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PROPERTIES OF OPERATOR CONSTITUTIVE
RELATIONS IN MECHANICS

OF DEFORMABLE SOLID

Dimitri V. Georgievskii

Abstract. The constitutive relations between stresses and strains in the me-
chanics of a deformable solid, including their operator connection, are consid-
ered. Some important and frequently occurring properties of tangent modulus
and tangent pliability as rank four tensors are described. Depending on this,
a possible classification of continuous media is proposed. Scleronomous and
rheonomic media, homogeneous and inhomogeneous media (in particular, com-
posites), media with memory, spatially nonlocal media, materials with hard or
soft characteristics are distinguished. For non-linearly elastic isotropic media,
the apparatus of tensor nonlinear isotropic functions of one argument is devel-
oped. Particular attention is paid to the three-term representation of power
tensor series in three-dimensional space, reversibility of tensor functions, Tay-
lor tensor series, tensor linearity (quasilinearity) and nonlinearity.

1. Introduction and the simplest examples

In closed systems of equations used in the formulation of initial-boundary-value
problems of continuum mechanics, all equations can be divided by their physical
meaning and by their origin into certain groups. One of them necessarily includes
differential consequences of conservation laws or continuum mechanics postulates,
whereas the other one consists of kinematic relations and/or, as a consequence,
equations of compatibility of components of certain vectors and tensors. In more
complex formulations, taking into account, for example, phase transitions or the
structural state of substances, there are other groups of equalities. But, it is manda-
tory for the closure of the system, that a mechanician specifies the physical relations
connecting some kinematic and some force characteristics of the deformation pro-
cess that highlight the selected class of media. These relations in a broad sense
are called constitutive relations. In mechanics of deformable solid they are most
often set in the form of operator communication of stresses and strains. Such an

2020 Mathematics Subject Classification: 74A20; 74B20.
Key words and phrases: constitutive relation, operator, material function, tangent module,

tangent pliability, soft (hard) characteristics, rheonomous and scleronomous media, composite,
non-local medium, isotropic tensor function.

103

https://doi.org/10.2298/TAM230719008G


104 GEORGIEVSKII

operator relationship, which sets a mathematical model of the medium, certainly
exists, since a change in the deformed state, as any observation shows, entails a
change in the stressed state and vice versa [1,10,11,14,15,17,18].

In other words, the constitutive relations reflect, generally speaking, the opera-
tor relationship of the parameters of a process implemented in a continuous medium
with the reaction of the medium to this process. In the simplest case, constants,
and in more complex functions and even functionals included in the definition of
this operator and specifying exactly the selected medium from all others of the same
class, are called material functions of constitutive relations. Material functions dif-
fer in that they are not found as a result of calculations or the solution of any
equations, but only from special experiments called setup. Mathematical model of
the medium, i.e. the set of selected constitutive relations is suitable for research,
or, as they say, is adequate if there is a set of setup experiments that allows to
find (at least theoretically) all the material functions of the model. Note that the
theory of the setup experiment is an important component of modern experimental
mechanics of deformable solid.

We give two typical examples of constitutive relations in mechanical systems.

1.1. Deformable spring. Let the spring, which was in an undeformed state
at 𝑡 < 𝑡0, begin from the moment 𝑡 = 𝑡0 to stretch by the force of 𝐹 (𝑡). The
displacement of the right end caused by the action of force, in comparison with its
initial position, we denote 𝑢(𝑡). Operator connection of functions 𝐹 (𝑡) and 𝑢(𝑡) in
the form

(1.1) 𝑢(𝑡) = 𝒜𝑡0

[︀
𝐹 (𝜏)

]︀𝑡
𝜏=𝑡0

is exactly what is called the constitutive relations of the spring. The operator 𝒜𝑡0 ,
generally speaking, may depend on the initial moment 𝑡0, which is emphasized by
the subscript in its notation. The very displacement 𝑢 at the moment of 𝑡 can be
determined by the entire loading history from 𝑡0 to 𝑡. This history also includes
information about the state (active loading or unloading) of the system at time 𝑡.

Let us write the inverse relation to (1.1)

𝐹 (𝑡) = ℬ̌𝑡0

[︀
𝑢(𝜏)

]︀𝑡
𝜏=𝑡0

which is also naturally called constitutive. The question of connection of the op-
erators 𝒜 and ℬ̌ and the establishment of their reciprocity connections is not easy
when it comes to the complex behavior of the spring under load.

If, on the basis of the experiments carried out, it is possible to establish that
the spring is characterized by a rather particular type of behavior, namely, the
displacement 𝑢 at any moment 𝑡 > 𝑡0 is completely determined only by the value
of 𝐹 at the same time 𝑡 and does not depend on 𝑡0:

𝑢 = 𝐴(𝐹 ), 𝐹 = 𝐵(𝑢), 𝑡 > 𝑡0

where 𝐴(𝐹 ) and 𝐵(𝑢) are reverse functions of one argument, 𝐴(𝐵(𝑢)) = 𝑢, then it
is said that the spring has the fundamental property of elasticity. If the functions
𝐴 and 𝐵 are nonlinear, for example,

(1.2) 𝐵(𝑢) = 𝑏1𝑢+ 𝑏2𝑢
3
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then there is a nonlinear elasticity. In the constitutive relation (1.2), there are
the material constants 𝑏1 and 𝑏2. They can also be functions if, for example, they
depend on temperature or some other external parameter. The spring behaves
linearly elastic if we put 𝑏2 = 0 in (1.2).

1.2. Heat-conducting medium. Let a homogeneous heat-conducting medi-
um occupy the entire three-dimensional space and at all its points a scalar temper-
ature field 𝑇 (𝑧, 𝑡), 𝑡 > 𝑡0 is set from the outside, depending on time and only on
one spatial coordinate 𝑧. Another, conjugate to 𝑇 , measurable physical quantity is
the heat flux vector q (𝑧, 𝑡), which is different from zero due to the uneven distri-
bution of temperature over space. The greater the temperature drop, the greater
the modulus |q (𝑧, 𝑡)| of the heat flux vector directed, as suggested by the simplest
experiment, from more heated areas to less heated ones. And vice versa, no matter
how high or low the temperature is, if 𝑇 does not depend on 𝑧, but, for example,
only on 𝑡, then there are no heat flows in the medium (q = 0).

These arguments lead to the fact that the constitutive relations in this example
should connect q and 𝜕𝑇/𝜕𝑧. If the medium is isotropic in the sense of its heat-
conducting properties, then the only nonzero component of q will be 𝑞𝑧(𝑧, 𝑡). Thus,
the operator relations have the form

(1.3) 𝑞𝑧(𝑧, 𝑡) = 𝒞𝑡0
[︁𝜕𝑇
𝜕𝑧

(𝑧, 𝜏)
]︁𝑡
𝜏=𝑡0

Their simplest special case is the Fourier law known in thermodynamics

(1.4) 𝑞𝑧(𝑧, 𝑡) = −𝜆
𝜕𝑇

𝜕𝑧
(𝑧, 𝑡)

where 𝜆 > 0 is the thermal conductivity coefficient of the medium, which is the
only one in (1.4) a material constant.

2. Operator connections of stresses and strains

It follows from the above examples that the constitutive relations in various
fields of mechanics should connect a pair of so-called conjugate physical quantities,
and regardless of their tensor nature. This conjugacy is understood in the sense
that one of the values of the pair describes some independent, or externally carried
out, process in the medium, while the other reflects the reaction of the medium to
this process.

In mechanics of deformable solid, a pair of second-rank tensors is most of-
ten chosen as conjugate physical quantities. One of them, 𝜀(x, 𝑡), describes the
kinematics of the deformation of the medium, the other, 𝜎(x, 𝑡) characterizes the
distribution of internal forces as a response to the deformation that occurred. These
two tensors will be generically called the kinematic tensor, or strain tensor, and the
force tensor, or stress tensor, respectively. Then the constitutive relations in the
direct and inverse form can be represented as

(2.1) 𝜎 = ℱ̌(𝜀), 𝜀 = 𝒢(𝜎)
where ℱ̌ and 𝒢 are inverse to each other tensor operators of the second rank, each
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of which depends on its tensor argument:

(2.2) 𝒢
(︀
ℱ̌(𝜀)

)︀
= 𝜀, ℱ̌

(︀
𝒢(𝜎)

)︀
= 𝜎

From the whole variety of possible operators ℱ̌ , we immediately distinguish
a class of physically linear operators for which the superposition principle holds,
namely, equality

(2.3) ℱ̌(𝑐1𝜀1 + 𝑐2𝜀2) = 𝑐1ℱ̌(𝜀1) + 𝑐2ℱ̌(𝜀2)

is fulfilled for any strain tensors 𝜀1 and 𝜀2 which are included in the domain of ℱ̌ ,
and any numbers 𝑐1 and 𝑐2. We will call a continuous medium physically linear
if the operator of its constitutive relations (2.1) is physically linear in the sense
of (2.3).

We will further take into consideration consideration two tensor operators
of the fourth rank, namely tangent modulus (𝜕ℱ̌/𝜕𝜀)(𝜀) and tangent pliability
(𝜕𝒢/𝜕𝜎)(𝜎). We will determine them by the results of the action on any guide (or
trial) strain tensor 𝜀′ and stress tensor 𝜎′, respectively:

𝜕ℱ̌
𝜕𝜀

: 𝜀′ ≡ 𝐷ℱ̌(𝜀, 𝜀′) =
𝑑

𝑑𝜉

[︁
ℱ̌(𝜀+ 𝜉𝜀′)

]︁
𝜉=0

≡ lim
𝜉→0

1

𝜉

(︀
ℱ̌(𝜀+ 𝜉𝜀′)− ℱ̌(𝜀)

)︀
𝜕𝒢
𝜕𝜎

: 𝜎′ ≡ 𝐷𝒢(𝜎,𝜎′) =
𝑑

𝑑𝜉

[︁
𝒢(𝜎 + 𝜉𝜎′)

]︁
𝜉=0

≡ lim
𝜉→0

1

𝜉

(︀
𝒢(𝜎 + 𝜉𝜎′)− 𝒢(𝜎)

)︀
The expressions 𝐷ℱ̌(𝜀, 𝜀′) and 𝐷𝒢(𝜎,𝜎′) are called Gâteaux differentials [12], or
weak differentials, in relation to the mappings of ℱ̌ and 𝒢 at the “points" of 𝜀 and
𝜎 in increments in the “directions" of 𝜀′ and 𝜎′. The Gâteaux differential has the
property of uniformity. So, if 𝐷ℱ̌(𝜀, 𝜀′) exists, then for any number 𝑐, 𝐷ℱ̌(𝜀, 𝑐𝜀′)
will also exist and besides

𝐷ℱ̌(𝜀, 𝑐𝜀′) = 𝑐𝐷ℱ̌(𝜀, 𝜀′)

3. Properties of tangent modulus and tangent pliability

We will give below a number of definitions [16] concerning the properties of
the introduced tensors of the second rank ℱ̌ and 𝒢, as well as tensors of the fourth
rank (𝜕ℱ̌/𝜕𝜀)(𝜀) and (𝜕𝒢/𝜕𝜎)(𝜎).
∙ Tangent modulus and tangent pliability are called bounded from above if there
are such constants 𝑀 and 𝑁 that inequalities

(3.1) 𝜀′ :
𝜕ℱ̌
𝜕𝜀

: 𝜀′ ⩽ 𝑀𝜀′ : 𝜀′, 𝜎′ :
𝜕𝒢
𝜕𝜎

: 𝜎′ ⩽ 𝑁𝜎′ : 𝜎′

are satisfied for any guiding tensors 𝜀′ and 𝜎′.
∙ Tangent modulus and tangent pliability are called non-negative if for any guid-
ing tensors 𝜀′ and 𝜎′

(3.2) 𝜀′ :
𝜕ℱ̌
𝜕𝜀

: 𝜀′ ⩾ 0, 𝜎′ :
𝜕𝒢
𝜕𝜎

: 𝜎′ ⩾ 0



PROPERTIES OF OPERATOR CONSTITUTIVE RELATIONS 107

∙ It is said that the tangent modulus and tangent pliability are positively defined
if for any guiding tensors 𝜀′ and 𝜎′ there are constants 𝑚(𝜀′) and 𝑛(𝜎′), such that

(3.3) 𝜀′ :
𝜕ℱ̌
𝜕𝜀

: 𝜀′ ⩾ 𝑚𝜀′ : 𝜀′, 𝜎′ :
𝜕𝒢
𝜕𝜎

: 𝜎′ ⩾ 𝑛𝜎′ : 𝜎′

Inequalities (3.3) can be conditionally written without using tensors 𝜀′ and 𝜎′:

(3.4)
𝜕ℱ̌
𝜕𝜀

⩾ 𝑚Δ,
𝜕𝒢
𝜕𝜎

⩾ 𝑛Δ

where Δ is the unit tensor of the fourth rank, i.e., one for which

Δ : ℎ = ℎ : Δ = ℎ, ∀ℎ
Note that the constants 𝑀 and 𝑚 in (3.1), (3.3) and (3.4) have the dimension of
stresses, and the constants 𝑁 and 𝑛 have the dimension inverse to the stresses, so
that the products of 𝑀𝑁 and 𝑚𝑛 are dimensionless.

If in (3.3) and (3.4) 𝑚 and 𝑛 can be chosen such that 𝑚𝑛 < 1, then the following
two-sided estimates

𝑚Δ ⩽
𝜕ℱ̌
𝜕𝜀

⩽
1

𝑛
Δ, 𝑛Δ ⩽

𝜕𝒢
𝜕𝜎

⩽
1

𝑚
Δ

are valid for tangent modulus and tangent pliability.
∙ It is said that the tangent modulus has a soft characteristic if for any strain
tensor 𝜀, which is included in the domain of definition of the operator ℱ̌ , the
following tensor of the fourth rank

(3.5)
𝜕ℱ̌
𝜕𝜀

⃒⃒⃒⃒
𝜀=0

− 𝜕ℱ̌
𝜕𝜀

is non-negative in the sense of definition (3.2). The tangent modulus has a rigid
characteristic if the tensor opposite in sign to (3.5) is non-negative. Similar def-
initions of soft and rigid characteristics can be given with respect to the tangent
pliability 𝜕𝒢/𝜕𝜎.
∙ The conditions of reversibility of the tangent modulus and the tangent pliability
as two tensor operators of the fourth rank are represented as

𝜕ℱ̌
𝜕𝜀

:
𝜕𝒢
𝜕𝜎

=
𝜕𝒢
𝜕𝜎

:
𝜕ℱ̌
𝜕𝜀

= Δ

∙ The constitutive relations (2.1) and the media modeled by them are called
rheonomic if the material functions of the operators ℱ̌ and 𝒢 clearly depend on
time. This fact is emphasized in the record as follows

𝜎(x, 𝑡) = ℱ̌
(︀
𝜀(x, 𝑡), 𝑡

)︀
, 𝜀(x, 𝑡) = 𝒢

(︀
𝜎(x, 𝑡), 𝑡

)︀
Examples of rheonomic media can be viscoelastic media, in which the constitutive
relations, in particular, in the physically linear case

(3.6) 𝜎(x, 𝑡) =

∫︁ 𝑡

0

Γ(𝑡, 𝜏) : 𝜀(x, 𝜏) 𝑑𝜏, 𝜀(x, 𝑡) =

∫︁ 𝑡

0

K(𝑡, 𝜏) : 𝜎(x, 𝜏) 𝑑𝜏

include as material functions tensors of the fourth rank of relaxation kernels Γ and
creep kernels K, depending on two time variables at once.
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If the material functions of the operators ℱ̌ and 𝒢 are clearly independent of
time, then the medium is called scleronomous.
∙ Media with constitutive relations (2.1) in which material functions clearly de-
pend on coordinates, i.e.

𝜎(x, 𝑡) = ℱ̌
(︀
𝜀(x, 𝑡),x

)︀
, 𝜀(x, 𝑡) = 𝒢

(︀
𝜎(x, 𝑡),x

)︀
are called inhomogeneous, and otherwise homogeneous. There are continuously
inhomogeneous, or continuously stratified media, in which the dependence of ma-
terial functions on coordinates is continuous, and composites, in which material
functions discontinuously depend on coordinates. Most often, this discontinuous
dependence is modeled piecewise constant, i.e. the composite structurally consists
of several pieces of homogeneous materials (components) with different physical
and mechanical properties.

Special cases of composites that are widely used can be layered media (lami-
nates), in which heterogeneity is realized along only one of the coordinates, fibrous
media (fibrites) consisting of a light matrix and reinforcing it in a certain way
bearing fibers, granular media. Composites whose typical sizes of different com-
ponents differ greatly from each other are called microcomposites (the difference is
3–6 orders of magnitude) and nanocomposites (more than 6 orders of magnitude).

Due to the discontinuity in the coordinates of material functions, mathemat-
ical modeling of the behavior of composites is associated with the involvement of
generalized functions apparatus. The mechanics of composites formed on the basis
of this is a relatively new part of mechanics of deformable solid. Over the past
decades it has become a separate and intensively developing discipline of great
applied importance.
∙ Media with constitutive relations of type (3.6) are non-local in time, they are
also called media with memory. In such media, the state at each point x at the
current time 𝑡 is determined by the entire history of the process that occurred at
this point for some finite or even infinite period of time preceding 𝑡. In this case,
the stress and strain relationships (2.1) can be represented in a form similar to (1.1)
and (1.3):

𝜎(x, 𝑡) = ℱ̌𝑡0

[︀
𝜀(x, 𝜏)

]︀𝑡
𝜏=𝑡0

, 𝜀(x, 𝑡) = 𝒢𝑡0

[︀
𝜎(x, 𝜏)

]︀𝑡
𝜏=𝑡0

The initial moment 𝑡0 can also be attributed to −∞.
∙ Non-locality is possible not only in time, but also in coordinates. A medium
is called spatially nonlocal if the stress state at each point x at time 𝑡 depends on
the strain state in the whole neighborhood 𝑉𝑅(x) = {y : |x − y | < 𝑅} at the
same time:

(3.7)
𝜎(x, 𝑡) =

∫︁
𝑉𝑅(x)

A(x,y) : 𝜀(y, 𝑡) 𝑑𝑉 (y),

𝜀(x, 𝑡) =

∫︁
𝑉𝑅(x)

B(x,y) : 𝜎(y, 𝑡) 𝑑𝑉 (y)

where A(x,y) and B(x,y) are material tensor functions of the fourth rank char-
acterizing given non-local medium.
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If the radius 𝑅 of the neighborhood 𝑉𝑅(x) is finite (not infinitely small), then
the nonlocality is strong, but if 𝑅 in (3.7) can be made arbitrarily small, then they
speak of weak nonlocality at the point x. Weak nonlocality actually means that
stresses at the point x depend not only on strains, but also on their derivatives in
coordinates at the same point x. Media with such constitutive relations are also
called gradient of one order or another.
∙ An elastic solid is a continuous medium in which at each moment of time 𝑡 the
only independent state parameter is the strain tensor 𝜀(x, 𝑡) at the same moment 𝑡,
i.e., the stress tensor 𝜎(x, 𝑡) at any point x at any time 𝑡 is completely determined
by setting the strain tensor 𝜀(x, 𝑡) at the same point at the same moment [13]. The
definition will remain valid if the strain tensor and stress tensor are reversed in it:

(3.8) 𝜎(x, 𝑡) = f
(︀
𝜀(x, 𝑡)

)︀
, 𝜀(x, 𝑡) = g

(︀
𝜎(x, 𝑡)

)︀
where f and g are inverse to each other tensor functions of the second rank, each
of which depends on its tensor argument:

(3.9) g
(︀
f(𝜀)

)︀
= 𝜀, f

(︀
g(𝜎)

)︀
= 𝜎

The constitutive relations (3.8) and (3.9) are naturally very special cases of the
general operator relations (2.1) and (2.2).

From the above definition, in particular, it follows that the following statement
is true for an elastic solid. Whatever the loading process may be in time at some
point x, but at the moment 𝑇 of full unloading, i.e. when 𝜎(x, 𝑇 ) = 0, there are no
strains at this point: 𝜀(x, 𝑇 ) = 0. If at the moment 𝑇 full unloading occurred at
all points of the elastic solid, then it completely returned to its original undeformed
state. This property is also called the absence of residual deformations.

In addition to the strain tensor, independent state parameters may include
fields of a various physical (not purely mechanical) nature, for example, temperature
𝑇 (x, 𝑡), electric field strength E(x, 𝑡), such that they can be changed externally
independently of each other. Then they talk about a thermoelastic solid

(3.10) 𝜎(x, 𝑡) = f
(︀
𝜀(x, 𝑡), 𝑇 (x, 𝑡)

)︀
, 𝜀(x, 𝑡) = g

(︀
𝜎(x, 𝑡), 𝑇 (x, 𝑡)

)︀
or electroelastic (electromagnetoelastic) solid

(3.11) 𝜎(x, 𝑡) = f
(︀
𝜀(x, 𝑡),E(x, 𝑡)

)︀
, 𝜀(x, 𝑡) = g

(︀
𝜎(x, 𝑡),E(x, 𝑡)

)︀
or in the general case of an electrothermoelastic solid

(3.12) 𝜎(x, 𝑡) = f
(︀
𝜀(x, 𝑡), 𝑇 (x, 𝑡),E(x, 𝑡)

)︀
, 𝜀(x, 𝑡) = g

(︀
𝜎(x, 𝑡), 𝑇 (x, 𝑡),E(x, 𝑡)

)︀
Physical linearity of elastic models (3.8), (3.10)–(3.12), as in the general case,

is checked by the implementation of the superposition principle (2.3).

4. Nonlinear isotropic tensor functions of one argument

The presence in the constitutive relations of the elastic medium (3.8) of the
inverse to each other tensor functions f and g makes it necessary to study in more
detail the mathematical properties of these objects. As can be seen from (3.8), the
tensor function f matches the tensor strain field 𝜀(x, 𝑡) tensor stress field 𝜎(x, 𝑡)
pointwise at the same time. In general, representations of physically nonlinear
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anisotropic tensor functions are quite complex and cumbersome. Therefore, we will
limit ourselves to considering here nonlinear but isotropic models [2–9].

4.1. Tensor power series and three-term relations. A wide class of non-
linear isotropic tensor functions in three-dimensional space connecting two sym-
metric tensors of the second rank 𝜎 and 𝜀 is described by tensor power series of
the form

(4.1) 𝜎 = 𝐴0 I+

∞∑︁
𝑛=1

𝐴𝑛 𝜀
𝑛

where I as before is the unit tensor of the second rank. The material functions
𝐴0, 𝐴1, 𝐴2, . . . of the constitutive relations (4.1) can depend only on the invari-
ants of the tensor 𝜀. A symmetric tensor of the second rank has no more than
three independent invariants in three-dimensional space. Let us choose as such, for
example, 𝐼𝜀1, 𝐼𝜀2 and 𝐼𝜀3, where

(4.2) 𝐼𝜀𝑛 =
𝑛
√

tr 𝜀𝑛, 𝑛 = 1, 2, . . .

Note that as the norm ‖𝜀‖, we can take the quadratic invariant 𝐼𝜀2, for a symmetric
tensor equal to the root of the sum of the squares of all its components. In terms
of principal strains, the invariants 𝐼𝜀1, 𝐼𝜀2 and 𝐼𝜀3 look like this

𝐼𝜀1 = 𝜀1 + 𝜀2 + 𝜀3, 𝐼𝜀2 =
√︁
𝜀21 + 𝜀22 + 𝜀23, 𝐼𝜀3 = 3

√︁
𝜀31 + 𝜀32 + 𝜀33

The invariants 𝐼𝜀𝑛, 𝑛 ⩾ 4, are algebraically expressed in terms of 𝐼𝜀1, 𝐼𝜀2 and
𝐼𝜀3. For example, for 𝑛 = 4, 5, 6 we have [2]

(4.3) 6𝐼4𝜀4 = 𝐼4𝜀1 − 6𝐼2𝜀1𝐼
2
𝜀2 + 8𝐼𝜀1𝐼

3
𝜀3 + 3𝐼4𝜀2

6𝐼5𝜀5 = 𝐼5𝜀1 − 5𝐼3𝜀1𝐼
2
𝜀2 + 5𝐼2𝜀1𝐼

3
𝜀3 + 5𝐼2𝜀2𝐼

3
𝜀3

(4.4) 12𝐼6𝜀6 = 𝐼6𝜀1 − 3𝐼4𝜀1𝐼
2
𝜀2 + 4𝐼3𝜀1𝐼

3
𝜀3 − 9𝐼2𝜀1𝐼

4
𝜀2 + 12𝐼𝜀1𝐼

2
𝜀2𝐼

3
𝜀3 + 3𝐼6𝜀2 + 4𝐼6𝜀3

In addition to 𝐼𝜀2 and 𝐼𝜀3, other quadratic and cubic invariants of the tensor 𝜀
are often used:

𝐽𝜀 =
1

2
(𝐼2𝜀1 − 𝐼2𝜀2), Δ𝜀 ≡ det 𝜀 =

1

6
𝐼3𝜀1 −

1

2
𝐼𝜀1𝐼

2
𝜀2 +

1

3
𝐼3𝜀3

Let us now use the Hamilton–Cayley formula in three-dimensional space

(4.5) 𝜀3 = Δ𝜀 I− 𝐽𝜀 𝜀+ 𝐼𝜀1 𝜀
2

It immediately follows that the 𝑛-th degree of the tensor (𝑛 ⩾ 3) is a linear com-
bination of (𝑛− 1)-th, (𝑛− 2)-th and (𝑛− 3)-th of its powers, and therefore (after
another application of the Hamilton–Cayley formula (4.5)), a linear combination
of (𝑛− 2)-th, (𝑛− 3)-th and (𝑛− 4)-th degrees and so on. Finally, we come to the
conclusion that the 𝑛-th degree of the tensor (𝑛 ⩾ 3) is a linear combination of its
zero, first and second degrees:

(4.6) 𝜀𝑛 = 𝐾
(𝑛)
𝜀0 I+𝐾

(𝑛)
𝜀1 𝜀+𝐾

(𝑛)
𝜀2 𝜀2, 𝑛 = 0, 1, 2, . . .

where the coefficients 𝐾(𝑛)
𝜀0 , 𝐾(𝑛)

𝜀1 and 𝐾
(𝑛)
𝜀2 are some still unknown functions of the

invariants 𝐼𝜀1, 𝐼𝜀2 and 𝐼𝜀3.
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According to (4.5) we have

𝜀𝑛+1 = 𝐾
(𝑛)
𝜀0 𝜀+𝐾

(𝑛)
𝜀1 𝜀2 +𝐾

(𝑛)
𝜀2 (Δ𝜀 I− 𝐽𝜀 𝜀+ 𝐼𝜀1 𝜀

2)

from where we get the following recurrent relationship of the coefficients

𝐾
(𝑛+1)
𝜀0 = Δ𝜀𝐾

(𝑛)
𝜀2 , 𝐾

(𝑛+1)
𝜀1 = 𝐾

(𝑛)
𝜀0 − 𝐽𝜀𝐾

(𝑛)
𝜀2 , 𝐾

(𝑛+1)
𝜀2 = 𝐾

(𝑛)
𝜀1 + 𝐼𝜀1𝐾

(𝑛)
𝜀2

It can also be written in matrix form

(4.7) (𝐾
(𝑛+1)
𝜀0 ,𝐾

(𝑛+1)
𝜀1 ,𝐾

(𝑛+1)
𝜀2 )𝑇 = 𝑄𝜀 ·(𝐾(𝑛)

𝜀0 ,𝐾
(𝑛)
𝜀1 ,𝐾

(𝑛)
𝜀2 )𝑇 , 𝑄𝜀=

⎛⎝0 0 Δ𝜀

1 0 −𝐽𝜀
0 1 𝐼𝜀1

⎞⎠
Therefore

(4.8) (𝐾
(𝑛)
𝜀0 ,𝐾

(𝑛)
𝜀1 ,𝐾

(𝑛)
𝜀2 )𝑇 = 𝑄𝑛

𝜀 · (1, 0, 0)𝑇 , 𝑛 = 0, 1, 2, . . .

that is, the triple of coefficients 𝐾
(𝑛)
𝜀0 , 𝐾(𝑛)

𝜀1 and 𝐾
(𝑛)
𝜀2 are the first column of the

matrix 𝑄𝑛
𝜀 . Technically, it is obviously difficult to write out the general form 𝑄𝑛

𝜀

for any 𝑛, so we leave expressions for invariants 𝐾(𝑛)
𝜀0 , 𝐾(𝑛)

𝜀1 and 𝐾
(𝑛)
𝜀2 , appearing in

(4.6), in the form (4.8).
Thus, the power tensor series (4.1) is equivalent to the three-term relation

(4.9) 𝜎 = 𝐶0 I+ 𝐶1 𝜀+ 𝐶2 𝜀
2

with material functions calculated according to the procedure described above:

(4.10) 𝐶0 =

∞∑︁
𝑛=0

𝐴𝑛𝐾
(𝑛)
𝜀0 , 𝐶1 =

∞∑︁
𝑛=1

𝐴𝑛𝐾
(𝑛)
𝜀1 , 𝐶2 =

∞∑︁
𝑛=2

𝐴𝑛𝐾
(𝑛)
𝜀2

The lower limits of summation in (4.10) can be chosen exactly as follows, since
𝐾

(0)
𝜀1 = 0, 𝐾(0)

𝜀2 = 0, 𝐾(1)
𝜀2 = 0.

4.2. Inverse tensor functions. Suppose that the series (4.1) is invertible:

(4.11) 𝜀 = 𝐵0 I+

∞∑︁
𝑛=1

𝐵𝑛 𝜎
𝑛

where the material functions 𝐵0, 𝐵1, 𝐵2, . . . depend on the invariants 𝐼𝜎1, 𝐼𝜎2 and
𝐼𝜎3 defined similarly (4.2). It is not difficult to deduce the following algebraic
relations of the triples of invariants 𝐼𝜎1, 𝐼𝜎2, 𝐼𝜎3 and 𝐼𝜀1, 𝐼𝜀2, 𝐼𝜀3:

(4.12) 𝐼𝜎1 = 3𝐶0 + 𝐼𝜀1𝐶1 + 𝐼2𝜀2𝐶2

(4.13) 𝐼2𝜎2 = 3𝐶2
0 + 2𝐼𝜀1𝐶0𝐶1 + 𝐼2𝜀2(𝐶

2
1 + 2𝐶0𝐶2) + 2𝐼3𝜀3𝐶1𝐶2 + 𝐼4𝜀4𝐶

2
2

𝐼3𝜎3 = 3𝐶3
0 + 3𝐼𝜀1𝐶

2
0𝐶1 + 3𝐼2𝜀2𝐶0(𝐶

2
1 + 𝐶0𝐶2) + 𝐼3𝜀3𝐶1(𝐶

2
1 + 6𝐶0𝐶2)(4.14)

+ 3𝐼4𝜀4𝐶2(𝐶
2
1 + 𝐶0𝐶2) + 3𝐼5𝜀5𝐶1𝐶

2
2 + 𝐼6𝜀6𝐶

3
2

where the expressions of 𝐼4𝜀4, 𝐼5𝜀5 and 𝐼6𝜀6 should be substituted from (4.3)–(4.4).
The inverse to (4.12)–(4.14) connections will be written in the general form

(4.15) 𝐼𝜀𝑛 = 𝐼𝜀𝑛(𝐼𝜎1, 𝐼𝜎2, 𝐼𝜎3), 𝑛 = 1, 2, 3
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Let us now construct, as it was done in (4.7), (4.8), a sequence of the triples of
invariants 𝐾

(𝑛)
𝜎0 , 𝐾(𝑛)

𝜎1 and 𝐾
(𝑛)
𝜎2 :

(︀
𝐾

(𝑛)
𝜎0 ,𝐾

(𝑛)
𝜎1 ,𝐾

(𝑛)
𝜎2

)︀𝑇
= 𝑄𝑛

𝜎 · (1, 0, 0)𝑇 , 𝑛 = 0, 1, 2, . . . , 𝑄𝜎 =

⎛⎝0 0 Δ𝜎

1 0 −𝐽𝜎
0 1 𝐼𝜎1

⎞⎠
and write the series (4.11) in the form of a three-term relation

(4.16) 𝜀 = 𝐷0 I+𝐷1 𝜎 +𝐷2 𝜎
2

where

𝐷0 =

∞∑︁
𝑛=0

𝐵𝑛𝐾
(𝑛)
𝜎0 , 𝐷1 =

∞∑︁
𝑛=1

𝐵𝑛𝐾
(𝑛)
𝜎1 , 𝐷2 =

∞∑︁
𝑛=2

𝐵𝑛𝐾
(𝑛)
𝜎2

Substituting the tensor function (4.9) into the inverse of it (4.16), after the
transformations, we obtain a connection of the material functions 𝐶0, 𝐶1, 𝐶2 and
𝐷0, 𝐷1, 𝐷2. It follows from the solution of a linear inhomogeneous system of
equations with respect to 𝐷0, 𝐷1 and 𝐷2:

(4.17) 𝐷0 + 𝐶0𝐷1 + (𝐶2
0 + 2𝐶1𝐶2Δ𝜀 + 𝐶2

2𝐼𝜀1Δ𝜀)𝐷2 = 0

(4.18) 𝐶1𝐷1 + (2𝐶0𝐶1 − 2𝐶1𝐶2𝐽𝜀 − 𝐶2
2𝐼𝜀1𝐽𝜀 + 𝐶2

2Δ𝜀)𝐷2 = 1

(4.19) 𝐶2𝐷1 + (2𝐶0𝐶2 + 𝐶2
1 + 2𝐶1𝐶2𝐼𝜀1 + 𝐶2

2𝐼
2
𝜀1 − 𝐶2

2𝐽𝜀)𝐷2 = 0

and substitutions in the solution of invariants 𝐼𝜀𝑛 by 𝐼𝜎𝑛, 𝑛 = 1, 2, 3, according to
(4.15). From the equations (4.18) and (4.19), 𝐷1 and 𝐷2 are found, after which 𝐷0

is determined from the equation (4.17).

4.3. Tensor Taylor series. An important special case is the situation when
all coefficients 𝐴𝑛, 𝑛 = 0, 1, 2, . . . , in (4.1) are constant, i.e., do not depend on the
invariants of the tensor 𝜀. Then they can be considered as coefficients of the Taylor
series near zero 𝐴𝑛 = 𝐹 (𝑛)(0)/𝑛! of some scalar function 𝐹 (𝑥), and the series itself
(4.1) is interpreted as a tensor function 𝜎 = F(𝜀) generated (by means of the set
𝐴𝑛) by the scalar function 𝐹 .

Examples of such constructions are inverse to each other tensor (matrix) expo-
nent and logarithm:

𝜎 = 𝛽
(︁
exp

𝜀

𝛼
− I

)︁
≡ 𝛽

∞∑︁
𝑛=1

1

𝑛!

(︁ 𝜀

𝛼

)︁𝑛

,

𝜀 = 𝛼 ln
(︁
I+

𝜎

𝛽

)︁
≡

∞∑︁
𝑛=1

(−1)𝑛+1

𝑛

(︁𝜎
𝛽

)︁𝑛

where 𝛼 and 𝛽 are typical quantities with physical dimensions that coincide with
the dimensions of 𝜀 and 𝜎, respectively.

For the function 𝜎 = F(𝜀), which admits a three-term representation (4.9),
(4.10), in matrix form we can write

𝜎 = (I, 𝜀, 𝜀2) ·
∞∑︁

𝑛=0

𝐴𝑛

(︀
𝐾

(𝑛)
𝜀0 ,𝐾

(𝑛)
𝜀1 ,𝐾

(𝑛)
𝜀2

)︀𝑇
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= (I, 𝜀, 𝜀2) ·
∞∑︁

𝑛=0

𝐴𝑛𝑄𝜀𝑛 · (1, 0, 0)𝑇 = (I, 𝜀, 𝜀2) · 𝐹 (𝑄𝜀) · (1, 0, 0)𝑇

This means that the column (𝐶0, 𝐶1, 𝐶2)
𝑇 coincides with the first column of the

matrix 𝐹 (𝑄𝜀).

4.4. Tensor linearity and nonlinearity. In the theory of constitutive re-
lations, there are usually two equivalent definitions of tensor linearity of functions
(4.9) and (4.16) (in the terminology of [16] quasilinearity). One of them is related
to the identical vanishing of the coefficients 𝐶2 in (4.9) and 𝐷2 in (4.16), and the
other is due to the fact that the angle between the deviators �̄� = 𝜀 − 𝐼𝜀1I/3 and
�̄� = 𝜎 − 𝐼𝜎1I/3 is equal to zero [8], i.e.

�̄� : �̄� =
√
�̄� : �̄�

√
�̄� : �̄�

The conditions for separating the deviatory and spherical properties of isotropic
tensor functions in the general case of nonlinearity and in the case of quasilinearity
are covered in detail in [7].

Inverse to each other tensor functions (4.9) and (4.16) are quasilinear or non-
quasilinear at the same time. The presence in series (4.1) and (4.11) of terms with
tensor degrees greater than the first does not yet indicate the tensor nonlinearity
of the corresponding functions. So, for example, if 𝐴2 = −𝐼𝜀1𝐴3, then the function
𝜎 = 𝐴2𝜀

2 +𝐴3𝜀
3 is nevertheless tensorically linear and equal to 𝐴3(Δ𝜀I− 𝐽𝜀𝜀).
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Jovanović and Borislav Gajić for the invitation to submit it to the Journal.

References

1. G. L. Brovko, Constitutive Relations of Mechanics of Continuous Media, Nauka, Moscow,
2017. (In Russian)

2. D.V. Georgievskii, Isotropic nonlinear tensor functions in the theory of constitutive relations,
J. Math. Sci., New York 112 (2002), 4498–4516.

3. D.V. Georgievskii, On potential isotropic tensor functions of two tensor arguments in me-
chanics of solids, Mech. Solids 45 (2010), 493–496.

4. D.V. Georgievskii, The angle between the stress deviator and the strain-rate deviator in a
tensor nonlinear isotropic medium, Mosc. Univ. Mech. Bull. 68 (2013), 149–151.

5. D.V. Georgievskii, Potentiality of isotropic nonlinear tensor functions relating two deviators,
Mech. Solids 51 (2016), 619–622.

6. D.V. Georgievskii, Types of physical nonlinearity in the theory of constitutive relations and
the generalized Poynting effect, in: B. E. Abali, H. Altenbach, F. dell’Isola, V. A. Eremeyev,
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СВОJСТВА ОПЕРАТОРСКИХ КОНСТИТУТИВНИХ
РЕЛАЦИJА У МЕХАНИЦИ ДЕФОРМАБИЛНОГ

ЧВРСТОГ ТЕЛА

Резиме. Разматраjу се конститутивне релациjе између напона и деформаци-
jа у механици деформабилног чврстог тела, укључуjући њихову операторску
везу. Описана су нека важна и честа своjства модула тангенте и савитљиво-
сти тангенте као тензора четвртог ранга. У зависности од тога, предлаже се
могућа класификациjа непрекидних средина. Разликуjу се склерономске и ре-
ономске средине, хомогене и нехомогене средине (посебно композити), средине
са мемориjом, просторно нелокалне средине, материjали са тврдим или ме-
ким карактеристикама. За нелинеарно еластичне изотропне средине развиjен
jе апарат тензорских нелинеарних изотропних функциjа jедног аргумента. По-
себна пажња jе посвећена трочланом развиjању тензора у тродимензионалном
простору, реверзибилности тензорских функциjа, Теjлоровом тензорском реду,
линеарности тензора (квазилинеарности) и нелинеарности.
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