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Abstract. In this study, a steady magnetohydrodynamic (MHD) flow due
to stretchable rotating disk in the presence of gyrotactic microorganisms is
investigated. The governing equations modeling the flow are solved numer-
ically using the newly introduced simple iteration method (SIM) that seeks
to linearize a system using relaxation technique that effectively decouples the
system. To verify the convergence and accuracy of the method, solution error
and residual error analysis are carried out, respectively. The obtained results
suggest that the SIM is a highly efficient method that produces convergent
and highly accurate solutions. The effects of various parameters as well as
combined parameter effects on the solution profiles are also investigated. An
increase in the Hall and permeability parameters leads to a corresponding rise
in the microorganism’s density and nanoparticle volume fraction.

Nomenclature
𝑢, 𝑣, 𝑤 velocity components
𝑇 temperature
Λ Hall parameter
𝐷𝑚 diffusivity of microorganisms
𝐶 nanoparticles volume fraction
𝑁 local density number of the motile microorganisms
𝑏 chemotaxis constant
𝑅𝑒 Reynolds number
𝑠 constant number
𝑀 magnetic parameter
𝑃𝑟 Prandtl number
𝑁𝑡 thermophoresis parameter
𝑁𝑏 Brownian motion parameter
𝐿𝑒 Lewis number
𝑃𝑒 Peclet number
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𝑃 stretching parameter
𝑅𝑑 radiation parameter
𝐷𝑇 coefficient of thermophoretic diffusion
𝐵𝐷 coefficient of Brownian diffusion
𝑘* mean absorption coefficient
𝑊𝑐 maximum cell swimming speed
𝑘1 permeability of porous medium
𝐶∞ concentration of nanoparticles
𝑁∞ concentration of the microorganisms
𝛼 thermal diffusivity
𝜏 ratio of heat capacity of nanofluid and base fluid
Ω1 angular velocity

1. Introduction

A major research focus in fluid dynamics is the improvement of the heat trans-
fer for common fluids which mostly possess low thermal conductivity. This can be
achieved by adding solid particles in these fluids. To enhance thermal conductiv-
ity in suspended nanoparticles, for example, (Au,Fe Cu) from metals and oxides,
metal carbides from non-metals whose diameters are less than 100 nm of nanofluid
are used. Nanofluid (nanoparticle fluid suspensions) was initially introduced by
Choi [1]. Experimentally, he showed that thermal conductivity can be doubled
by increasing the concentration of solid nanoparticles. Application of nanofluid
can be found in several areas: medical engineering, improving transportation, mi-
croelectronics, to name a few. Buongiorno [2], in his comprehensive survey of a
nanofluid model (two-phase model), investigated the significance of thermophoresis
and Brownian diffusion. Several researchers studied nanofluid flow both experimen-
tally and numerically. The first known study on stretching sheet was conducted
by Khan [3] by incorporating nanofluid. In this current study, Brownian motion
and thermophoresis effects were taken into consideration and it was reported that
Sherwood number increases for high Prandtl number and decreases for low Prandtl
number for both Brownian motion and thermophoresis parameter. The impact of
Brownian motion and thermophoresis on the double-diffusive nanofluid was studied
by Nield and Kuznetsov [4] who reported that an increase in the Brownian motion
and thermophoresis parameters decrease the reduced Nusselt number. Silver-water
nanofluid about a vertical slender cylinder was studied by Mkhatshwa et al. [5]
and they found that nanoparticle volume fraction and Soret number increase skin
friction. Further studies on this can be found in [6–9].

Heat and mass transfer combined with nanofluid and the macroscopic move-
ment results in the mobility of swimming microorganisms in a phenomenon known
as bioconvection. The presence of gyrotactic microorganisms enhance suspension
stability of nanoparticles. Some of the applications of the bioconvection phenome-
non are in cancer therapy, agriculture, biotechnology, etc. Bioconvection contain-
ing nanoparticles was first studied by [10–12]. Three-dimensional rotating system
with bioconvection flow of a nanofluid was studied by Shuo et al. [13] where it was
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reported that the motile microorganisms flux on the wall decreases by increasing
the viscosity parameter. Futher studies on the impact of bioconvection have been
conducted by [14–18], for example.

In industrial application, a porous medium with nanofluid is used to improve
the heat transfer in processes such as water filtration, groundwater flows, fuel cells,
transfer, thermal insulation, among others. Magneto-hydro-dynamic (MHD) flow
with Hall currents has numerous applications in many areas such as planetary
dynamics, industries, and power generators. The detailed hall phenomenon can be
analysed in Chaundhary and Jain [19] paper. Due to its wide applications when the
flow is in a rotating surface, several studies have investigated these areas. For MHD
electrically conducting incompressible nanofluid flowing over a porous rotating disk,
Rashidi et al. [20] recommended the use of the second law of thermodynamics
in rotating fluid systems. Mustafa [21] reported nanoparticles volume fraction
enhances the thermal layer thickness in a nanofluid flow in a rotating disk study.
In non-Darcy medium three-dimensional flow due to rotating disk studied by Hayat
et al. [22] showed that nanoparticles, volume fraction variation, and heat transfer
rate were enhanced. Micropolar nanofluid flow between two infinite radius disks
in a porous medium considering applied magnetic field was examined by Abbas
et al. [23]. They showed reverse tendency related to concentration profiles with
thermophoretic and Brownian motion parameters.

The main motivation of this research is to study the combined effects of radia-
tion and Hall current effects in porous medium for bioconvective flow due to stretch-
able rotating disk. To the best of the authors’ knowledge, the combined effect has
not been studied. The partial differential equations modeling the flow transformed
to nondimensional ordinary differential equation under suitable transformations.
The resulting equations are solved numerically using the recently introduced sim-
ple iteration method (SIM) [24,25], and the results are displayed graphically and
in tabular form.

2. Formulation of the Problem

Consider an incompressible nanofluid flow over stretchable rotating disk. The
fluid thickness is given by 𝑧 = 𝑐

(︀
𝑟
𝑅0

+1
)︀−𝜒, it occupies the semi infinite region and

the disk rotates with an angular velocity Ω1. (𝑟, 𝜃, 𝑧) coordinates are considered
with the strong magnetic field parallel to the disk axis and the Hall effect retained.
The temperature 𝑇𝑤 is assumed at the surface of the disk and the ambient temper-
ature is 𝑇∞. Also, it is assumed nanoparticles are not clustered together due to the
stability of nanoparticles suspension. Following [22, 26] the governing equations
take the form:
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Figure 1. Fluid flow geometry

where 𝐶∞, 𝑁∞ the reference concentration of nanoparticles and reference concen-
tration of the microorganisms, respectively. 𝑢, 𝑣, 𝑤 are the velocity components of
the flow, 𝑇 is the temperature, Λ is Hall parameter, 𝐷𝑚 is the diffusivity of mi-
croorganisms, 𝐶 is the nanoparticles volume fraction, 𝛼1 is the thermal diffusivity,
𝑁 is the local density number of the motile microorganisms, 𝐷𝑇 and 𝐵𝐷 are the
coefficient of thermophoretic diffusion and Brownian diffusion, 𝑘1 is the permeabil-
ity of porous medium, 𝜏 =

(𝜌𝑐)𝑝
(𝜌𝑐)𝑓

is the ratio of heat capacity of nanofluid and base
fluid, 𝜎* is Stefan-Boltzmann constant, 𝑘* is mean absorption coefficient, 𝑏 is the
chemotaxis constant, and 𝑊𝑐 is the maximum cell swimming speed. The boundary
conditions

𝑢 = 𝑟𝑐, 𝑣 = 𝑟Ω1, 𝑤 = 0, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤, 𝑁 = 𝑁𝑤 at 𝑧 = 𝑐
(︁ 𝑟

𝑅0
+ 1

)︁𝜒

𝑢 → 0, 𝑣 → 0, 𝑤 → 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞, 𝑁 = 𝑁∞ as 𝑧 → ∞.

where 𝑅0 is the feature radius, 𝜒 is the disk thickness index and 𝑐 is the thickness
coefficient. Applying generalized Von Karman transformations [26]

𝑢 = 𝑟*𝑅0Ω1𝐹 (𝜂), 𝑣 = 𝑟*𝑅0Ω1𝐺(𝜂), 𝜂 =
𝑧

𝑅0

(︁Ω1𝑅
2
0𝜌

𝜇

)︁ 1
𝑛+1

,

𝑤 = 𝑅0Ω1(1 + 𝑟*)𝑠
(︁Ω1𝑅

2
0𝜌

𝜇

)︁ −1
𝑛+1

𝐻(𝜂), 𝑇 − 𝑇∞ = 𝜃(𝑇𝑤 − 𝑇∞),(2.3)

𝐶 − 𝐶∞ = 𝜑(𝐶𝑤 − 𝐶∞), 𝑁 −𝑁∞ = 𝜔(𝑁𝑤 −𝑁∞)
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Using the transformation (2.3) on equations (2.1)–(2.2) takes the form

(2.4) 2𝐹 + 𝜂𝜒𝑠𝐹 ′ +𝐻 ′ = 0

𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒𝐹 ′′ − 𝐹 2 +𝐺2 −𝐻𝐹 ′ − 𝜂𝜒𝑠𝐹𝐹 ′ − 𝛾𝐹 − 𝑀

1 + Λ2
(𝐹 + Λ𝐺) = 0

𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒𝐺′′ − 2𝐹𝐺−𝐻𝐺′ − 𝜂𝜒𝑠𝐹𝐺′ − 𝛾𝐺+

𝑀

1 + Λ2
(Λ𝐹 −𝐺) = 0

𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒[(1 +𝑅𝑑)𝜃′′ + 𝑃𝑟(𝑁𝑏𝜃′ +𝑁𝑡𝜃′2)]− 𝑝𝑟(𝐻𝜃′ + 𝜂𝜒𝑠𝐹𝜃′) = 0

𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒[𝜑′′ − 𝑁𝑡

𝑁𝑏
𝜃′′]− 𝐿𝑒(𝐻𝜑′ − 𝜂𝜒𝑠𝐹𝜑′) = 0

(2.5) 𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒

{︀
𝜔′′ − 𝑃𝑒[𝜔′𝜑′ + (𝜔 + 𝛾0)𝜑

′′]
}︀
− 𝐿𝑏(𝐻𝜔′ + 𝜂𝜒𝑠𝐹𝜔′) = 0

with boundary conditions

𝐻(𝛼) =0, 𝐹 (𝛼) = 𝑃, 𝐺(𝛼) = 1, 𝜃(𝛼) = 1, 𝜑(𝛼) = 1, 𝜔(𝛼) = 1,

𝐹 (∞) =0, 𝐺(∞) = 0, 𝜃(∞) = 0, 𝜑(∞) = 0, 𝜔(∞) = 0.

where 𝛾 = 𝜈
𝑘1Ω1

is the porosity parameter, 𝑅𝑒 = Ω1𝑅0

𝜈 is the Reynolds num-

ber, 𝑠 = 𝑟*

1+𝑟* is a constant, 𝑀 =
𝜎𝐵2

0

𝜌Ω1
is the magnetic parameter, 𝑃𝑟 = 𝜈

𝛼1

is the Prandtl number, 𝑁𝑡 =
(𝜌𝑐)𝑝
(𝜌𝑐)𝑓

𝐷𝑇 (𝑇𝑤−𝑇∞)
𝑇∞𝜈 is the thermophoresis parameter,

𝑁𝑏 =
(𝜌𝑐)𝑝
(𝜌𝑐)𝑓

𝐷𝐵(𝐶𝑤−𝐶∞)
𝜈 is the Brownian motion parameter, 𝐿𝑒 = 𝜈

𝐷𝐵
is the Lewis

number, 𝑃𝑒 = 𝑏𝑊𝑐

𝐷𝑛
is the Peclet number, 𝑃 = 𝑐

𝜔1
is the stretching parameter,

𝛼 = 𝑐
𝑅0

(︀Ω1𝑅
2
0𝜌

𝜇

)︀ 1
𝑛+1 and 𝑅𝑑 =

16𝜎*𝑇 3
∞

3𝑘𝑘* is radiation parameter.
Defining the deformation

𝐻(𝛼) = ℎ(𝜂 − 𝛼) = ℎ(𝜁), 𝐹 (𝛼) = 𝑓(𝜂 − 𝛼) = 𝑓(𝜁), 𝐺(𝛼) = 𝑔(𝜂 − 𝛼) = 𝑔(𝜁),(2.6)
𝜃(𝛼) = Θ(𝜂 − 𝛼) = Θ(𝜁), 𝜑(𝛼) = Φ(𝜂 − 𝛼) = Φ(𝜁), 𝜔(𝛼) = Ω(𝜂 − 𝛼) = Ω(𝜁)|.

Applying the transformation (2.6) on equations (2.4)–(2.5) we get

(2.7) 2𝑓 + (𝜁 + 𝛼)𝜒𝑠𝑓 ′ + ℎ′ = 0

(2.8) 𝑅𝑒
1−𝑛
1+𝑛 (1+𝑟*)2𝜒𝑓 ′′−𝑓2+𝑔2−ℎ𝑓 ′− (𝜁+𝛼)𝜒𝑠𝑓𝑓 ′−𝛾𝑓− 𝑀

1 + Λ2
(𝑓+Λ𝑔) = 0

(2.9) 𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒𝑔′′ − 2𝑓𝑔 − ℎ𝑔′ − (𝜁 + 𝛼)𝜒𝑠𝑓𝑔′ − 𝛾𝑔 +

𝑀

1 + Λ2
(Λ𝑓 − 𝑔) = 0

𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒[(1 +𝑅𝑑)Θ′′ + 𝑃𝑟(𝑁𝑏Θ′Φ′𝑁𝑡𝜃′2)]− 𝑃𝑟[ℎΘ′ + (𝜁 + 𝛼)𝜒𝑠𝑓Θ′] = 0

𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*)2𝜒[Φ′′ +

𝑁𝑡

𝑁𝑏
𝜃′′]− 𝐿𝑒[ℎΦ′ + (𝜁 + 𝛼)𝜒𝑠𝑓Φ′] = 0

(2.10) 𝑅𝑒
1−𝑛
1+𝑛 (1+𝑟*)2𝜒{Ω′′−𝑃𝑒[Ω′Φ′+(Ω+𝛾0)Φ

′′]}−𝐿𝑏[ℎΩ′+(𝜁+𝛼)𝜒𝑠𝑓Ω′] = 0

with boundary conditions

ℎ(0) = 0, 𝑓(0) = 𝑃, 𝑔(0) = 1, Θ(0) = 1, Φ(0) = 1, Ω(0) = 1,

𝑓(∞) = 0, 𝑔(∞) = 0, Θ(∞) = 0, Φ(∞) = 0, Ω(∞) = 0.
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where prime denotes the derivative with respect to 𝜁.
The shear stress in radial and tangential directions (𝜏𝑧𝑟, 𝜏𝑧𝜃) and the local

Nusselt number (𝑁𝑢𝑥) respectively are

𝜏𝑧𝑟 =
𝑟*𝜇Ω1𝑅0(1 + 𝑟*)

(︀Ω1𝑅
2
0𝜌

𝜇

)︀ 1
𝑛+1 𝑓 ′(0)

𝑅0

𝜏𝑧𝜃 =
𝑟*𝜇Ω1𝑅0(1 + 𝑟*)

(︀Ω1𝑅
2
0𝜌

𝜇

)︀ 1
𝑛+1 𝑔′(0)

𝑅0

𝑁𝑢𝑥 =
𝑅0𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)

⃒⃒⃒
𝑧=0

where 𝑞𝑤|𝑧=0 = −𝑘
𝜕𝑇

𝜕𝑧
+ 𝑞𝑟

⃒⃒⃒
𝑧=0

The nondimensionalized skin friction, the local Nusselt number, the local wall mass
flux, and the local motile microorganisms flux, respectively, are

𝐶𝑓𝑥𝑅𝑒
𝑛−1
𝑛+1 =

𝜏𝑤|𝑧=0

𝜌(𝑟Ω)2
=

1

𝑟*
(1 + 𝑟*)𝜒[(𝑓 ′(0))2 + (𝑔′(0))2]

1
2

where

𝜏𝑤 =
√︁
𝜏2𝑧𝑟 + 𝜏2𝑧𝜃 is total shear stress,

𝑁𝑢𝑥𝑅𝑒
−1
𝑛+1 = −(1 + 𝑟*)𝜒(1 +𝑅)Θ′(0),

𝑆ℎ𝑥𝑅𝑒
−1
𝑛+1 = −(1 + 𝑟*)𝜒(1 +𝑅)Φ′(0),

𝑁𝑁𝑥𝑅𝑒
−1
𝑛+1 = −(1 + 𝑟*)𝜒(1 +𝑅)Ω′(0).

3. Numerical scheme

In this section, we apply the spectral simple iteration method (SIM) on the
system of equations (2.7)−(2.10).

In the application of the simple iteration method, as expressed by Otegbeye
et al. [24], the method is used in relaxing the system of equations (2.7)−(2.10) in
stages. Firstly, we take equation (2.7) and linearize the nonlinear terms by setting
the term with the highest order of derivative as unknown and the other term(s) as
known when the nonlinear terms are in ℎ and its derivatives. If the nonlinear terms
are a mix of the function ℎ and other functions, the other functions are set to be
known irrespective of the order of derivative of ℎ. All other terms not coupled with
ℎ are assumed to be known. Hence, relaxing equation (2.7) gives

(3.1) ℎ′
𝑟+1 = −2𝑓𝑟 − (𝜁 + 𝛼)𝜒𝑠𝑓 ′

𝑟

where 𝑟 denotes previous time level and 𝑟+1 denotes current time level. The solu-
tions for ℎ and its derivatives obtained in (3.1) are used in the next equation (2.8)
where 𝑓 and its derivatives are being solved for. In applying the same procedure
described and updating solutions from previous equations, we obtain the following;

𝑏1,𝑟𝑓
′′
𝑟+1 + [𝑏2,𝑟]𝑓

′
𝑟+1 + 𝑏3,𝑟𝑓𝑟+1 = 𝑏4,(3.2)

𝑐1,𝑟𝑔
′′
𝑟+1 + [𝑐2,𝑟]𝑔

′
𝑟+1 + [𝑐3,𝑟]𝑔𝑟+1 = 𝑐4,𝑟,(3.3)

𝑑1,𝑟𝜃
′′
𝑟+1 + [𝑑2,𝑟]𝜃

′
𝑟+1 = 𝑑3,𝑟,(3.4)
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𝐺𝑟𝜑′′
𝑟+1 + [𝑒1,𝑟]𝜑

′
𝑟+1 = 𝑒2,𝑟,(3.5)

𝐺𝑟Ω′′
𝑟+1 + [𝑓1,𝑟]Ω

′
𝑟+1 + [𝑓2,𝑟] = 0,(3.6)

where

𝐺𝑟 = 𝑅𝑒
1−𝑛
1+𝑛 (1 + 𝑟*

2𝜒

), 𝐸 = (𝜁 + 𝛼)𝜒𝑠

𝑎1,𝑟 = −2𝑓𝑟 − 𝐸𝑓 ′
𝑟, 𝑏1,𝑟 = 𝐺𝑟, 𝑏2,𝑟 = −ℎ𝑟+1 − 𝐸𝑓𝑟,

𝑏3,𝑟 = −𝛾 − 𝑀

1 + Λ2
, 𝑏4,𝑟 = 𝑓2

𝑟 − 𝑔2𝑟 +
𝑀

1 + Λ2
Λ𝑔𝑟

𝑐1,𝑟 = 𝐺𝑟, 𝑐2,𝑟 = −ℎ𝑟+1 − 𝐸𝑓𝑟+1, 𝑐3,𝑟 = −2𝑓𝑟+1 − 𝛾 − 𝑀

1 + Λ2

𝑐4,𝑟 = − 𝑀

1 + Λ2
Λ𝑓𝑟+1, 𝑑1,𝑟 = 𝐺𝑟(1 +𝑅𝑑), 𝑑2,𝑟 = −𝑃𝑟ℎ𝑟+1 − 𝑃𝑟𝐸𝑓𝑟+1 + 𝑃𝑟𝑁𝑏𝜑′

𝑟,

𝑑3,𝑟 = −𝑃𝑟𝑁𝑡𝐺𝑟𝜃
′2
𝑟 , 𝑒1,𝑟 = −𝐿𝑒ℎ𝑟+1 − 𝐿𝑒𝐸𝑓𝑟+1, 𝑒2,𝑟 = −𝑁𝑡

𝑁𝑏
𝐺𝑟𝜃′′𝑟+1,

𝑓1,𝑟 = −𝐿𝑏ℎ𝑟+1 − 𝐿𝑏𝑃𝑟𝐸𝑓𝑟+1 − 𝑃𝑒𝐺𝑟𝜑′
𝑟+1, 𝑓2,𝑟 = −𝑃𝑒𝐺𝑟𝜑′′

𝑟+1.

The linearized decoupled system of differential equations (3.1)−(3.6) is further
solved using the Chebyshev spectral method. For further knowledge on spectral
methods, we refer the reader to Tang [27], Trefethen [28] and Canuto et al. [29].
This is done by transforming the semi-finite domain 𝜁 ∈ [0, 𝜁∞] to 𝑥, 𝑦 ∈ [−1, 1],
respectively, where 𝜁∞ is a fixed constant. The numerical solutions are defined
using the Lagrange interpolation polynomials of the form

𝐹 (𝜂, 𝜏) ≈
𝑀𝑥∑︁
𝑖=0

𝐸 (𝑥𝑖)𝐿𝑖(𝑥), 𝐸 = ℎ, 𝑓, 𝑔, 𝜃, 𝜑,Ω

which interpolates 𝐸(𝜁) at 𝑥𝑖 where

𝑥𝑖 = cos
(︁ 𝜋𝑖

𝑀𝑥

)︁
, 𝑖 = 0, 1, . . . ,𝑀𝑥,

are Gauss–Lobatto collocation points. Derivatives of the unknown functions from
the system of equations (3.1)−(3.6) are represented using the Chebyshev spectral
method in the form

𝜕(𝑚)𝐸

𝜕𝜁(𝑚)

⃒⃒⃒
(𝑥𝑖

= D𝑚E𝑖, 𝑚 = 1, 2

where D = 2
𝜁∞

𝐷𝑙,𝑘, 𝑙, 𝑘 = 0, . . . ,𝑀𝑥, with 𝐷𝑙,𝑘 being a differentiation matrix with
dimension (𝑀𝑥 + 1)× (𝑀𝑥 + 1). E𝑖 is a vector defined as

E𝑖 = [𝐸𝑖(𝑥0), 𝐸𝑖(𝑥1), . . . , 𝐸𝑖(𝑥𝑀𝑥
)]𝑇 .

We apply spectral methods on the decoupled system of linearized equations
(3.1)–(3.6) to obtain

A1,𝑖H𝑟+1,𝑖 = R1,𝑖, A2,𝑖F𝑟+1,𝑖 = R2,𝑖, A3,𝑖G𝑟+1,𝑖 = R3,𝑖,

A4,𝑖Θ𝑟+1,𝑖 = R4,𝑖, A5,𝑖Φ𝑟+1,𝑖 = R5,𝑖, A6,𝑖Ω𝑟+1,𝑖 = R6,𝑖,
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where

A1,𝑖 = D, A2,𝑖 = [b1,𝑟,𝑖]D
2 + [b2,𝑟,𝑖]D+ [b3,𝑟,𝑖],

A3,𝑖 = [c1,𝑟,𝑖]D
2 + [c2,𝑟,𝑖]D+ [c3,𝑟,𝑖], A4,𝑖 = [d1,𝑟,𝑖]D

2 + [d2,𝑟,𝑖]D,

A5,𝑖 = 𝐺𝑟D2 + [e1,𝑟,𝑖]D, A6,𝑖 = 𝐺D2 + [f1,𝑟,𝑖]D+ [f2,𝑟,𝑖]

R1,𝑖 = a1,𝑟,𝑖, R2,𝑖 = b4,𝑟,𝑖, R3,𝑖 = c4,𝑟,𝑖

R4,𝑖 = d3,𝑟,𝑖, R5,𝑖 = e2,𝑟,𝑖, R6,𝑖 = 0.

4. Results and discussion

In this section, we present the results obtained by solving the system (2.7) to
(2.10). To test the convergence of the solutions and the accuracy of the approximate
solutions obtained using the simple iteration method, we perform solution error and
residual error analysis, respectively.

We note that, unless where varied, the results are generated using the parameter
values 𝜒 = 1, 𝛼 = 0.3, 𝑅𝑒 = 0.9, 𝑛 = 0.5, 𝑟* = 0.2, 𝑀 = 3, Λ = 2, 𝑝 = 0.2, 𝛾 = 0.2,
𝑠 = 0.3, 𝑁𝑡 = 0.2, 𝐿𝑒 = 2, 𝐿𝑏 = 2, 𝑃𝑒 = 0.2, 𝑃 = 0.5, 𝑃𝑟 = 6.8, ℎ = 0.2, 𝑁𝑏 = 0.5,
and 𝑅𝑑 = 2. To conduct the numerical computation, we use 30 grid points and
set our semi-finite domain to a finite domain by choosing a domain [0, 10] which is
observed to be sufficient for obtaining consistent to 10 decimal places.

4.1. Convergence. To test the convergence of the SIM, we use the solution
error which is calculated by computing the difference between solutions after suc-
cessive iterations. When the error between the solutions reaches a point where
further increase in iterations has no significant effect or the error is less than a very
small tolerance level, we say our method converges. The solution error norms are
generated thus;

‖E‖∞ = max
0⩽𝑖⩽𝑀𝑥

‖E𝑟+1,𝑖 −E𝑟,𝑖‖∞, 𝐸 = {𝐻, 𝐹, 𝐺, Θ, Φ, Ω}

Figures 2a to 2d show the solution errors of the SIM. It is observed that as
the number of iterations increase, the solution error decreases linearly and it is
seen that after 50 iterations, the error becomes consistent with further increase in
iterations. We also observe that the error at that point is about 10−15 which shows
that the solutions are consistent to 15 decimal places and, therefore, indicating
that the SIM gives convergent solutions. As indicated, it is also observed that the
solution errors decreases linearly. This is as a result of the decoupling nature of the
SIM. By treating each equation independently, the solution set required involves
just a function and its derivatives and hence is not affected by the solution sets of
other functions.

4.2. Accuracy. To test the accuracy of the SIM, we compute the residual
error by using the approximate solutions to replace the functions in the original
system of equations. We use this to determine how close our solution is to the true
solutions to the system of equations (2.7)–(2.10). We define the residual errors as

max
0⩽𝑖⩽𝑀𝑡

‖Res(E)‖∞ ̸= 0, 𝐸 = {𝐻, 𝐹, 𝐺, Θ, Φ, Ω}
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It is observed from Figures 3a to 3d that the residual errors of the numerical
solutions to the equations (2.7)–(2.9) and (2.10) gets smaller as the number of
iterations increase until an error of 10−15 is obtained. The error remains consistent
as the number of iterations are further increased. From the figures, we see that the
SIM gives highly accurate solutions as evidenced by the error obtained.

Table 1. Skin friction, local Nusselt number, local wall mass flux,
and local wall motile microorganisms flux

1
𝑟* (1 + 𝑟*)𝜒

(︀
(𝑓 ′(0))2 + (𝑔′(0))2

)︀ 1
2 7.3395133615495443

−(1 + 𝑟*)𝜒(1 +𝑅𝑒)𝜃′(0) 0.0180572801736315

−(1 + 𝑟*)𝜒(1 +𝑅𝑒)𝜑′(0) 0.4093352349899516

−(1 + 𝑟*)𝜒(1 +𝑅𝑒)Ω′(0) 0.2439886928064788

Having established the convergence and accuracy of the solutions obtained
using the SIM, we investigate the effect of certain parameters on the various solution
profiles. To achieve convergence of solutions displayed in Table 1 to 16 decimal
places, we need 36 iterations.

Finally, the present results are validated with those obtained in Xun et al. [30]
and Ming et al. [31] and found in an excellent agreement as depicted in Table 2.
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Figure 2. Effect of iterations on the solution error norms
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Figure 3. Effect of iterations on the residual error norms when
𝜉 = 4

Table 2. Validation of the present values 𝑓 ′(0), 𝑔′(0) and 𝜃′(0)
when 𝜒 = 𝛼 = 𝑟* = 𝑁𝑡 = 𝐿𝑏 = 𝐿𝑒 = 𝑅𝑑 = 0, 𝛼 = 0.8, 𝑅𝑒 = 0.9,
𝑛 = 1, 𝑠 = 0.8, 𝑃𝑟 = 1

Authors 𝑓 ′(0) −𝑔′(0) −𝜃′(0)

Present 0.51023 0.61592 0.39625
Xun et al. [30] 0.510231 0.615921 0.396271
Ming et al. [31] 0.51021 0.61591 0.39632

Figures 4(a–d) display the effect of the stretching parameter on the skin fric-
tion, local Nusselt number, local mass flux, and local wall motile microorganisms
flux. The wall shear stress is described as the fluid flowing over the surface of the
stretchable rotating disk. The wall shear stress is enhanced with an enhancement of
the stretching parameter. It is observed that the Nusselt number increases near the
boundaries with an increase in the stretching parameter, but it leads to a decrease
in the mass and motile microorganisms for 0 ⩽ 𝜁 ⩽ 4.

4.3. The effect of radiation, thermophoresis and Brownian motion
parameters. Figures 5(a–d) display that the temperature and concentration pro-
files are increased with an increase of the thermophoresis and Brownian motion
parameters. The thermophoretic force in fluids move fluid particles from regions
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Figure 4. Effect of stretching parameter (𝑃 ) on the skin friction,
mass flux, Nusselt number, and motile microorganism flux.

of hot surface to low and thus the volume fraction distribution boosts. Hence, the
rises in the temperature and concentration are gradual enhancement in nanopar-
ticles percentage with thermophoresis. Random motion or Brownian motion of
nanoparticles also shows important movement of nanoparticles; it describes the
ratio of nanoparticle diffusion to the thermal diffusion in the nanofluid through
Brownian motion parameter. Increasing the value of the random movement, and
also the colliding of macroscopic particles the temperature of the fluid increases
from Figure 5(c). However, the concentration decreases with the increase of the
Brownian motion parameter in Figure 5(d). The influence of thermal radiation
parameter on the fluid temperature and concentration is shown in Figures 5(e–f).
The radiation parameter describes the relative contribution of conduction heat
transfer to thermal radiation transfer. It is found that the temperature of the fluid
increases with the increase in the value of the radiation parameter in Figure 5(e).
This is because of a decrease in the Rosseland radiation absorptivity as the radia-
tion parameter increases. The opposite effect is observed for concentration as seen
in Figure 5(f).
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Figure 5. Effect of 𝑁𝑡,𝑁𝑏 and 𝑅𝑑

4.4. The effect of Hall parameter. Figures 6(a–e) show the effects of Hall
current parameter on the flow. It is observed in Figures 6(a) and 6(c) that, as the
Hall parameter (Λ ⩽ 1) increases, the velocity profiles increase. This is because
the reducing effect of the magnetic field due to the damping effect is enhanced by
inducing secondary flow, 𝑔, and this process decreases the primary flow, as shown
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in Figure 6(b). The temperature increases with the increase in the Hall parameter
as seen in Figures 6(d). The magnetic force increases friction between the fluid and
disk surface resulting in an increase in temperature of the fluid. A similar effect
is observed in the concentration and gyrotactic microorganism concentration from
Figures 6(e–f).
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Figure 6. Effect of Hall parameter Λ
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(b) Effect of 𝑝 on 𝑓(𝜂, 𝜉)
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(c) Effect of 𝑝 on 𝑔(𝜂, 𝜉)
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Figure 7. Effect of stretching parameter 𝑝

4.5. The effect of stretching parameter. The impact of stretching param-
eter on velocities is presented in Figures 7(a–c). The radial and tangential velocities
increases with the increase of stretching parameter. A similar observation in magni-
tude is seen for the axial velocity. Negative values in the axial velocity show that the
flow is in the reverse direction. Gyrotactic microorganism concentration falls when
stretching parameter is increased, but the temperature and concentration increase
with increases in the values of stretching parameter as seen in Figures 7(d–f).
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(b) Effect of 𝛾 on 𝑓(𝜂, 𝜉)
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(c) Effect of 𝛾 on 𝑔(𝜂, 𝜉)
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(f) Effect of 𝛾 on 𝜒(𝜂)

Figure 8. Effect of permeability parameter 𝛾

4.6. The effect of permeability parameter. Figures 8(a–c) show the ef-
fect of permeability parameter of porous medium. The increase of permeability
parameter results in the decrease of the flow velocity. The more the medium is
porous, the higher the restriction is to the fluid flow which causes deceleration of
the motion. It is observed in Figure 8(d) that porosity parameters increase shows
an increase in temperature, as a result of the increase in the boundary layer caused
by viscosity. A similar relation shows in the profile of concentration and gyrotactic
microorganism concentration in Figures 8(e–f).
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5. Conclusion

In this study, the flow over stretchable disks under the influence of magnetic
field was investigated. Numerical analysis was carried out using the simple iteration
method (SIM). The accuracy and convergence of the solutions obtained using the
SIM were established by analysis and matching results from literature. The effects
of porosity, Hall, radiation, Brownian motion, and thermophoresis parameters were
studied. The key conclusions are:

∙ The more the disk is stretched the profile of the temperature decreases.
∙ An increase in the permeability parameter causes an increase in the surface

temperature.
∙ The increase in the Hall parameter increases the radial and tangential

velocities while decreasing the radial velocity.
∙ Thermophoresis parameter increase enhances the temperature and con-

centration.
∙ The increase in Brownian motion parameter decreases the concentration.
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НУМЕРИЧКА СИМУЛАЦИJА ТОКА НАНОФЛУИДА
ИЗНАД РОТИРАJУЋЕГ ДИСКА

Резиме. У овоj студиjи истражуjе се стационаран магнетохидродинамички
(MHD) ток изнад ротационог диска у присуству гиротактичких микрооргани-
зама. Jедначине коjе моделираjу ток се решаваjу нумерички користећи новоу-
ведену методу jедноставне итерациjе (SIM) коjа настоjи да линеаризуjе систем
користећи технику релаксациjе коjа ефикасно раздваjа систем. Да би се про-
верила конвергенциjа и тачност методе, врши се анализа грешке решења и
заосталих грешака. Добиjени резултати сугеришу да jе SIM веома ефикасан
метод коjи даjе конвергентна и високо прецизна решења. Такође се истражу-
jу ефекти различитих параметара, као и комбиновани утицаjи параметара на
профиле раствора. Повећање Холовог параметара и пермеабилности доводи до
одговараjућег пораста густине микроорганизма и запреминског удела наноче-
стица.
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