝑙)

− 2𝜔𝑗(𝜔𝑠 + 𝜔𝑙)𝜔
2
𝑗∇𝑠∇𝑙 − (𝜔𝑠𝜔𝑙(𝜔𝑠𝜔𝑙 + 6(𝜔𝑠 + 𝜔𝑙)𝜔𝑗 + 3𝜔2

𝑗 )
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− 3𝑔2∇𝑠∇𝑙)∇2
𝑗 + 𝜔𝑗𝜔𝑠(𝜔𝑠(6𝜔𝑙 + 𝜔𝑗) + 3𝜔𝑙(𝜔𝑙 + 2𝜔𝑗))∇2

𝑙

− 2𝜔𝑙(2𝜔
3
𝑠 + 2𝜔2

𝑠𝜔𝑙 + 𝜔𝑠𝜔
2
𝑙 + 𝜔𝑗(𝜔

2
𝑙 + 2𝜔𝑙𝜔𝑗 + 2𝜔2

𝑗 ))∇𝑠∇𝑗

− (2𝜔3
𝑠(𝜔𝑙 + 𝜔𝑘) + 4𝜔2

𝑠(𝜔
2
𝑙 + 𝜔2

𝑗 ) + 4𝜔𝑠(𝜔
3
𝑙 + 𝜔3

𝑗 )

+ 3𝑔2∇2
𝑠)∇𝑙∇𝑗 − 3𝑔2∇𝑠∇2

𝑙∇𝑗
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НЕЛИНЕАРНА ЕВОЛУЦИJА ВОДЕНИХ ТАЛАСА И
ЊИХОВА РЕЛАЦИJА ДИСПЕРЗИJЕ У ПРИОБАЉУ

Резиме. Прелиминарни резултати деривациjе новог детерминистичког и сто-
хастичког модела еволуциjе таласа у запреминама воде коjе нису дубоке су
представљени у овом раду. Ово jе први модел овог типа у коме су укључени
ефекти нелинеарне дисперзиjе и кубних (четири таласа) интеракциjа. Помо-
ћу симулациjа jе демонстрирана важност нелинеарне дисперзиjе на форсиране
таласе, што ако се не узме у обзир резултира у погрешноj процени трансфе-
ра енергиjе. Такође смо истражили релативну важност кубне нелинеарности, у
поређењу са квадратном (интеракциjе три таласа), и показали да нису занемар-
љиве. Оваj модел jе први корак ка инкорпорисању ових ефеката у стохастичку
формулациjу модела, коjа би могла да се користи за прецизниjу прогнозу та-
ласа.
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