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SECONDARY FLOWS OF PRANDTL’S SECOND
KIND. MECHANISM OF FORMATION AND

METHODS OF PREDICTION

Nikolay Nikitin

Abstract. In this paper a mechanism is formulated and a principle is pro-
posed that makes it possible to explain and, in some cases, to predict the
shape of secondary flows of Prandtl’s second kind that arise in turbulent flows
in straight pipes of non-circular cross-section. The effectiveness of the pro-
posed principle is demonstrated by a number of known examples from the
literature. The results of this work provide a rational basis for understanding
the reasons for the formation and prediction of the shape of secondary flows
of Prandtl’s second kind in straight pipes of non-circular cross-section.

1. Introduction

Sometimes, a fluid flow that occurs under the influence of certain external
factors causes, in turn, another flow, which in this case is called a secondary flow.
Let’s turn to some well-known examples.

The fluid in a straight pipe moves along the pipe, but when passing through a
bend, a flow in the cross section also occurs (see Figure 1). This is called secondary
flow. The cause of its occurrence is the force of inertia, which is often called
centrifugal force. When moving along a curved trajectory, the centrifugal force
acts outward, causing an increase in pressure on the outer wall of the pipe in the
area of point B in Figure 1. Thus, there is a pressure gradient acting along the
perimeter of the cross-section of the pipe, where the fluid velocity is zero and there
are no inertia forces. The pressure gradient along the wall can only be balanced
by the friction force acting against the motion, therefore, a secondary flow must
occur, as shown in Figure 1.

Another example is the so-called Tea leaf paradox, described by Albert Einstein
in 1926 [1]. When stirring tea in a round cup, the tea leaves at the bottom, contrary
to expectations, gather in the center of the bottom, and not on the periphery (see
Figure 2). The rotation speed of the water decreases with depth, hence the change
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Figure 1. Occurrence of secondary flow in the bend of the pipe.

Figure 2. The tea leaf paradox.

in pressure on the wall caused by centrifugal force also decreases with depth. As a
result, a meridional secondary flow occurs, in which water descends along the walls
and rises in the central part of the cup.

In the considered examples, the cause of secondary flows is the centrifugal force
that occurs when the fluid particles move along a curved trajectory. Such secondary
flows are observed in both laminar and turbulent flows. They are usually called
secondary flows of Prandtl’s 1st kind, in contrast to secondary flows of the 2nd kind,
which arise under the action of turbulent fluctuations.

2. Turbulent secondary flows in noncircular pipes

The most well-known secondary flows of Prandtl’s 2nd kind are secondary flows
in straight long pipes of non-circular cross-section. Nikuradze [2, 3] measured
the mean velocity distributions over the cross-section of rectangular ducts and
found that characteristic bulges appear in the corner regions in the turbulent flow
(Figure 3).

L. Prandtl [4] suggested that such a specific distribution of the mean velocity
is caused by the presence of secondary flows, the velocity of the fluid in which is
directed towards the corners in the cross-sectional plane (Figure 4). The presence
of secondary flows was confirmed in Nikuradse’s later experiments [5]. The velocity
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Figure 3. Distribution of mean velocity in turbulent flow in rect-
angular duct mesured by J. Nikuradse [3].

value in secondary flows in rectangular ducts was measured thirty years later [6].
It turned out that it did not exceed 1–2% of the mean flow rate. Nevertheless, as it
was found later, secondary flows in turbulent flows make a significant contribution
to the transverse transfer of mass, momentum, and heat.

The insignificant intensity complicates the experimental study of turbulent sec-
ondary flows. Since the 90s of the last century, significant progress has been made
due to the development of methods for direct numerical simulation (DNS) of turbu-
lent flows. In this approach, the turbulent flow is calculated with all the details by
numerically solving the complete unsteady Navier–Stokes equations. An example
of visualization of an instantaneous picture of turbulent flow in a pipe calculated
by the author’s method [7] is shown in Figure 5.

Mean flow characteristics are determined by statistical averaging of non-sta-
tionary fields. The average fields in long pipes do not change along the pipe. They
only depend on the coordinates in the cross-section. The mean velocity field in the
cross-section of a square duct is shown in Figure 6(a), [8]. Its characteristic feature
is the bulges of the isolines in the corner regions. In accordance with Prandtl’s
assumption, in the vicinity of each of the corners, there is a secondary flow in the

Figure 4. The scheme of secondary flows in turbulent flows in
noncircular pipes proposed by L. Prandtl [4].
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Figure 5. Instantaneous picture of turbulent flow in one of the
longitudinal sections of the duct.

form of a pair of vortices of the opposite sign (Figure 6(b)), which carry high-
velocity fluid particles from the outer flow to the corner regions. Here and in the
following figures, solid streamlines correspond to the counterclockwise direction of
fluid movement, and dashed lines correspond to clockwise movement.
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Figure 6. Turbulent flow in a square duct, [8]. (a) Mean velocity;
(b) secondary flow.

Secondary flows in the vicinity of the outer corner (Figure 7) have the opposite
direction [8,9]. Fluid particles move along the bisector from the corner towards the
outer flow. Accordingly, the bulges of the mean velocity isolines are directed out
from the corner, and not towards the corner, as in the vicinity of the inner corners.

3. Mechanism of secondary flow formation

The distributions of the mean quantities in a turbulent flow are described by
the Reynolds equations. The equations for the cross-stream mean velocities 𝑉 and
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(a) (b)

Figure 7. Turbulent flow along an outer corner, [8]. (a) Mean
velocity; (b) secondary flow.
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We assume that the flow is statistically homogeneous in the direction of the flow;
therefore, all derivatives with respect to longitudinal coordinate 𝑥 are set to zero.
In the last equations 𝜈 is fluid viscosity, 𝑃 denotes mean pressure, 𝑣′ and 𝑤′ denote
turbulent velocity fluctuations and overbar denotes averaging.

The presence of a secondary flow is characterized by the longitudinal component
Ω𝑥 = 𝜕𝑊/𝜕𝑦−𝜕𝑉/𝜕𝑧 in the mean vorticity vector. The equation for Ω𝑥 reads [10]
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On the left-hand side, it contains convective and viscous terms, and on the right-
hand side, there is source term 𝑆, which is expressed in terms of the Reynolds stress
gradients:

𝑆 =
𝜕2
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In the absence of turbulent fluctuations, the source 𝑆 is equal to zero, and there is no
secondary flow. Thus turbulent fluctuations are the only reason for the appearance
of secondary flows in straight long channels.

In a large number of papers, attempts are made to explain the mechanism of
occurrence of secondary flows and to predict their shape based on an analysis of
the distributions of the 𝑆1 and 𝑆2 terms expressed in terms of the normal and shear
Reynolds stresses [10–19]. Attempts are made to give these terms a definite physi-
cal meaning. In our opinion, such approaches are unpromising, since the quantities
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𝑆1 and 𝑆2 are not invariants. Their values change when the 𝑦, 𝑧 coordinate system
is rotated. In particular, the values of 𝑆1 and 𝑆2 are reversed when the coordinate
axes are rotated by 45 degrees [11].

Physical mechanism of the occurrence of secondary flows in turbulent flows
along the corners can be explained in the following simple way [8,20]. Let us first
turn to the case of motion along an inner corner. In turbulent flows along a flat wall,
velocity fluctuations in the near-wall region predominantly occur along the wall,
since the transverse motions are restricted by the wall. Thus, the trajectories of the
fluid particles in the corner region, connecting two flat sections in the projection
onto the plane perpendicular to the flow, have a curvilinear shape with a convexity
directed towards the corner (Figure 8). The resulting centrifugal force is balanced
by a pressure gradient, which means an increase in pressure in the corner area.
There are no fluctuations on solid walls; therefore, the effect of the pressure gradient
force along the walls can be neutralized only by the friction force directed against
the movement of the fluid. Thus, the fluid spreads along the walls in both directions
from the corner, which is compensated by the fluid flowing to the corner from the
outer flow along the bisector. The well-known picture of the secondary flow arises.

Figure 8. Physical mechanism of the occurrence of turbulent sec-
ondary flows in the vicinity of the inner and outer corners, [8].

In the flow along the outer corner, the opposite picture arises. The trajectories
of fluctuations are convexly directed away from the corner, which leads to a pressure
decrease in the corner region, fluid inflow along the walls, and movement towards
the outer flow along the bisector.

4. Prediction of secondary flows

The consideration that the fluid in the secondary flow moves along the walls
from higher pressure to lower pressure leads to the conclusion that the points of
local extrema of the mean pressure on the wall are critical points of the streamlines
of the secondary flow. The shape of the secondary flows in the vicinity of the local
minimum and maximum pressure on the wall is shown in Figure 9. This can be
used to predict the shape of secondary flows in pipes of arbitrary non-circular cross-
section. If we can determine the location of local mean pressure extrema along the
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perimeter of the cross-section of the pipe, we can largely predict the shape of the
emerging secondary flows.

Figure 9. Secondary flow streamlines in the vicinity of the wall
pressure local minimum 𝑃− and maximum 𝑃+, [8,20].

The distribution of the mean pressure along the wall is related to the curvature
of the wall. Consider three options for the curvature of the wall: concave, flat, and
convex. Let us direct the 𝑦-axis along the normal, and the 𝑧-axis along the tangent
to the wall at the selected point (Figure 10). In the absence of secondary flow, the
relationship between the pressure gradient in 𝑦 direction and the Reynolds stress
gradients may be written as

−𝜕(𝑃 + 𝑣′2)

𝜕𝑦
=

𝜕𝑣′𝑤′

𝜕𝑧
.

If the right-side term is positive, then the sum 𝑃 + 𝑣′2 increases approaching the
wall. It means that pressure increase on the wall since 𝑣′ is equal to zero here.
In the vicinity of the wall, the velocity fluctuations are directed along the wall;
therefore, at the concave wall, the production 𝑣′𝑤′ is mainly negative at left and
positive at the right of the considered point (Figure 10(a)). Thus, the right-side
term is positive, which corresponds to wall-pressure increase. This is marked by
𝑃+ in the figure. In the vicinity of the convex wall, shown in Figure 10(c), on the
contrary, the right-side term is negative which leads to a decrease in pressure. At
a flat wall, the action of the right-side term is neutral.

It can be assumed that when the curvature of the wall changes along the perime-
ter, a proportional change in the mean pressure can be expected. Thus, mean pres-
sure extrema at the cross-sectional boundary should be expected at the points of
curvature extrema.

The formulated considerations can be used to predict the shape of secondary
flows for pipes of different cross-sections. To do this, one should try to find the
points of local pressure extrema along the perimeter of the cross-section based
on the curvature of the boundary, symmetry conditions, and maybe some other
considerations. Let us look at some examples. Figure 11 shows the results of direct
numerical simulation of turbulent flow in a pipe with a triangle-like cross-section.
In the cross-section, there are three inner corners 𝐴, 𝐵, 𝐵′, in which, for obvious
reasons, local pressure maxima are achieved. Between them, at some intermediate
points of the lateral boundaries 𝐶 and 𝐶 ′, as well as in the middle of the lower
boundary 𝐷, local pressure minima are expected. All this is confirmed by the DNS



152 NIKITIN

(a) (b) (c)

Figure 10. The relationship of the 𝑣′𝑤′ to the curvature of the
boundary, [8,20].

results. The shape of the secondary flows qualitatively corresponds to the location
of the local pressure extrema.

(a) (b)

Figure 11. (a) Mean pressure; and (b) secondary flow in a pipe
with triangle-like cross-section, [8,20].

The next example, presented in Figure 12, shows results for the circular cross-
section with a deleted sector. In such a section, there are two inner corners with
pressure maxima and one outer corner where a local pressure minimum is reached.
Note that the change in pressure, in this case, is considered only along the perimeter
of the cross-section of the pipe. Therefore, a decrease in pressure in the vicinity of
point 𝐴 inside the flow area is not a contradiction. The pressure change along the
𝐶𝐶 ′ arc is less predictable in this case. The flow at the point of symmetry 𝐷 is
largely determined by the motion in the vicinity of corner 𝐴; therefore, at point 𝐷,
one should rather expect a local maximum of pressure than a local minimum. If
so, then the local minima should be somewhere in the intermediate points 𝐵 and
𝐵′. Drawing streamlines of the secondary motion in the vicinity of local extrema
of the wall pressure in accordance with the types of these extrema, we obtain a
picture of the secondary motion, topologically equivalent to what is obtained in the
numerical simulation. If we assume the presence of a local pressure minimum at
point 𝐷, then a different picture will turn out, which is not realized in this case
but is possible, for example, with a different value of the angle at the vertex 𝐴.
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(a) (b)

Figure 12. (a) Mean pressure; and (b) secondary flow in a circu-
lar pipe with deleted sector, [8,20].

Let us consider a few more cases known from the literature, shown in Figure 13.
In an elliptical pipe (Figure 13(a)), the points of maximum curvature of the bound-
ary are reached at the ends of the major diameter. In these points, a local pressure
maximum is achieved, and the streamlines of the secondary flow diverge from these
points along the wall. Conversely, a minimum of pressure is achieved at the ends of
the smaller diameter. Fluid flows to these points along the wall. Predicted results
correspond to results of DNS [19, 21]. In a rectangular pipe with rounded cor-
ners [22] (Figure 13(b)), the situation is similar to the case of non-rounded walls.
The maximum pressure arises at the points of maximum curvature of the boundary
in the corner regions, and the shape of the secondary vortices does not change qual-
itatively. The rearrangement occurs when the flat area with a minimum pressure at
the lower boundary disappears completely (Figure 13(c)). In this case, the picture
of the secondary flow from a four-vortex one turns into a two-vortex one [23].

(a) (b) (c)

Figure 13. Schemes of secondary flows in pipes of various cross-
sections, [8,20].

Does the proposed principle predict secondary flows in all cases? Of course not.
The simplest example is a pipe with an eccentric annular cross-section [24,25]. The
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curvature of both walls in this pipe is constant along the perimeter, which does not
give the opportunity to determine the points of pressure extrema. However, the
Reynolds stresses change along the perimeter and secondary flows arise.

5. Flow in an open channel

Secondary flows are of great importance in open channels. There are many pa-
pers on this subject. The generally accepted picture of secondary flows in channels
with a free boundary, [26] is schematically depicted in Figure 14. In the area of the
lower corner between the solid walls, we have the usual picture with two vortices
and divergent flows along the walls. And in the corner where the solid and free
walls meet, there is movement directed upwards along the solid wall. Using the
above considerations, we can immediately say that such a scheme is erroneous. It
is obvious, that there must be an increased pressure in the upper corner, which
means that along the vertical wall, where the no-slip conditions are met, the fluid
must fall down, and not rise up.

Figure 14. Scheme of secondary flow in an open channel, [20].

The results of direct numerical simulation [8,20], shown in Figure 15 confirm
the predictions. On the whole, the picture of the secondary flow corresponds to the
accepted scheme, however, near the upper corners there are small single vortices
that ensure the lowering of the fluid along the vertical walls. The calculations
are carried out in the approximation of a flat free surface, so the pressure is not
constant along the upper boundary. There exist an experimental confirmation of
the described picture [27].

Figure 15. Mean pressure and secondary flow in an open channel,
[8,20].



MECHANISM OF TURBULENT SECONDARY FLOWS 155

6. Conclusion

The mechanism and a simple principle is formulated in this paper, which makes
it possible to explain and, in some cases, to predict the shape of secondary flows of
Prandtl’s second kind that arise in turbulent flows in straight pipes of non-circular
cross-section. The secondary flows are consistent with the distribution of the mean
pressure along the cross-sectional boundary. Fluid moves along the boundary from
high to low mean pressure, since there are no Reynolds stress forces on the no-slip
solid wall, and the pressure force can be balanced only by the viscous friction force
acting opposite to the motion direction. Thus, the direction of secondary motion
along the pipe perimeter can be determined by the location of the local mean wall
pressure extrema. In some cases, the location of local pressure extrema can be
established based on the analysis of the wall curvature. The greater the curvature
of the wall, the greater the change in pressure occurs under the influence of velocity
fluctuations. On the convex boundary, an increase in pressure occurs, while on the
concave, on the contrary, a decrease occurs. The effectiveness of the proposed
principle is demonstrated by a number of examples, such as the flows in a square
duct, in an elliptical pipe, in pipes with a section in the form of a circular sector
with an apex angle of 90∘ and 270∘, in rectangular ducts with rounded corners,
in an eccentric annular tube. In most cases, the approximate picture of secondary
flows can be predicted a priori using only symmetry considerations and an analysis
of the curvature of the cross-sectional boundary.

The results of this paper provide a rational basis for understanding the reasons
for the formation and prediction of the shape of secondary flows of Prandtl’s second
kind in straight pipes of non-circular cross-section.
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СЕКУНДАРНИ ТОКОВИ ПРАНДТЛОВЕ ДРУГЕ ВРСТЕ.
МЕХАНИЗАМ НАСТАНКА И МЕТОДЕ ПРЕДВИЂАЊА

Резиме. Формулисан jе механизам и предложен принцип коjи омогућава об-
jашњење, а у неким случаjевима и предвиђање облика секундарних струjања
Прандтлове друге врсте коjа настаjу у турбулентним струjањима у равним
цевима некружног пресека. Ефикасност предложеног принципа показуjе низ
познатих примера из литературе. Резултати овог рада даjу рационалну основу
за разумевање разлога за настанак и предвиђање облика секундарних токова
Прандтлове друге врсте у равним цевима некружног пресека.
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