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PERIODIC WAVE PROPAGATION
IN NONLOCAL BEAMS RESTING
ON A BILINEAR FOUNDATION

Valeria Settimi and Stefano Lenci

Abstract. The free wave propagation of periodic flexural waves on an infi-
nite elastic Euler–Bernoulli nonlocal beam embedded in bilinear Winkler-type
foundation is investigated. A general formulation of the elastic potential en-
ergy leads to a nonlinear nonlocal model with spatial derivatives up to the sixth
order. The effect of the nonlocal parameters and of the different soil stiffnesses
on the dynamical characteristics of the system is critically discussed. An en-
richment of the system response with respect to the local beam is unveiled,
and the crucial role played by the sixth-order nonlocal term is highlighted.

1. Introduction

The topic of the dynamic response in beams resting on elastic foundation has
been widely studied in the literature for several decades [12,14,25,28]. Besides
numerous papers focused on linear and unilateral foundations, the bilinear case
has received less attention. Investigations were carried by considering the bilinear
foundation as a perturbation of the linear case [4], or under the effect of moving
loads [9, 11, 20, 21], while few papers were devoted to the problem of the free
wave propagation. Recently, Lenci and Demeio studied the wave propagation in
taut cables [2] and flexural beams [15]. For taut cables, the problem results to be
governed by a second-order spatial derivative nonlinear (piecewise linear) system,
while for classical flexural beams the system has fourth-order spatial derivative.
It has been observed that increasing the order of the mathematical model leads
to the interesting phenomena, with complex interactions between single wave and
multiple wave solutions found for large values of the two foundation stiffnesses.

In addition to the classical models, in the last few years, nonlocal theories
for beams and plates have been diffusely proposed in the literature, mainly with
the aim of describing the behavior of structures at the nanoscale, for which the
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classical continuum theories have been found to be incapable of providing accurate
predictions [7].

Indeed, a large amount of experimental evidence shows that the mechanical
properties of nanostructures have a significant size-dependent effect. Among them,
nanobeams, nanorods, nanoplates and nanotubes are widely used to model res-
onators, oscillators, charge detectors, sensors or actuators, with practical applica-
tions that range from the aeronautical (nanoturbines, nanogears, nanoshafts), to
the biomedical (biosensors, tissue engineering, rug delivery), and the civil engineer-
ing (high strength, ductility, durability of materials) field [1,3,16,19].

Focusing on micro- and nano-beams embedded in an elastic foundation, Li
et al. considered an elastic medium according to the Eringen’s nonlocal elastic-
ity theory [17], while Eptaimeros et al. used a nonlocal integral stress model [8].
The Pasternak elastic foundation - which is also a nonlocal substrate - was investi-
gated by Wu et al. [30] and Togun et al. [26,27], the latter applying an analytical
asymptotic approach. There are several papers devoted to the study on carbon
nanotubes, embedded in elastic foundation [10,23,24], two-parameter elastic foun-
dation [18,22], and Pasternak-type medium [29,31]. Other models of microbeams
were investigated, too, like nanobeams made by functionally graded materials [5]
and temperature-dependent functionally graded materials [6]. All these models
lead to governing equations with derivatives up to the fourth order with respect to
the space variable.

However, to the best of the authors’ knowledge, the dynamic response of a
nonlocal beam resting on bilinear elastic foundation has not been studied yet. The
interest in this kind of study is twofold. From a practical point of view, the aim is
to describe the response of nanobeams (e.g. carbon nanotubes) which are possibly
embedded in elastic media with different compression and tensile stiffnesses, like
ceramic or concrete matrices. From a theoretical point of view, the goal is to
select a nonlocal elastic model able to increase the derivative order of the governing
equations, in order to analyze the possible enriched behavior of propagating waves,
and to verify the effect of nonlocal parameters on the system response.

The paper is organized as follows. In Section 2, the nonlocal model of an
infinite beam resting on a bilinear elastic foundation is presented, moving from a
very general formulation of the elastic potential energy which is able to increase the
order of the system derivatives to the sixth order. In Section 3, the behavior of the
linear model obtained in case of uniform medium is critically analyzed, while the
general case of bilinear foundation is discussed in Section 4. Eventually, concluding
remarks are reported in Section 5.

2. Model formulation

In this paper, the flexural undamped free wave propagation in an infinite uni-
form beam resting on a uniform bilinear substrate is investigated. The wavelengths
are assumed to be large enough (i.e. much larger than the beam radius of gyra-
tion) for the Euler–Bernoulli beam theory to be applicable, and rotatory inertia
and shear deformation to be neglected. This permits to overcome the problem
of infinite velocity occurring in the case of small wavelengths. As concerns the
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modeling of nonlocal elasticity, a general form for the density of elastic potential
energy is assumed:

(2.1) 𝜙
(︁
𝜅,

𝜕𝜅

𝜕𝑥

)︁
=

𝑐1
2
𝜅2 + 𝑐2𝜅

𝜕𝜅

𝜕𝑥
+

𝑐3
2

𝜕𝜅

𝜕𝑥

2

,

where 𝑐1, 𝑐2 and 𝑐3 account for local and nonlocal elastic modulus. 𝜅 is the bending
curvature defined as 𝜅 = 𝑣′′, with 𝑣 being the vertical displacement of the beam and
prime denoting derivative with respect to 𝑥. Applying the variational approach,
the extended Hamiltonian for the system is:

(2.2)

∫︁ 𝑡2

𝑡1

(𝛿𝑇 − 𝛿Ψ+ 𝛿𝑊 )𝑑𝑡 = 0,

𝛿𝑇 =

∫︁ 𝐿

0

𝜌𝐴�̇�𝛿�̇� 𝑑𝑥,

𝛿Ψ =

∫︁ 𝐿

0

(𝑐1𝑣
′′𝛿𝑣′′ + 𝑐2𝑣

′′𝛿𝑣′′′ + 𝑐2𝑣
′′′𝛿𝑣′′ + 𝑐3𝑣

′′′𝛿𝑣′′′)𝑑𝑥,

𝛿𝑊 =

∫︁ 𝐿

0

𝑏𝛿𝑣 𝑑𝑥,

where 𝑇 is the kinetic energy, Ψ is the elastic potential energy, and 𝑊 is the load
energy; 𝛿 is the variational operator, 𝑡1, 𝑡2 are generic time instants, and 𝐿 is the
wavelenght of the considered periodic wave, so that [0, 𝐿] is the spatial domain in
which the solution is sought for. 𝜌 and 𝐴 are mass per unit volume and cross-section
area of the Euler–Bernoulli beam, respectively. Dot represents the derivative with
respect to time 𝑡. 𝑏(𝑥, 𝑡) is the general external load. Assuming 𝑐1, 𝑐2, 𝑐3 to be
independent of 𝑥 and 𝑡, the equation of motion for the nonlocal beam results in

(2.3) 𝜌𝐴𝑣 + 𝑐1𝑣
𝐼𝑉 − 𝑐3𝑣

𝑉 𝐼 = 𝑏.

The following boundary conditions complete the problem formulation:

(2.4)

(𝑐2𝑣
′′ + 𝑐3𝑣

′′′) |𝑥=0,𝐿= 0 or 𝑣′′ |𝑥=0,𝐿= 0,

(𝑐1𝑣
′′ − 𝑐3𝑣

𝐼𝑉 ) |𝑥=0,𝐿= 0 or 𝑣′ |𝑥=0,𝐿= 0,

(𝑐3𝑣
𝑉 − 𝑐1𝑣

′′′) |𝑥=0,𝐿= 0 or 𝑣 |𝑥=0,𝐿= 0.

The proposed formulation is very general because the expression of the elastic
potential energy overlooks any physical and mechanical consideration. Neverthe-
less, it is of interest to furnish a physical interpretation of the problem by comparing
the obtained equations with those proposed in the literature. Indeed, by looking
at the strain gradient theory [13], it is straightforward to obtain a correspondence
between the coefficients of the two formulations:

𝑐1 = 𝐷1 = 𝐸𝐽 + 𝜌𝐴
(︁
2𝑙20 +

8

15
𝑙21 + 𝑙22

)︁
, 𝑐3 = 𝐷2 = 𝜌𝐽

(︁
2𝑙20 +

4

5
𝑙21

)︁
,

where 𝐸𝐽 is the bending stiffness, and 𝑙0, 𝑙1, 𝑙2 are nonlocal parameters. For the
following analyses it is thus useful to highlight the local and nonlocal contributions
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Figure 1. Single wave periodic response propagating in the bilin-
ear elastic foundation. 𝑘1, 𝑘2 are linear stiffnesses of the compres-
sion and tension regions, respectively; 𝑣1, 𝑣2 are the transversal dis-
placements of the compression and tension responses, respectively;
𝐿 is the spatial extension of the single wave periodic response (i.e.
the wavelength), while 𝐿1 and 𝐿2 are the spatial extension of the
compression and tension solutions, respectively.

inside the 𝑐1 coefficient by expressing it as 𝑐1 = 𝐸𝐽 + 𝑐1, where 𝑐1 is the nonlocal
part. Note that 𝑐3 is a purely nonlocal parameter, while the 𝑐2 coefficient does not
find correspondence in literature formulations. Actually, it results to be irrelevant
also in the present problem.

The beam is assumed to be embedded in an elastic bilinear medium, which is
described by means of a bilinear Winkler-type model:

(2.5) 𝑏(𝑥, 𝑡) = −𝑓(𝑣)𝑣, 𝑓(𝑣) =

{︃
𝑘1, 𝑣 < 0

𝑘2, 𝑣 ⩾ 0
,

where 𝑘1 and 𝑘2 are the stiffnesses per unit length of the substrate, which are
assumed to be constant, but different from each other. Denoting 𝑣1 and 𝑣2 the
vertical displacements when 𝑣 < 0 and 𝑣 ⩾ 0 , respectively, the equation (2.3) can
be alternatively written in the form:

(2.6)
𝜌𝐴𝑣1 + 𝑘1𝑣1 + 𝑐1𝑣

𝐼𝑉
1 − 𝑐3𝑣

𝑉 𝐼
1 = 0, 𝑣1 < 0,

𝜌𝐴𝑣2 + 𝑘2𝑣2 + 𝑐1𝑣
𝐼𝑉
2 − 𝑐3𝑣

𝑉 𝐼
2 = 0, 𝑣2 ⩾ 0.

The solution of the problem can be found in the form of a periodic traveling
wave, where a single periodic wave shows both compression (𝑣1 < 0) and traction
(𝑣2 > 0) within the wavelength 𝐿, as shown in Figure 1:

(2.7)
𝑣1(𝑥, 𝑡) = 𝑉1(𝑥− 𝑐𝑡),

𝑣2(𝑥, 𝑡) = 𝑉2(𝑥− 𝑐𝑡),
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with 𝑐 being the unknown phase velocity. By recalling the definition of 𝑐1 and by
defining 𝑧 = 𝑥− 𝑐𝑡 and

(2.8) 𝜂 =
𝑧

𝐿
, 𝑐 = 𝑐

𝐿
√
𝜌𝐴√
𝐸𝐽

, 𝛽 =
𝑐1
𝐸𝐽

, 𝛿 =
𝑐3

𝐸𝐽𝐿2
, 𝑘1,2 = 𝑘1,2

𝐿4

𝐸𝐽
,

equations (2.6) become

(2.9)
− 𝛿

𝑑6𝑉1

𝑑𝜂6
+ (1 + 𝛽)

𝑑4𝑉1

𝑑𝜂4
+ 𝑐2

𝑑2𝑉1

𝑑𝜂2
+ 𝑘1𝑉1 = 0, 𝑉1(𝜂) < 0,

− 𝛿
𝑑6𝑉2

𝑑𝜂6
+ (1 + 𝛽)

𝑑4𝑉2

𝑑𝜂4
+ 𝑐2

𝑑2𝑉2

𝑑𝜂2
+ 𝑘2𝑉2 = 0, 𝑉2(𝜂) ⩾ 0.

The sixth-order term is governed by the purely nonlocal parameter 𝛿, while in the
fourth-order term, the classical local part is corrected by the 𝛽-dependent nonlocal
contribution.

The relevant eigenvalue problem is composed of two sixth-degree quadratic
polynomials, which furnish three couples of eigenvalues for each equation of (2.9),
i.e., 𝜆𝑖, 𝑖 = 1, . . . , 6 for the first equation, and 𝜆𝑗 , 𝑗 = 7, . . . , 12 for the second one.
In particular, for each set of eigenvalues one couple is real, while the other two
are complex conjugates, i.e., 𝜆1 = −𝜆2, 𝜆7 = −𝜆8, 𝜆3 = �̄�4, 𝜆9 = �̄�10, 𝜆5 = �̄�6,
𝜆11 = �̄�12, with bar indicating the complex conjugate. By separating the real and
imaginary parts of the complex eigenvalues (𝜆3 = 𝜆3𝑟 + 𝑖𝜆3𝑖, 𝜆5 = 𝜆5𝑟 + 𝑖𝜆5𝑖,
𝜆9 = 𝜆9𝑟 + 𝑖𝜆9𝑖, 𝜆11 = 𝜆11𝑟 + 𝑖𝜆11𝑖), the general form of the solutions of (2.9) is

𝑉1(𝜂) = 𝑎1𝑒
−𝜆1𝜂 + 𝑎2𝑒

𝜆1𝜂 + 𝑒𝜆3𝑟𝜂(𝑎3 cos(𝜆3𝑖𝜂) + 𝑎4 sin(𝜆3𝑖𝜂))(2.10)

+ 𝑒𝜆5𝑟𝜂(𝑎5 cos(𝜆5𝑖𝜂) + 𝑎6 sin(𝜆5𝑖𝜂)),

𝑉2(𝜂) = 𝑎7𝑒
−𝜆7𝜂 + 𝑎8𝑒

𝜆7𝜂 + 𝑒𝜆9𝑟𝜂(𝑎9 cos(𝜆9𝑖𝜂) + 𝑎10 sin(𝜆9𝑖𝜂))(2.11)

+ 𝑒𝜆11𝑟𝜂(𝑎11 cos(𝜆11𝑖𝜂) + 𝑎12 sin(𝜆11𝑖𝜂)),

where 𝑎𝑖, 𝑖 = 1, . . . , 12 are the unknown amplitudes to be determined.
Due to the complex nature of some eigenvalues, the coefficients 𝑎𝑖 could also

be complex, notwithstanding the fact that 𝑉1(𝜂) and 𝑉2(𝜂) must be real. In order
to determine the unknown amplitudes, boundary and continuity conditions for a
single wave periodic solution are imposed:

(2.12)

𝑉1(0) = 0, 𝑉2(1− 𝛼) = 0,

𝑉1(𝛼) = 0, 𝑉2(0) = 0,

𝑉 ′
1(0) = 𝑉 ′

2(1− 𝛼), 𝑉 ′
1(𝛼) = 𝑉 ′

2(0),

𝑉 ′′
1 (0) = 𝑉 ′′

2 (1− 𝛼), 𝑉 ′′
1 (𝛼) = 𝑉 ′′

2 (0),

𝑉 ′′′
1 (0) = 𝑉 ′′′

2 (1− 𝛼), 𝑉 ′′′
1 (𝛼) = 𝑉 ′′′

2 (0),

𝑉 𝐼𝑉
1 (0) = 𝑉 𝐼𝑉

2 (1− 𝛼), 𝑉 𝐼𝑉
1 (𝛼) = 𝑉 𝐼𝑉

2 (0),

𝑉 𝑉
1 (0) = 𝑉 𝑉

2 (1− 𝛼), 𝑉 𝑉
1 (𝛼) = 𝑉 𝑉

2 (0),

where the spatial extension of the compression solution 𝑉1 is 𝐿1 = 𝛼𝐿 and that of
the tension solution 𝑉2 is 𝐿2 = (1−𝛼)𝐿. The 𝛼 parameter is unknown and must be



122 SETTIMI AND LENCI

determined as a part of the solution. Boundary conditions (2.12) can be written in
matrix form, i.e., Ma = 0, where a is a (12×1) vector collecting the 𝑎𝑖 coefficients,
and M is a (14× 12) matrix, not reported here for the sake of brevity.

It is worth remembering here that two extra conditions included in matrix M
are necessary in order to determine the unknown phase velocity 𝑐 and parameter
𝛼, which cannot be expressed in an explicit form, as done for the 𝑎𝑖 amplitudes.
The solvability conditions of the problem require that det(Mn) = 𝑀𝑛 = 0 for each
(12× 12) squared sub-matrix Mn of M, with 𝑛 = 1, . . . , 91.

Once the solution 𝑐(𝑘1, 𝑘2) has been obtained, we have that the physical fre-
quency of the wave is

(2.13) 𝑓 =
𝑐

𝐿
=

√
𝐸𝐽

𝐿2
√
𝜌𝐴

𝑐
(︁𝑘1𝐿4

𝐸𝐽
,
𝑘2𝐿

4

𝐸𝐽

)︁
,

which gives 𝑓 = 𝑓(𝐿), i.e. the dispersion relation of the considered problem.

3. Linear problem

If 𝑘1 = 𝑘2 = 𝑘, the problem (2.9) becomes linear, and the expression of the
phase velocity 𝑐𝑙 can be obtained in closed form:

(3.1) 𝑐𝑙 = 2𝜋

√︃
1 + 𝛽 + (2𝜋)2𝛿 +

𝑘

(2𝜋)4

for a single wave periodic solution, for which of course 𝛼 = 1/2. It can be noted that
the phase velocity depends on both the nonlocal parameters 𝛽 and 𝛿, differently
from what occurs when a local model is considered, where the expression of the
phase velocity 𝑐𝑙 reduces to 𝑐loc = 2𝜋

√︀
1 + 𝑘/(2𝜋)4.

The effects of the nonlocal parameters on the phase velocity are shown in
Figure 2. As expected, they produce a qualitatively similar effect in increasing
the phase velocity, even if the 𝛿 parameter has a major impact, meaning that the
nonlocal sixth-order term is crucial in modifying the propagation characteristics of
the beam.

Due to the homogeneous substrate embedding the beam, it is of interest also
to study multiple wave periodic solutions, by conveniently referring to a reduced
system, starting from a linear Winkler-type model, which is described by the first
equation of (2.9), with 𝑉1(𝜂) = 𝑉𝑙(𝜂). The relevant solution takes the form proposed
in (2.10), where the six eigenvalues are the same of the bilinear problem. The
corresponding boundary problem Mlal = 0 leads to the definition of the matrix
Ml, which is (7 × 6) rectangular matrix, and the (6 × 1) vector al of unknown
amplitudes. Note that, when dealing with homogeneous substrate, the 𝛼 parameter
describing the portion of solution subjected to compression and that subjected to
tension is no longer significant, so that the only one extra-condition of the problem
is necessary to determine the phase velocity 𝑐𝑙. By imposing the zeroing of the
determinants of the seven squared sub-matrices of Ml (i.e. 𝑀𝑙𝑛 = 0, 𝑛 = 1, . . . , 7),
several responses can be detected. Figure 3 displays the zero-value curves of the
determinants as a function of the wavelength 𝐿 and of the phase velocity 𝑐𝑙, when
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assuming 𝑘 = 10, 𝛽 = 𝛿 = 0.01. For the sake of readability of the figure, the curves
of only three determinants are reported here, i.e. 𝑀𝑙3, 𝑀𝑙5 and 𝑀𝑙7, which indeed
are sufficient to assess the solvability of the problem, except for pathological cases.
Of course, in the following analyses, the nullification of all seven determinants has
been always verified.

0.001 0.01 0.1

1

1.02

1.04

1.06

1.08

1.1

(a)

𝑐𝑙

𝛽 0.001 0.01 0.1

1

1.5

2

2.5

3

(b)

𝑐𝑙

𝛿

Figure 2. Effect of the nonlocal parameters on the nondimen-
sional phase velocity 𝑐𝑙 = 𝑐𝑙/𝑐loc for 𝑘1 = 𝑘2 = 10. (a) 𝑐𝑙 as a
function of the fourth-order nonlocal parameter 𝛽 and (b) of the
sixth-order nonlocal parameter 𝛿.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

𝑐𝑙

𝐿

fig.4 fig.5

Figure 3. For 𝑘1 = 𝑘2 = 10, zero-value curves of the determinants
of the squared sub-matrices of Ml as a function of wavelength 𝐿
and phase velocity 𝑐𝑙. Red curve = 𝑀𝑙3 determinant; blue curve
= 𝑀𝑙5 determinant; green curve = 𝑀𝑙7 determinant.
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As shown by the graphics, there are several points corresponding to the cross of
all the curves, thus being solutions of the problem, some of them being investigated
in Figures 4–5, by way of example.

One scenario is reported in Figures 4(a)–(c), for 𝑐𝑙 = 2.8541 and 𝐿 = 5.101.
Interestingly, for a single value of the phase velocity, three different eigenvectors al
satisfy the problem, leading to three different spatial shapes of the propagatinge-
wave:

al1 = (0, 0, 0.7071, 0,−0.7071, 0),

al2 = (0, 0, 0, 0.8068, 0, 0.5908),

al3 = (0, 0, 0, 0.9854, 0, 0.1700).

A more in-depth discussion about the results can be carried out if a classical
local model is also analyzed. It is worth remembering that the sixth-order term
is governed by the purely nonlocal parameter 𝛿, so that moving from a nonlocal
to a local model implies the need to reformulate the problem, by imposing that
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Figure 4. For 𝑘1 = 𝑘2 = 10, spatial shapes of the solutions for
the nonlocal model at 𝑐𝑙 = 2.8541 and 𝐿 = 5.1008 (a)-(c), and for
the local model at 𝑐loc = 2.8117 and 𝐿 = 4.9969 (d). The relevant
eigenvectors are al1 (a), al2 (b) , al3 (c), aloc (d).
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𝑐2 = 𝑐3 = 0 in equation (2.1). The relevant problem equation sees the sixth-order
term disappear in equation (2.9) (the nonlocal parameters 𝛽 and 𝛿 are both null).
The eigenvalue problem is now governed by a quadratic fourth-order polynomial
whose solution furnishes two couples of complex eigenvalues. Thus, the solution
can be sought in the form of (2.10) 𝑉1(𝜂) = 𝑉loc(𝜂), where the terms related to
the real-valued eigenvalue 𝜆1 must be deleted. The matrix form of the boundary
problem is composed of a (5× 4) matrix Mloc, and a (4× 1) vector of the unknown
amplitudes aloc = (𝑎3, 𝑎4, 𝑎5, 𝑎6). As for the nonlocal model, the solution is sought
by imposing the contemporary annulment of the determinants of the five squared
sub-matrices of Mloc. For the same set of mechanical values of the nonlocal case,
a solution is detected for 𝑐loc = 2.8117. At this phase velocity, the spatial shape of
the solution is shown in Figure 4(d), with aloc = (0, 0.7834, 0,−0.6216).
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Figure 5. For 𝑘1 = 𝑘2 = 10, spatial shapes of the solutions
for the nonlocal model at 𝑐𝑙 = 2.8541 and 𝐿 = 8.8148 (a)-(c),
and for the local model at 𝑐loc = 2.8117 and 𝐿 = 8.6547 (d).
The relevant eigenvectors are al1 = (0, 0, 0.7071, 0,−0.7071, 0) (a),
al2 = (0, 0, 0, 0.8921, 0, 0.4519) (b) , al3 = (0, 0, 0, 0.6516, 0, 0.7586)
(c), aloc = (0, 0.5973, 0, 0.8019) (d).
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From the results, it is seen that including nonlocality into the model allows for
an enrichment of the response with the peculiar possibility to have various wave
shapes at the same phase velocity. Indeed, by looking at another scenario described
in Figure 5, it can be observed that for the same set of mechanical parameters the
system displays various responses at different phase velocities (and wavelengths),
with the presence of periodic multiple wave solutions as the wavelength 𝐿 increases.

4. Nonlinear problem

When considering different substrates embedding the beam, 𝑘1 ̸= 𝑘2, the non-
local bilinear problem must be referred to. Focusing on the study of single wave
periodic solutions, the system (2.9)–(2.12) can be numerically solved, although here
the computational effort is considerably increased by the nonlinear nature of the
problem and by the need to investigate the determinants of all the 91 squared
sub-matrices of the system matrix M.

By applying continuation techniques it is possible to discuss the effect of the
nonlocal parameters on the phase velocity by considering different values of the soil
stiffness, as reported in Figure 6(a). Moving from the local bilinear model (black
curve), the 𝛽 parameter is shown to be capable of decreasing the slope of the curve
(blue curve), although the greatest effect can be observed if the parameter 𝛿 is
taken into account (red curve). This is likely due to the fact that the nonlocal
𝛽 parameter is added to the local part (with unitary dimensionless coefficient)
governing the fourth-order term in the system equation (2.9). As a consequence,
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Figure 6. For 𝑘1 = 10, effect of varying 𝑘2 on the normalized
phase velocity 𝑐 (a) and the 𝛼 parameter (b). Black curve = local
model; blue curve = nonlocal fourth-order model; red curve =
nonlocal sixth-order model; green curve = complete nonlocal sixth-
order model.
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Figure 7. Single wave response for 𝑘1 = 10, 𝑘2 = 0.3 (𝑐 = 7.4484,
𝛼 = 01994) (a), 𝑘1 = 10, 𝑘2 = 50 (𝑐 = 7.4783, 𝛼 = 0.6567) (b). The
orange part is subjected to compression (𝑉1(𝜂)) while the green
part is subjected to tension (𝑉2(𝜂)).

the 𝛽 parameter furnishes an incremental contribution to the system response, also
in consideration of the fact that the acceptable values for the nonlocal parameters
are order of magnitude smaller than unity. Differently, the sixth-order term is
exclusively governed by the 𝛿 parameter, so that its presence, although with small
values, is able to significantly change the system response. Indeed, black and blue
curves are obtained by solving the fourth-order bilinear problem, while red and
green curves require the investigation of the sixth-order model.

Note that in Figure 6(a) the values of the phase velocity are nondimenzionalized
with respect to the relevant linear problem (i.e., when 𝑘1 = 𝑘2), so that all curves
pass through the point (𝑘2 = 10, 𝑐 = 1), even if the dimensional phase velocities
at this point are different. In particular, for 𝑘2 = 𝑘1 = 10, 𝑐 = 6.3033 for the
local problem (black curve), 𝑐 = 6.6091 when considering the 𝛽 parameter (blue
curve), 𝑐 = 13.9852 when including the 𝛿 parameter, and 𝑐 = 7.4640 when both the
nonlocal terms are considered (green curve). This means that the sixth-order term
is able to substantially increase the value of the phase velocity, as already discussed
in Figure 2, even if the latter undergoes very small variations as the substrate
stiffness changes.

In Figure 6(b), the effect of the 𝑘2 stiffness variation on the compression-to-
tension ratio 𝛼 is shown. As expected, the nonlocal parameters do not influence
the response, since the 𝛼 parameter is strictly related to the substrate stiffnesses.
As an example, two single wave periodic responses for the nonlocal bilinear system
at 𝑘2 = 0.3 and 𝑘2 = 50, with fixed 𝑘1 = 10, are shown in Figure 7.

5. Concluding remarks

In the paper, a dynamical model for a nonlocal infinite elastic beam embedded
in bilinear Winkler-type foundation is proposed. The general form of the elastic
potential energy leads to a system of nonlinear equations with derivatives up to the
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sixth order. With the focus on investigating the single wave periodic responses, an
analytical solution strategy is proposed. Since an exact mathematical solution is
obtained, it can be used to validate numerical solutions that can be developed to
solve this problem, or similar ones.

In order to critically discuss the effects of the different characteristics of the
model on the free wave propagation, various simplified systems are defined and
investigated. In particular, the influence of the nonlocal parameters is discussed
by referring to the relevant linear model, obtained when a homogeneous medium is
considered, and to the simplified fourth-order local model, ensuing when nonlocality
is neglected. Successively, the effect of varying stiffnesses of the bilinear foundation
is studied by analyzing the complete nonlocal nonlinear model.

The results highlight the crucial role played by the sixth-order term, exclusively
governed by a nonlocal parameter, in quantitatively modifying the phase velocity.
Indeed, as this term gains importance, the phase velocity significantly increases, as
compared to the other nonlocal parameter included in the fourth-order term. From
the mathematical viewpoint, this result is somehow expected, since nonlocality
plays a substantially different role in the two terms, being able to activate the
sixth-order term while having just an incremental effect of the fourth-order one.

More interestingly, nonlocality seems to substantially enrich the dynamical
behavior of the model with respect to the local model, with the possibility to have
waves with different spatial shapes at the same phase velocity.

On the other hand, when dealing with a bilinear foundation, the phase velocity
is shown to have a monotone trend in relation to the change in ratio between the
two stiffnesses, with again the sixth-order nonlocal term being able to significantly
reduce the slope of the curve.

From a practical viewpoint, these outcomes suggest the potential interest in
considering simple nonlocal formulations which are able to increase the order of the
mathematical model.

There are many possible developments of the proposed research. Among them,
we mention the comparison of the proposed theoretical results with experimental
results, that are not yet available to the best of the authors’ knowledge.
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ПЕРИОДИЧНО ПРОСТИРАЊЕ ТАЛАСА
У НЕЛОКАЛНOJ БИЛИНЕАРНOJ ГРЕДИ

Резиме. Истражуjе се слободно простирање периодичних таласа на бесконач-
но еластичноj Оjлер-Бернулиjевоj нелокалноj греди уграђеноj у билинеарни те-
мељ Винклеровог типа. Општа формулациjа еластичне потенциjалне енергиjе
доводи до нелинеарног нелокалног модела са просторним изводима до шестог
реда. Разматра се утицаj нелокалних параметара и различитих крутости тла
на динамичке карактеристике система. Обjашњено jе обогаћивање одзива си-
стема у односу на стандардни локални штап и наглашена jе кључна улога коjу
игра нелокални термин шестог реда.
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