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Abstract. A novel quasi-brittle damage model implemented under quasi-
static loading condition using bond-based peridynamics theory for progressive
failure is proposed to better predict damage initiation and propagation in solid
materials. Since peridynamics equation of motion was invented in dynamic
configuration, this paper applies the adaptive dynamic relaxation equation
to achieve steady-state in peridynamics formulation. To accurately charac-
terise the progressive failure process in cohesive materials, we incorporate the
dynamic equation with the novel damage model for quasi-brittle materials.
Computational examples of 2D compressive and tensile problems using the
proposed model are presented. This paper presents advancement by incor-
porating the adaptive dynamic equation approach into a new damage model
for quasi-brittle materials. This amalgamation allows for a more accurate
representation of the behavior of damaged materials, particularly in static or
quasi-static loading situations, bringing the framework closer to reality. This
research paves the way for the peridynamics formulation to be employed for a
far broader class of loading condition behaviour than it is now able to.

1. Introduction

For many decades, fracture initiation and propagation has been recognized as
an important research topic. Thus, a considerable amount of literature has been
published on this topic, including studies that presented smoothed particle hydrody-
namics (SPH) [19], element deletions [33], molecular dynamics (MD) [2], cohesive
zone finite elements [7,29], and extended finite element (XFEM) approaches [8,34].
However, in the literature related to the mentioned methods, the relative impor-
tance of them has been subject to considerable discussion since these methods
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call for particular nodal enrichment functions and also crack propagation crite-
ria [30, 31]. Furthermore, a fundamental constraint in analyzing problems with
discontinuities is that existing computational methods for modeling fractures in
continuous materials rely on partial differential equations (PDEs) rooted in classi-
cal continuum mechanics theory. As a result, inherent limitations arise.

The Peridynamics (PD) theory was initiated by Silling [30] as an alternative
non-local meshless method to model material damage by employing integral in its
formulation instead of spatial partial differential equations as in classical continuum
mechanics theory. In this theory, the continuous body is divided into finite material
points, and the interaction between the material points occur within a certain
specified horizon. Thus, in PD theory, the inadequacies of classical local continuum
theory for the problems involving discontinuities such as crack are removed, and the
crack prediction problems, such as interface delamination and crack swirling, can
be naturally solved without preset crack path and extra fracture criteria. There are
typically three categories of PD models: bond-based peridynamics (BB-PD) [30],
ordinary state-based peridynamics (OSB-PD) [32], and non-ordinary state-based
peridynamics (NOSB-PD) [39]. The original version, BB-PD, utilizes a system
in which points are connected by bonds through spring-like interactions, with the
force response in a bond solely determined by its own deformation.

BB-PD has been used widely to model material damage and failure. PD in-
troduced the concept of material failure by setting a predefined stretch limit, if
stretch value between any bond exceeds this value, then the failure occurs [30].
The BB-PD model is more straightforward compared to another version of PD
that is state-based PD in modeling, and it is more stable in terms of the crack
propagation simulation problem, and that is why it is widely utilised in the anal-
ysis of discontinuities [4,14,25,37,38,43,46]. This has been proved by the vast
majority of studies on PD specifically BB-PD in the past two decades since its
beginning. Casolo and Diana [4] presented two stochastic discrete models for struc-
tural glass, in which the distinctive features of such material have been considered;
the perfectly brittle nature of its failure; the variability of the strengths associated
with a Weibull distribution and the mechanical behavior of the interlayer in the
post-elastic response. Latest literature on BB-PD presented by Ma et al. [21] on
data-driven algorithm based on Taylor series expansion to define nonlocal influence
function of BB-PD and the numerical tests showed that the proposed method has
the ability to accurately regress the nonlocal influence function. Du et al. pro-
posed an improved bond-based peridynamics (iBB-PD) to model crack initiation,
propagation and coalescence processes of rocks under uniaxial compression [6]. The
elastic-brittle model and the elastic-brittle-plastic model were introduced in the im-
proved Prototype Miroelastic Brittle constitutive model as the constitutive model
of the bond under tension and compression, respectively. Prudhomme and Diehl
presented two methods, the so-called extended domain method and variable horizon
method, to enforce boundary conditions within the non-local BB-PD model [25].

For this reason, the failure process in such materials is extremely brittle,
and the progressive failure process in cohesive materials is rarely accurately de-
scribed [1, 35, 44]. The study of damage models gained momentum only after
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Gerstle et al. [9] acknowledged this limitation. A considerable amount of litera-
ture has been published on bilinear bond model [13, 23, 26, 47, 48]. Zaccariotto
et al. characterised every single bond by a bilinear relationship between the scalar
value of the pairwise force function and the bond stretch in order to model an elas-
tic progressively damaged material [47]. Using a bond-based linear peridynamic
model in two dimensions, Zhang et al. offer a fast piecewise bilinear collocation
approach [48]. The relationship between the nodes was suggested to be represented
by a bilinear law by Rossi et al. In previous iterations of the DEM, this law was
successfully implemented by the authors. Uniaxial tensile simulations of sandstone
specimens exhibit good agreement with actual data, proving the validity of the
bilinear model used in Rossi et al. [26]. Niazi et al. [23] studied crack nucleation
in a plate with a hole under quasi-static loading using bilinear and trilinear PD
models. Hobbs [13] employed a bilinear constitutive law, and the sensitivity of the
model is tested using two levels of mesh refinement. A number of studies have pro-
posed another method called trilinear [23,40,43–45]. There are, however, certain
difficulties in establishing the parameters of such bond models, and the acquired
results are not very satisfying. Therefore, developing a suitable bond model for the
BB-PD theory is essential for investigating fracture issues in quasi-brittle materials.

The governing equation in PD utilises explicit time integration which causes
some difficulties when it comes to problems involving quasi-static loading. There-
fore, there exists a demand to acquire steady-state solutions with the object of
validating the PD predictions against experimental measurements. Kilic et al. pre-
sented an extension of dynamic relaxation methods for obtaining steady-state solu-
tions of nonlinear PD equations. Huang et al. [15] presented an extended BB-PD
approach and an evaluation on the capability of the proposed numerical PD method
to qualitatively and quantitatively capture the quasi-static elastic response, non-
propagating and propagating crack problems of materials and structures. Rabczuk
et al. [27] introduced a contact algorithm and artificial damping in the dual-horizon
PD. The artificial damping coefficient can be used to model the quasi-static ex-
periment. Luo et al. [20] proposed a model with an explicit adaptive dynamic
relaxation method in this study by using a non-ordinary state-based peridynamics.
Wu et al. [42] invented a new intermediately-homogenized peridynamic (IH-PD)
model of concrete and managed to efficiently predict quasi-static crack propagation
in concrete. Jo et al. [17] proposed the two-grid based sequential analysis algorithm
of implicit PD formulation. However, this is quite complicated to be implemented.
Tong et al. [35] came out with an idea of a new damage model proposed in BB-PD
formulation to better represent the progressive failure process in brittle materials.
However, the implementation is not incorporated in the quasi-static environment.

In this paper, a new quasi-brittle damage model implemented under quasi-
static condition using BB-PD theory for progressive failure is presented for the first
time. To the best of the authors’ knowledge, there are no published studies available
which implemented this new damage model in the quasi-static environment. The
layout of the paper is as follows. Section 2 provides the formulation of Bond-
based Peridynamic, including the bond stretch and micro-elastic constant. Section
3 provides the formulation of Adaptive Dynamic Relaxation use in this proposed
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model. Through numerical examples presented in Section 5, the proposed algorithm
is verified as well as the accuracy and efficiency of the proposed method for quasi-
static damage model. Finally, conclusions are drawn in Section 6. It is to be noted
that the formulation is implemented in a Matlab code.

2. Bond-based Peridynamics

Silling at Sandia introduced the bond-based peridynamics (BB-PD) [30], which
serves as the foundational version of PD theory. In BB-PD, the connection of one
material point to another material point acts like spring forces as in Figure 1.

The interactions between material points depend on the relative displacement
of the interacting material point pair and are independent of all other local condi-
tions. This specifies that the connection between two material points are insensitive
to the states of other material point. In the PD method, the horizon size, 𝛿 refers to
a characteristic length scale that defines the range of interactions between material
points. It plays a crucial role in capturing the non-local behavior of the material
and distinguishes PD from classical continuum mechanics (CCM), which is based
on local interactions. The physical meaning of the horizon size can be understood
in terms of the neighborhood of influence around each material point. Within the
horizon size distance, represented by the dotted green lines in Figure 1, a material
point interacts with its neighboring points, exchanging forces and displacements.

Figure 1. Bond-based Peridynamics with horizon size denoted
as 𝛿.
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These interactions extend beyond the immediate neighboring points, incorporating
a larger region around the material point. In CCM, the governing equations are
typically formulated based on local spatial derivatives. However, in PD, the for-
mulation is non-local, taking into account the entire deformation field within the
horizon size. This non-locality allows PD to effectively capture long-range effects
such as cracks, fractures, and other discontinuities without the need for explicit
boundary conditions or tracking of interfaces. The choice of the horizon size has
significant implications for the behavior of the PD model. A smaller horizon size
leads to a more localized interaction, where material points primarily affect their
immediate neighbors. On the other hand, a larger horizon size encompasses a larger
region, enabling long-range interactions and capturing more global behavior. It is
important to note that the horizon size is not an inherent material property but
rather a modeling parameter that needs to be carefully chosen. The selection of an
appropriate horizon size depends on the specific application, material properties,
and desired level of accuracy. Different materials may require different horizon size
lengths to accurately represent their behavior. In the PD method, the horizon size
determines the range of interactions between material points. The bond constant,
representing the stiffness and strength of bonds, is influenced by both the hori-
zon size and material properties, as in Equation (3.1). A smaller horizon size and
higher bond constant generally result in increased stiffness and a higher bulk mod-
ulus. Conversely, a larger horizon size and lower bond constant tend to promote
a softer material response and potentially lower bulk modulus. Additionally, the
critical stretch value, representing the material’s failure limit, is influenced by both
the horizon size and bond constant, as they affect the ability of the material to
sustain deformation before failure (see Equation (3.2)). In BB-PD, the equation of
motion at the reference configuration at time t is expressed as below [30]

𝜌ü(x, t) =

∫︁
𝑅

f [u(x′, t)− u(x, t),x′ − x] 𝑑𝑉x′ + b(x, t),

where 𝜌 denotes the mass density, ü is the acceleration of material point x at
time 𝑡, 𝑅 is the region, f is density force, u is displacement of material point x at
time 𝑡, x′ is material point that interact with material point x, 𝑑𝑉x′ is volume of
material point x′, b(x, t) is body force per unit volume of material point x. The
PD pairwise force density function for homogeneous and isotropic materials can be
approximately expressed as:

f [u(x′, t)− u(x, t),x′ − x] = f(𝜂𝜂𝜂,𝜉𝜉𝜉) =
𝜂𝜂𝜂 + 𝜉𝜉𝜉

|𝜂𝜂𝜂 + 𝜉𝜉𝜉|
𝑐𝑠,

where
𝜉𝜉𝜉 = x′ − x,

and
𝜂𝜂𝜂 = u′ − u,

where 𝜉𝜉𝜉 stand for the relative position vector of two material points x and x′, 𝜂𝜂𝜂
is the relative deformation vector of two material points x and x′ in the reference
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configuration. 𝜉 + 𝜂 is the current relative deformation vector, 𝑠 is bond stretch
which can be defined as

𝑠 =
|𝜉𝜉𝜉 + 𝜂𝜂𝜂| − |𝜉𝜉𝜉|

|𝜉𝜉𝜉|
,

and 𝑐 is the micro-elastic constant that represents the bond stiffness which can be
expressed as

𝑐 =

⎧⎪⎪⎨⎪⎪⎩
12𝐸
𝜋𝛿4 , 3D,

9𝐸
𝜋ℎ𝛿3 , 2D plane stress,
48𝐸

5𝜋ℎ𝛿3 , 2D plane strain,

where 𝐸 is the elastic modulus of material, ℎ is the thickness, Poisson’s ratio value
is fixed to 1

4 for the plane strain and 3D, and 1
3 for the plane stress.

One notable drawback of PD is the parameter sensitivity, where simulation
results strongly depend on the values chosen for various model parameters. This
sensitivity is evident in the horizon size parameter, a characteristic length scale
determining particle interactions. Selecting an appropriate horizon parameter is
crucial, as a small value can result in excessive noise and inability to capture long-
range interactions, while a large value can lead to excessive smoothing and loss
of localized behavior. Additionally, material parameters such as elastic modulus
and Poisson’s ratio must be accurately determined through experimental testing
to avoid unrealistic or unreliable simulation outcomes. Another factor contribut-
ing to parameter sensitivity is the time step size, which influences stability and
accuracy. However, the permissible time step size is often constrained by stabil-
ity conditions, imposing limitations on the time integration scheme. Furthermore,
peridynamics simulations tend to be computationally expensive due to the explicit
consideration of non-local interactions, making large-scale simulations and param-
eter studies time-consuming and resource-intensive. Moreover, the lack of stan-
dardized calibration procedures in peridynamics poses challenges for comparing
and validating results across studies, affecting the reliability and reproducibility of
simulation outcomes. To address these issues, ongoing research focuses on improv-
ing parameter estimation techniques, adaptive horizon selection, and more efficient
numerical algorithms.

3. Adaptive Dynamic Relaxation (ADR)

The dynamic form is the original form that was utilised in the PD mathemat-
ical formulation. Thus, this brings some difficulties when simulating problems or
experiments involving static or quasi-static motion. Hence, there exists a necessity
to attain the steady-state solutions for validation purpose of PD method against
experimental observations. Kilic provided an extension of dynamic relaxation tech-
niques in order to achieve steady-state solutions to nonlinear PD equations in his
presentation [18] . This approach was derived from the dynamic relaxation method
by injecting an artificial damping into the system; nevertheless, it is still not al-
ways feasible to predict which damping coefficient will have the most impact. The
concept of adaptive dynamic relaxation, where the damping coefficient changes in
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each iteration step, was implemented by Papadrakakis and Underwood [24,36]. By
ignoring the body force, b, the equation of motion can be cast into set of ordinary
differential equations that become suitable for dynamic relaxation by removing the
acceleration term and introducing a fictitious diagonal density and damping matrix
that is proportional to the density matrix as

Ü(X, t) + 𝜁U̇(X, t) = Ψ−1M(U,X),

where Ψ, 𝜁, and M are the fictitious diagonal density matrix, the damping co-
efficient, and external force, respectively, where the first two parameters may be
derived using Greschgorin’s theorem [36]. The vectors X and U include the initial
position and displacement of the material points, respectively, and they may be
represented as [36]

XT = {x1,x2, ...,xN},
and

UT = {u(x1, 𝑡),u(x2, 𝑡), ...,u(xN, 𝑡)},
where N refers to the total number of material points. Next-time-step velocities
can be calculated using central-difference explicit integration, as

u̇n+1/2 = [(2− 𝜁Δt)un−1/2 + 2ΔtΨ−1(M)n ]/[2 + 𝜁Δ𝑡],

un+1 = un +Δtu̇n+1/2,

where 𝑛 represents the 𝑛th iteration and Δt is the magnitude of the time step.
When doing dynamic relaxation, using a time step size of (Δt = 1) as the optimal
option is recommended [18]. Due to the absence of information on the velocity
field at 𝑡−1/2, the previously given expression cannot be utilised to initiate the
integration; nevertheless, the process may start by using

u̇1/2 =
ΔtΨ−1(M)0

2
.

There is no need for the physical interpretation of the density matrix, Ψ, damping
coefficient 𝜁, or time step size, Δt . They may be chosen for their ability to hasten
the process of convergence. Gerschgorin’s theorem is the basis of the most used
approach for selecting a density matrix, which can be expressed as [36],

Ψ−1 =
1

4
Δt2

∑︁
j

|𝑘ij |,

where 𝑖 is the corresponding material point and 𝑗 is the material point connected
to the corresponding material point 𝑖 and 𝑘ij calculated as [22]

𝑘ij = 5𝜋𝛿2𝑏𝑐,

where 𝑏𝑐 represents the bond constant and is written as

(3.1) 𝑏𝑐 =
18𝐾

𝜋𝛿4
,
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where 𝐾 denotes the bulk modulus. The damping coefficient 𝜁, which is usually
written as

𝜁n = 2
√︁
((Un)TKnUn)/((Un)TUn),

where Kn is the diagonal stiffness matrix and 𝑖th component can be computed by

K n
ii = −((M)

n
i /Ψ

−1 − (M)
n−1
i /Ψ−1)/(ΔtU̇

n−1/2
𝑖 ).

It has been shown that critical stretch is a function of the horizon size. The
physical material characteristics, type of loadings, length scale, and computational
cut of radius are all affected by the horizon size. For linear elastic brittle materials
with a given critical energy release rate, 𝐺𝑐, this straightforward connection gives
the value of critical stretch value, 𝑠𝑐𝑟. If the material exhibits time-dependant
nonlinear behaviour such as viscoplasticity, a single critical stretch value, 𝑠𝑐𝑟 is not
a viable failure criterion.

(3.2) 𝑠𝑐𝑟 =

⎧⎪⎨⎪⎩
√︁

𝐺𝑐

(3𝜇+( 3
4 )

4(𝜅− 5𝜇
3 ))𝛿

3-D,√︁
𝐺𝑐

( 6
𝜋𝜇+ 16

9𝜋2 (𝜅−2𝜇))𝛿
2-D.

where 𝐺𝑐 is the energy required to open a new fracture surface of unit area, namely
critical energy release rate, 𝜇 is history dependant scalar-valued as in Equation
(4.1), 𝜅 is the bulk modulus. Horizon size is one of the features in PD theory
where it introduces a length parameter that specifies the size of the region where
nonlocal interactions can occur. It is to be noted that ADR is a method to ensure
convergence of dynamic solution to static solution. In the ADR method for crack
propagation, it is necessary to halt crack propagation with the same load as the
crack progresses. The system must then reach a steady-state condition before
allowing the crack to continue growing. By introducing an artificial damping to
the system, the solution is guided to the steady-state solution as fast as possible.
In this context, steady-state solutions refer to situations where the displacement of
a collocation point converges to a stable or static value after a specific number of
time steps. In our analysis, the damping coefficient is evaluated in every iteration in
order to get the system to reach steady state condition. By doing this, the damping
coefficient adopted will not alternate the final results.

4. Quasi-Brittle (QBR) damage model

In order to better understand the progressive failure process in cohesive brittle
materials, the bond damage model was introduced [35] within the context of the
BB-PD theory. The acronym QBR stands for “Quasi-Brittle” and was used to
describe this paradigm. Rots [28] performed a similar series of experiments in
the 1980s to compare the suitability of different mathematical functions; linear,
exponential and power, in order to reproduce the global load-deflection plot. From
the experiment, it was found that exponential function was the most consistent
compared to the experimental results. Based on this experimental background,
some authors have used the exponential law to analyze tensile softening in concrete
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[5,11,12,40,44,49]. To better understand the bond mechanical reaction in cohesive
quasi-brittle materials, the following model is presented

𝑓 =

{︃
𝑐𝑠, 𝑠 < 𝑠𝑐𝑟,

𝑐𝑠𝑐𝑟[𝑒𝑥𝑝(−𝑘 𝑠−𝑠𝑐𝑟
𝑠𝑐𝑟

) + 𝛼 𝑠−𝑠𝑐𝑟
𝑠 ], 𝑠 > 𝑠𝑐𝑟,

where 𝑘 is the bond force reduction parameter, and 𝛼 is the bond residual force
parameter which is taken as 0.01 and 0 throughout this analysis [35]. In this model,
the bond status coefficient, 𝜇 can be evaluated as

𝜇(𝜉) =

{︃
1, 𝑠 ⩽ 𝑠𝑐𝑟,

𝑓
𝑐𝑠𝑐𝑟

, 𝑠 > 𝑠𝑐𝑟,

which can be rewritten as

(4.1) 𝜇(𝜉) =

{︃
1, 𝑠 ⩽ 𝑠𝑐𝑟,

exp(−𝑘 𝑠−𝑠𝑐𝑟
𝑠𝑐𝑟

) + 𝛼 𝑠−𝑠𝑐𝑟
𝑠 , 𝑠 > 𝑠𝑐𝑟.

This method was introduced as in the classical bond model, the bond force increases
linearly with the bond stretch and suddenly drops to zero when the stretch value
of the bond reaches its critical value. The classical model has been widely used for
modeling fracture problems in linear-elastic brittle materials but it is not suitable
for most cohesive brittle materials such as rocks and cement-based materials since
the macroscopic failure is generally a progressive process. Algorithm 1 demon-
strates the pseudo-code of the implementation of the new QBR damage model im-
plemented under quasi-static condition using BB-PD theory for progressive failure
with Matlab code.

Given the progressive nature of macroscopic failure in cohesive brittle mate-
rials, such as rocks and cement-based materials, it is often observed that damage
accumulation and fracture under compression tend to be gradual. Conversely, un-
der uniaxial tension, fracture is typically characterized by rapid and catastrophic
failure. However, it is crucial to acknowledge that these tendencies may vary de-
pending on factors such as the specific material properties, loading conditions, and
other relevant parameters. Therefore, while it is generally true that compression
exhibits progressive damage accumulation while tension displays rapid fracture, it
is essential to consider the influence of various factors on the actual behavior of
the material. The utilization of the present damage model stems from the inherent
limitation of the conventional bond model, wherein the bond force exhibits lin-
ear growth with bond stretch until abruptly vanishing at the critical bond stretch
value. This limitation prompted the adoption of the implemented damage model,
which aligns more closely with experimental findings that adhere to the exponential
rule as reported by Tong et al. (2020). The pseudo-code for executing the novel
quasi-brittle damage model under quasi-static conditions is outlined in Algorithm 1.
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Algorithm 1 Pseudo-code of the implementation of the proposed model.

1: for 𝑙𝑠𝑡𝑝 = 1 to 𝑙𝑠𝑡𝑝𝑛 do
2: for 𝑖 = 1 to 𝐼𝑛 do
3: for 𝑗 = 1 to 𝑚 do
4: relative position, 𝜉 = x𝑗 − x𝑖.
5: relative displacement, 𝜂 = u(x𝑗 , 𝑡)− u(x𝑖, 𝑡).
6: bond stretch, s(t ,𝜂, 𝜉) = ‖𝜂+𝜉‖−‖𝜉‖

‖𝜉‖ .

7: critical stretch value, 𝑠𝑐𝑟 =
√︁

𝐺𝑐

( 6
𝜋𝜇+ 16

9𝜋2 (𝜅−2𝜇))𝛿
.

8: constant micromodulus, 𝑐 = 12𝑘′

𝜋ℎ𝛿3 .

9: history-dependent scalar valued function, 𝜇(𝜉) =

{︃
1 𝑠 ⩽ 𝑠𝑐𝑟,
𝑓

𝑐𝑠𝑐𝑟
𝑠 > 𝑠𝑐𝑟.

10: bond force,𝑓 =

{︃
𝑐𝑠, 𝑠 < 𝑠𝑐𝑟,

𝑐𝑠𝑐𝑟[𝑒𝑥𝑝(−𝑘 𝑠−𝑠𝑐𝑟
𝑠𝑐𝑟

) + 𝛼 𝑠−𝑠𝑐𝑟
𝑠 ], 𝑠 > 𝑠𝑐𝑟,

11: pairwise force function, f(𝜂, 𝜉) = f 𝜂+𝜉
‖𝜂+𝜉‖ .

12: diagonal stiffness matrix, K n
ii = −((M)

n
i /Ψ

−1 −
(M)

n−1
i /Ψ−1)/(ΔtU̇

n−1/2
𝑖 ).

13: end for
14: summation of pairwise force function, L(x𝑖) =

∑︀𝑚
𝑗=1 f(𝜂, 𝜉)𝑉𝑗 .

15: acceleration, ü(x𝑖, t) = L(x𝑖) + b(x𝑖)/𝜌(x𝑖).
16: velocity, u̇(xi, t +Δt) = u̇(xi, t) + ü(xi, t)Δt.
17: displacement, u(xi, t +Δt) = u(xi, t) + u̇(xi, t +Δt)Δt.
18: end for
19: end for

5. Numerical examples

Three examples are carried out here to verify and demonstrate the applicability
of the new quasi-brittle damage model implemented under quasi-static condition
using BB-PD theory for progressive failure. The validation of the proposed model is
demonstrated by comparing its predictions with the results from the experimental
observations.

5.1. Isotropic plate with a hole under uniaxial tension. For the purpose
of demonstrating the capabilities of the proposed damage model, an isotropic plate
that has a hole in the centre and is subjected to to quasi-static tensile loading along
its horizontal edges [22] is studied here. It is to be noted that the analysis started
without any existing failure in the domain of the model. The dimensions used are as
shown in Figure 2; a length, 𝑙 of 50 mm, a width, 𝑤 of 50 mm, a thickness, ℎ of 0.5
mm, and a diameter, 𝐷 of 10 mm for the hole. The plate has the following physical
characteristics; a Young’s modulus, 𝐸 of 192 GPa, a Poisson’s ratio, 𝜈 of 1

3 , and a
mass density, 𝜌 of 8000 kg/m3. By providing a velocity, v of ± 2.7541e-7 m/s to the
plate, the boundary condition is established. The number of material points in 𝑥
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Figure 2. The geometry of isotropic plate with a hole and its
discretization.

and 𝑦-direction is 100, whereas only 1 in 𝑧-direction. The spacing between material
points, Δ is taken to be 0.5 mm, and the horizon size, 𝛿 is equal to 3.015Δx. When
failure is not permitted to occur, the critical stretch value, 𝑠𝑐𝑟, is set to 1, and
when failure is permitted, it is set to 0.04472. In the absence of failure, the first
step is to acquire the displacement field caused by the applied loading and then
compare it to the predictions made by the finite element method. Figures 3a and
3b depict the changes in horizontal and vertical displacements along the central
𝑥-axis and 𝑦-axis, respectively. The proposed model using PD predictions and the
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Figure 3. The plot of (a) horizontal displacement and (b) vertical
displacement along the central axes at the end of one thousand time
steps when failure is not permitted to occur.
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FEM findings obtained using ANSYS [22] are found to closely accord with one
another. This suggests that the values chosen for the PD parameters, such as grid
size and horizon size, as well as the volume of the region, provide results that are
satisfactory. Failure among the material points is then enabled by setting a critical
stretch value of 𝑠𝑐𝑟 = 0.04472, and the evolution of damage is analysed at various
time steps once the values of the PD parameters have been established. The failure
begins in the form of a fracture at the stress concentration areas, despite the fact
that the plate does not have any pre-existing cracks in it. In contrast to the other
methods that are currently in use, the PD formulation does not need the presence
of pre-existing fractures, which is an unquestionably remarkable quality.

The investigation is carried on by making use of the proposed models under
quasi-static [35] conditions with the occurrence of failure. When utilising this
damage model, the connection or bond between two nodes does not immediately
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Figure 4. QBR damage model.
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disappear once the value of stretch exceeds the stretch limit, 𝑠𝑐𝑟 but rather, the
force value will decline exponentially until the bond is totally broken and the inter-
connection is completely severed. Figure 5 illustrates how the suggested model was
used to estimate the crack’s progression through the material at four distinct time
steps: 700, 800, 900, and 1000. According to what is depicted in the figure, the
predicted cracks begin at two locations that are diametrically opposed to the hole,
spread in a direction that is parallel to the horizontal edges and perpendicular to
the loading direction, which is in agreement with what has been observed in the
literature [22]. When compared to the damage pattern described in the literature
[22], the pattern seen in Figure 4 seems to be more uniform. When modelling
brittle materials, which will encounter microcracks during the loading process, the
damage model is more realistic than Prototype Microelastic Brittle (PMB) model,
particularly when modelling these kinds of materials. As can be observed from
Figures 4a, 4b, 4c and 4d, the proposed damage model is capable of accurately
modelling both the progressive failure process and the quasi-static loading state.

5.2. 2D rectangular plate with circular hole under uniaxial compres-
sion. For the purpose of demonstrating the validity of the suggested model, a
two-dimensional rectangular plate with a circular hole and subjected to uniaxial
compression is utilised, as illustrated in Figure 5. It is decided to use the experi-
mental result that was published in the literature [16] as a baseline for comparison.
The model’s geometry can be observed in Figure 5a. These values represent the
material characteristics of the plate specimen. According to the experimental data
found in the literature [16], the material model was an isotropic linear elastic with
a Young’s modulus, 𝐸 of 25 GPa and a Poisson’s ratio, 𝜈 = 1

3 . The specimen is
discretized evenly into 2331 material points, which are organised in a 105 by 21

5
0
0
 m

m

100 mm

d =19 mm

!

(a) Geometric properties of the model.

!

u

u

(b) Applied displacement.

Figure 5. Properties of 2D rectangular plate.
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regular grid. There are three layers of fictional nodes in both the top and bottom
sides of the object, which is where the loading is applied. The material horizon size
is set to, 𝛿 = 3.015Δ𝑥. The critical stretch is taken to be 1e-4. The velocity and
displacement were applied under uniaxial compression with the value of 2e-8 𝑚/𝑠
and 2e-8 𝑚 respectively as shown in Figure 5b.

Figure 6 shows the picture of typical observed cracks from the laboratory exper-
iment [16]. The first picture from the left shows that several microcrack initiation
points exist from the centre of the specimen where the hole is located. This can
be seen from the red-mark drawn on the concrete specimen. The second and third
picture from the left in Figure 6 show the zoom-in part of the specimen plate, where
in the third picture two major cracks can be observed that starts from the hole;
one propagating to the top, and another one propagating to the bottom where the
loading is applied. The cracks observed in the third picture from the left in Figure 6
are in the same direction as the loading direction.

Figure 6. Typical observed cracks from experimental results (af-
ter [16]).

Figure 7 shows the evolution of the predicted crack propagation in the specimen
at different time steps; ts = 2000, 2500, 3000, and 3500, using the proposed model.
The geometric idealness of the mesh, with the exception of the hole, suggests that
the splitting cracks should originate at the uppermost and lowermost points of the
hole along the centerline. However, the observed "wing-like" initiation of the cracks
in this analysis can be attributed to the imperfect approximation of the hole, which
introduces non-physical stress concentrations along the boundary of the hole. These
stress concentrations, caused by the mesh discretization, deviate from the expected
behavior seen in reality. In reality, the splitting cracks may initiate away from the
centerline due to the existence of various forms of disorder within the material.
This implies that the location of crack initiation is influenced by factors beyond
the idealized conditions considered in our analysis. It is important to acknowledge
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Figure 7. Damage evolution of the plate: (a) ts = 2000; (b) ts
= 2500; (c) ts = 3000; (d) ts = 3500.
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that these deviations in crack initiation are not a result of our findings, but rather
a consequence of the unavoidable artificial effects introduced by the discretization
of the hole. The damage patterns indicated that the predicted cracks initiate at all
four sides of the hole, with two adjacent sides (top left and bottom right) showing
a slightly higher level of damage compared to the other two sides. These cracks
develop at an angle relative to the horizontal line during the early time steps. Then,
the crack trajectories deflect and extend along the vertical line, which agrees well
with the experimental observation [16], as shown in Figure 6. The good agreements
validate the capability of the new quasi-brittle damage model implemented under
quasi-static condition using BB-PD theory for progressive failure.

5.3. 2D rectangular pristine plate under compressive force. To further
validate the proposed damage model implemented under quasi-static condition for
cracking problems, a 2D rectangular pristine plate under compressive load is anal-
ysed. The rectangular plate had an initial height of ℎ0 = 8 mm and width of 𝑤0 = 4
mm. The material model was isotropic linear elasticity with a Young’s modulus of
𝐸 = 190 GPa, and a Poisson’s ratio of 𝜈 = 1

3 . The plate was discretized uniformly,
comprising a total of 1,400 material points. Specifically, there were 1,250 material

Figure 8. Discretisation of the 4 mm × 8 mm specimen using
BBPD.
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points arranged in a regular grid of 25 by 50 within the plate. Additionally, three
layers of fictitious nodes were present on both sides of the plate, accounting for
150 material points where the boundary conditions were applied, as depicted in
Figure 8. Moreover, various horizon sizes, denoted as 𝛿, were tested in the anal-
ysis. For the first part of the analysis, the value of the critical stretch was set to
be large, 𝑠𝑐𝑟 = 1, so that no damage was allowed to happen. In the second part
of the analysis, it was allowed for the failure to happen using the exact value of
the critical stretch evaluated from the Equation (3.2). The geometrical properties,
material properties, and the loading applied in this problem matched up with the
experiment in [10]. In this problem, there were two cases of boundary condition
applied. For the Case 1 of the boundary condition; the velocity and displacement
were applied under uniaxial compression with the value of ±3.33𝑒 − 7 m/s and
±3.33𝑒 − 7 m respectively. In the Case 2 of boundary condition, the velocity and
displacement were applied similarly as in Case 1 but with additional horizontal di-
rection with linear increment from the middle towards the side of the specimen. In
the experimental setup, the boundary condition applied during the uniaxial com-
pression test deviated from the idealized Case 1 condition. To better capture the
actual behavior, an alternative boundary condition, referred to as Case 2, was im-
plemented. In Case 2, a small horizontal force was introduced at the top of the
material points while maintaining the uniaxial compression. By incorporating this
modification, the boundary condition in the numerical model aligns more closely
with the experimental reality. It is worth noting that the true boundary condi-
tion in the experiment lies somewhere between Case 1 and Case 2, highlighting the
necessity of considering an intermediate scenario for accurately representing the
experimental conditions.

Figure 9. Displacement vs time with Adaptive Dynamic Relax-
ation on.
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Figure 10. Displacement vs time with Adaptive Dynamic Relax-
ation off.

Figures 9 and 10 depict the plot of displacement versus time for the analysis
using the proposed model with and without Adaptive Dynamic Relaxation (ADR)
method, respectively. Figure 9 illustrates displacement-time plot for different time
step size, Δt that is ranging from 0.1, 0.5, 1, 2, 5, and 10. The analysis in Figure 9
had been run up to time step of 105 s. The plot in Figure 9 shows nearly linear
relationship between displacement and time for Δt ⩽ 2. It is indicated from the
Figure 9 that there is a slight slope difference between the Δt = 2 and Δt = 1. The
tangent from the plot for Δt = 1, 0.5, and 0.1 yields a very good agreement with the
solution without ADR method, indicated in Figure 10. In contrast to Figure 9, the
analysis in Figure 10 had been run up to only until 1×10−4 s for number of iterations
of 1 × 105, which is highly expensive computational time. Generally, smaller time
step size (in this case Δt ⩽ 1) minimises the errors in time-displacement plot. It is
concluded that the results generated with smaller value of Δt decreases the errors,
however, its efficiency is reduced since they remain computationally expensive.
The value of Δt in the analysis without ADR is restricted to a limitation where it
should be smaller than a specific value as mentioned in Courant–Friedrichs–Lewy
condition in order to produce a stable results. In Figure 10 the Δt was taken to
be 1× 10−8. From Figures 9 and 10, it can be seen that the tangent of the graph
between BBPD with ADR on (Δt ⩽ 2) and BBPD with ADR off are in a good
agreement. In conclusion, the BBPD with ADR produce a good agreement with
the explicit analysis and thus BBPD with ADR with Δt = 1 will be used for the
rest of the analysis, as suggested by [18,20].

Figures 11 and 12 present the variation of vertical and horizontal displacement
respectively, using BBPD with different horizon size, Δ𝑥 and compared with Finite
Element Method (FEM) within an in-house Matlab code. The FEM was discretised
into 24 × 48 elements with the same geometrical and material properties. For any



A NEW QUASI-BRITTLE DAMAGE MODEL 91

Figure 11. Variation of vertical displacement along the 𝑤0

2 at the
end of 1,050 time steps when failure is not allowed.

Figure 12. Variation of horizontal displacement of the specimen
for different horizon size, 𝛿 along the ℎ0

2 at the end of 1,050 time
steps when failure is not allowed.

specific material point located in the middle of a body, with 𝛿 = 1Δ𝑥 the material
point will have only 4 neighbours of material points; for a uniform dicretisation.
When 𝛿 = 1Δ𝑥, the diagonal material points will not be included as part of its
neighbour. Whereas by selecting 𝛿 with the factor of 1.5Δ𝑥, the diagonal material
points will also be included as neighbour of the material point. Generally, with
selection of 𝛿 to be in the factor of 1, the horizon produced is in a circle shape
(with increasing value of 𝛿), while 𝛿 with the factor of 1.5 will make the horizon
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size to be in a square shape. From Figure 11, almost all of the chosen 𝛿 showed
good agreement of vertical displacement compared to the FEM analysis. This was
because the prescribed displacement and velocity were applied in vertical direction.
From Figure 12, when 𝛿 = 1Δ𝑥, there was no horizontal displacement in the body.
This was due to the zero influence of the horizontal displacement applied to the
body since the diagonal nodes were not included in the material points’ neigbour.
When the 𝛿 = 2Δ𝑥, horizontal displacement occur even it is slightly diverged from
the FEM displacement plot. The displacement plot when 𝛿 = 1.5Δ𝑥, 2.5Δ𝑥, and
3.5Δ𝑥 is in between the FEM plot and of the 𝛿 = 2Δ𝑥. Even though the value of 𝛿
= 1.5Δ𝑥 < 𝛿 = 2Δ𝑥, but since the selection of the diagonal material point as part
of neighbour brings an extra influence of horizontal effect to the displacement of the
main material point. The last three 𝛿; 3Δ𝑥, 4Δ𝑥, and 4.5Δ𝑥, were the nearest plot
to the FEM plot. It can be seen that towards the end of the graph, 𝛿 = 3.5Δ𝑥 and
4.5Δ𝑥 are straying away from FEM plot, and it seems like too much influence to
the horizontal direction will bring an error to the formulation. From this analysis,
it can be concluded that the best 𝛿 for the formulation of BBPD is 3Δ𝑥 as been
suggested in the literature [3].

(a) Displacement in 𝑦-direction. (b) Displacement in 𝑥-direction.

Figure 13. Case 1 boundary condition: Displacement of the spec-
imen in 𝑦-direction and 𝑥-direction (in mm).

Figures 13a and 13b represent the plot of displacement countour for Case 1
boundary condition in 𝑦-direction and 𝑥-direction respectively. Figures 14a and
14b represent the plot of displacement countour for Case 2 boundary condition
in 𝑦-direction and 𝑥-direction respectively. From Figures 13a and 14a, the maxi-
mum displacement in 𝑦-direction is around ±0.35 mm, which agrees with the result
from experiment [10]. The maximum displacement in 𝑦-direction from Figures 13b
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(a) Displacement in 𝑦-direction. (b) Displacement in 𝑥-direction.

Figure 14. Case 2 boundary condition: Displacement of the spec-
imen in 𝑦-direction and 𝑥-direction (in mm).

and 14b is around ±0.05 mm, however both of them show different displacement
patterns where the 𝑥-displacement in Case 2 boundary condition shows uniform
displacement along the length of the specimen, whereas the 𝑥-displacement in Case
1 boundary condition shows non-uniform pattern along its length. The displace-
ment shape in Case 1 boundary condition shows convex shape when the specimen
is compressed. Both of the patterns could be the accurate representation of the
deformation in 𝑥-direction since the behaviour in 𝑥-direction is not observed exper-
imentally.

Figure 15 shows the plot of force vs displacement between Case 1 and Case 2
boundary condition, and experimental results [10]. There are two samples from
experimental results plotted in this graph: CMP1 and CMP2. The tangent of the
plot in Case 1and Case 2 are in close agreement with the previous experimental
results, CMP1 and CMP2. However, the slope between the analysis and experiment
is different when the displacement is less than 0.1 mm. This might be due to the
reason that there is a slight free movement in the specimen when the loading is
applied at the beginning, before the specimen starts to absorb the load. The force
value is acquired in the analysis by summation of all the forces in the bonds that
cross a cross section, located away from the loading sources.

Figure 16 shows the minimum stretch plot for both of the boundary condition
Case 1 and Case 2 at timestep of 1050 s. The minimum stretch plot in Figure 16a
shows a non-uniform pattern compared to the same plot for Case 2 boundary con-
dition in Figure 16b. To get a clear pattern of both plots, we plotted again by
only specifying the exact range of bond stretch value; removing the smallest value
in the plot. Figure 16a is plotted again by only plotting the bond stretch value of
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Figure 15. Force vs displacement for BBPD with different
boundary condition, and experimental result.

>-0.11, and Figure 16b is plotted again by only plotting the bond stretch value of
>-0.0.95 as in Figure 17a and Figure 17b respectively. From these Figures it can
be seen that Case 1 boundary condition shows a clear pattern of strain localisation
whereas in the Case 2 boundary condition shows a uniform plot of bond stretch.

(a) Minimum stretch plot for Case 1
boundary condition at time step 1,050.

(b) Minimum stretch plot for Case 2
boundary condition at time step 1,050.

Figure 16. Minimum stretch plot for different boundary condi-
tion.
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Comparing the damage plot from the analysis in Figure 18 with experimental
results, a slight difference is evident. The analysis indicates a visible conjugate
shear fracture, while the experimental results only show a single shear, with the
object failing from the top left to the middle right, as depicted in Figures 19 and
20. The differences between the results might occur due to the uncertainties when
handling the experiment in the laboratory. When analyzing a pristine object, it
is crucial to exercise additional caution to ensure its complete symmetry, thereby
maximizing the accuracy of the computer analysis. Discrepancies in results may
arise from non-uniform loading conditions within the laboratory setting. Moreover,
the small size of the specimens makes it exceedingly difficult to identify any uneven
surface that could lead to irregular response under applied loading. Enhancements
in the experimental analysis could be achieved by increasing the specimen sizes and
implementing strain gauges to ensure uniform loading distribution across all sides
of the objects.

In PD, the particular feature that triggers the formation of the localization
band is the non-local nature of the bond-based interactions. Unlike traditional
continuum models, PD considers interactions between material points within a
finite horizon size or neighborhood, allowing for long-range interactions. This non-
locality enables the propagation of deformation and damage effects over a larger
spatial extent. As a result, when a localized deformation or damage initiates in a
small region, it can propagate and spread throughout the material via the bond-
based interactions in PD. This mechanism effectively triggers the formation of the

(a) Minimum stretch plot for Case 1
boundary condition at time step 1,050 with
neglected value of > -0.11.

(b) Minimum stretch plot for Case 2
boundary condition at time step 1,050 with
neglected value of > -0.095.

Figure 17. Minimum stretch plot for different boundary condi-
tion with negletion part of the stretch value.
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Figure 18. Damage evolution of the plate: (a) ts = 200; (b) ts
= 400; (c) ts = 600; (d) ts = 800; (e) ts = 1000; (f) ts = 1200.

localization band, where intense deformation or damage is concentrated within a
narrow zone. Therefore, the key feature of PD that promotes the formation of the
localization band is its non-local interaction scheme, allowing for the transmission
of deformation and damage effects across larger distances within the material.

5.4. L-shape plate. This example considers an L-shaped panel test as a well-
known benchmark problem of the mixed-mode failure for the quasi-brittle structure.
The geometric domain and boundary conditions are as depicted in Figure 21. The
test was formerly performed by Winkler et al.in [41]. The material parameters are
chosen from [35] as Young’s modulus, 𝐸 = 25.85 GPa, Poisson’s ratio, 𝜈 = 0.18,
and 𝐺𝑓 = 0.065 N/mm.

Figure 22 shows a quantitative comparison of the force-displacement curve be-
tween our results and those published in [41]. Compared with the experimental
results obtained from Winkler et al. [41], the present numerical results obtained by
the new quasi-brittle peridynamics with ADR model are in good agreement with the
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Figure 19. Failure of
the object (after [10]).

Figure 20. Failure of
the object (after [10]).

experimental results. The variation in force-displacement slopes between numerical
analysis and experimental results in the elastic range within the PD method can
be attributed to several factors. Firstly, numerical analysis often assumes idealized
material behavior, such as linear elasticity, while experimental results reflect the
true mechanical response of the material, which can exhibit nonlinear or anisotropic
characteristics even within the elastic range. Secondly, differences in discretization
and spatial resolution between the numerical model and real-world experiments can
affect the accuracy of capturing small-scale features or localized deformations. Ad-
ditionally, variations in boundary and loading conditions applied in numerical simu-
lations compared to experiments can lead to discrepancies in the force-displacement
slopes. Lastly, the use of numerical approximations and algorithms in PD simula-
tions, along with the choice of specific parameters, can introduce errors and impact
the agreement with experimental results.

Figure 23 shows the crack propagation mode in L-shape structure test, for
displacement of 0.1mm, 0.3mm, 1mm and the experimental of 1mm from [41]. In
Figure 23 (a) the initiation of crack propagation starts at the corner of the L-shape.
In Figure 23 (b) it can be seen that the crack starts to propagate horizontally
away from the corner where it started. In Figure 23 (c) the propagation of the
crack nearly reached the end of the specimen. One of the remarkable aspects
of PD is its ability to model crack formation and propagation without the need
for additional mathematical equations. This feature is of significant interest in the
study of material failure, as it enables a more comprehensive understanding of crack
behavior and the impact of loading conditions. The inherent flexibility and accuracy
of the PD approach allow for a more precise representation of crack formation
and propagation, leading to a better understanding of material failure and the
development of more effective engineering solutions. The crack propagation in the
analysis agrees well with the experimental analysis [41] shown in Figure 23 (d).
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Figure 21. The
geometry (unit of
length: mm) of the
L-shaped panel test
with its boundary
conditions.

Figure 22. The comparison
of force–displacement curve
of L-shape structure test
for experimental data [22]
and QBR with ADR. macro-
scopic

(a) u = 0.1mm (b) u = 0.3mm

(c) u = 1mm (d) Analytical crack propagation.

Figure 23. Crack propagation mode in L-shape structure test.
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6. Conclusion

This paper has presented for the first time an extension of the quasi-brittle
damage model implemented using BB-PD theory for progressive failure under quasi-
static condition. This allows the fracture modeling of a solid body under quasi-static
to be modeled with the quasi-brittle damage model. The key contribution of this
paper is the combination of the adaptive dynamic equation into the formulation of
quasi-brittle damage model using BB-PD. Three numerical examples are presented
to validate the effectiveness of this approach. It has been shown that the proposed
method is quite capable of simulating quasi-static tensile and compressive load with
the damage pattern that agreed well to the literature.

This paper lays the groundwork for quasi-brittle damage model into future
research for a broader range of loading combinations and failure modes. It also
provides a starting point for the extension of the damage model into the other
version of peridynamics such as non-ordinary state based.
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НОВИ МОДЕЛ КВАЗИ КРТОГ ОШТЕЋЕЊА ПРИМЕЊЕН
У КВАЗИСТАТИЧКИМ УСЛОВИМА КОРИШЋЕЊЕМ

ПЕРИДИНАМИЧКЕ ТЕОРИJЕ ЗА ПРОГРЕСИВНИ ЛОМ

Резиме. Предложен jе нови модел квази кртог оштећења примењен у условима
квазистатичког оптерећења користећи перидинамичку теориjу за прогресивни
лом да би се боље предвидео почетак и ширење оштећења у чврстим матери-
jалима. Пошто jе перидинамичка jедначина кретања изведена у динамичкоj
конфигурациjи, у овом раду се примењуjе прилагођена jедначина динамичке
релаксациjе да би се постигло стационарно стање у перидинамичкоj форму-
лациjи. Да бисмо прецизно окарактерисали процес прогресивног лома у кохе-
зивним материjалима, примењуjемо динамичку jедначину са новим моделом
оштећења за квази крте материjале. Приказани су рачунарски примери 2Д
компресивних и затезних проблема применом предложеног модела. Оваj рад
представља напредак уградњом приступа прилагођене динамичке jедначине у
нови модел оштећења квази кртих материjала. Ово спаjање омогућава преци-
зниjе представљање понашања оштећених материjала, посебно при статичким
или квазистатичким оптерећењима, приближаваjући модел реалном проблему.
Oво истраживањe отвара пут да се перидинамичка формулациjа користи за
далеко ширу класу услова оптерећења него што jе то сада у могућности.
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