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THE BEHAVIOR OF A SATELLITE TRAJECTORY
NEAR THE EQUILIBRIUM POINTS OF SUN-EARTH

SYSTEM AND ITS CONTROL

Lina A. Shalby and Noha A. Ali

Abstract. In this paper, the behavior of a satellite trajectory near the equi-
librium points of the Sun-Earth system is studied. The equations describing
the motion of the satellite in the circular restricted three body problem for
the Sun-Earth system, are discussed for their ordinary differential equations
form, and Lagrange points are determined. Then, the stability is studied at
each Lagrange point. The trajectories of a satellite starting its motion near
Lagrange points are illustrated, showing the stability and instability behavior.
Finally, the unstable trajectory is controlled by using 𝑙2-method at 𝐿1 as an
example.

1. Introduction

The motion of a satellite in the Sun-Earth system is often described by the well
known circular restricted three-body problem (CR3BP). A significantly small body
(such as a satellite) is considered to be moving under the gravitational influence
of two large masses (such as Sun-Earth and Earth-Moon, etc). These two large
finite masses are called primaries. The equations of motion of the satellite are
given by a set of non-linear autonomous ordinary differential equations (ODE).
The procedures in analyzing a nonlinear system of ODEs are to find its equilibrium
points, then the linear stability is applied due to each point. Euler and Lagrange
deduced that there are five equilibrium points for the third body in the system. This
equilibrium resulted from a balance in the centrifugal force and the gravitational
attraction of the larger bodies. In [1–3], the orbits of solar sails are studied, while
their importance for navigation is introduced in [4].

The equilibrium points of the dynamical system are called Lagrange points.
The stability of equilibrium points are studied for CR3BP, see for example [5,6].
For the unstable Lagrange points, there were many studies to control the trajectory
such as those in [7,8]. In this paper, we study the motion of satellites in the Sun-
Earth system.
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The attraction of the infinitesimal particle on the primaries has been neglected
(as if it had zero mass), so the primaries orbit in a circle around their common center
of mass. The dynamical system in dimensionless coordinates is autonomous and
has only one dependent parameter denoted by 𝜇 (the mass parameter introduced
in the next section), which makes it attractive to be studied.

The CR3BP is a very old model used in celestial mechanics. In this paper,
we have a different view for the system which focuses on its behavior. We have
presented detailed implementations. They showed the local stability of some equi-
librium points while others were unstable. Then, the unstable chaotic trajectories
are an interesting source for applying control methods to change their behavior for
a certain duration with minimum negligible values added to the system. Here, we
have used Quadratic Programming to control the chaotic trajectory at one of the
unstable equilibrium points (the most useful point to be controlled, that is between
Earth and Sun).

In the following section, the equations of motion are presented. Then, the
determination of Langrange points is discussed. After that, the stability at each
point is studied theoretically. In the last section, the trajectory of a satellite near
each point is shown numerically. All implementations are carried out by using
Maple and Matlab programs.

2. Equation of motion

We perform our studies in the synodic reference frame, where the origin coin-
cides with the common center of mass of the two primaries (barycenter) denoted
by 𝑚1,𝑚2, where 𝑚1 > 𝑚2. The x-axis connects 𝑚1 and 𝑚2 in direction of the
lower mass 𝑚2, and the y-axis completes the frame as a right-handed coordinate
system (see Fig. 1).
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Figure 1. The bodies 𝑚1 and 𝑚2 in plane presentation.

All units of the system are set to be one (i.e. the units are dimensionless),
such that the sum of primaries’ masses and the distance between them equal one,
the unit of time is arbitrarily chosen and not interesting in calculations since the
system is autonomous. In our studied system of Sun-Earth, the mass parameter 𝜇,
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can be calculated by

𝜇 =
𝐺 ·𝑚𝐸

𝐺 ·𝑚𝐸 +𝐺 ·𝑚𝑆
=

𝑚𝐸

𝑚𝐸 +𝑚𝑆

where G is the gravitational constant, 𝑚𝑆 and 𝑚𝐸 are the masses of the Sun and
Earth, respectively. Since 𝑚𝑆 = 1988500 * 1024 kg and 𝑚𝐸 = 5.97 * 1024 kg, then
we get

𝜇 =
𝑚𝐸

𝑚𝐸 +𝑚𝑆
= 0.000003002253999.

The location of the Sun is at (−𝜇, 0), while the Earth is located at (1− 𝜇, 0).
The equations of motion of the satellite in the Sun-Earth system are described

by,

(2.1)
�̈� =2�̇� + 𝑥− (1− 𝜇)(𝑥+ 𝜇)

𝑟31
− 𝜇(𝑥− (1− 𝜇))

𝑟32

𝑦 =− 2�̇�+ 𝑦 − (1− 𝜇)𝑦

𝑟31
− 𝜇𝑦

𝑟32

where 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) are presenting the location of the satellite in the carte-
sian coordinates, �̇�, �̇� are the velocities, �̈�, 𝑦 are the acceleration components, and
𝑟1 =

√︀
(𝑥+ 𝜇)2 + 𝑦2 and 𝑟2 =

√︀
(𝑥− 1 + 𝜇)2 + 𝑦2 are the position vectors of the

satellite with respect to the primaries 𝑚1 and 𝑚2.
In the next section, we will determine the equilibrium points and the system is

solved for the stationary state.

Table 1. The 𝑥 and 𝑦 coordinates of the five Lagrange points in
the synodic reference frame for the Sun-Earth system.

x y
𝐿1 0.9900280279 0
𝐿2 1.010032778 0
𝐿3 −1.000001251 0
𝐿4 0.4999969977 0.8660254040
𝐿5 0.4999969977 −0.8660254040

3. Lagrange points

Lagrange points are named in honor of Italian-French mathematician Josephy-
Louis Lagrange. Their locations are in space, creating enhanced regions of attrac-
tion and repulsion. These can be used by a satellite to reduce the fuel consumption
needed to stay in a position for some time to complete its mission. There are three
Lagrange points, denoted by 𝐿1, 𝐿2 and 𝐿3, which lie along the line connecting the
two primaries. The two other Lagrange points, labeled 𝐿4 and 𝐿5, form the apex
of two equilateral triangles that have the large masses at their vertices.

The point 𝐿1 of the Sun-Earth system provides an uninterrupted view of the
Sun and is currently home to the Solar and Heliospheric Observatory Satellite
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(SOHO). The point 𝐿2 of Sun-Earth system had been home to the WMAP space-
craft, then it became home of Planck, and currently it is home of the James Webb
Space Telescope. 𝐿2 is ideal for astronomy because it allows a spacecraft to be close
enough to easily communicate with the Earth. NASA will probably not find any
use for the 𝐿3 point as it remains hidden behind the Sun all the time. By studying
the real part of eigenvalues corresponding to the points vs the values of 𝜇, it is easy
to find that for 𝜇 < 0.0385, the eigenvalues of 𝐿4 and 𝐿5 are purely imaginary,
otherwise the real part would take place as well as 𝐿1, 𝐿2 and 𝐿3. So that, 𝐿4

and 𝐿5 host stable orbits as long as the mass ratio between the two large masses
exceeds 24.96 (i.e. 𝑚1/𝑚2 > 24.96). This condition is met for both Sun-Earth and
Earth-Moon systems, and for many other pairs of bodies in the solar system, so 𝐿4

and 𝐿5 can be used in many applications and studies such as in [9–11].
When solving the equations of motion of a satellite to find Lagrange points, it

is known that it will be at rest. This means that the velocity and acceleration of
the third body are zero in both directions 𝑥 and 𝑦. So that the equations of motion
will become

𝑥− (1− 𝜇)(𝑥+ 𝜇)

𝑟31
− 𝜇(𝑥− 1 + 𝜇)

𝑟32
=0(3.1)

(1− 1− 𝜇

𝑟31
− 𝜇

𝑟32
)𝑦 =0(3.2)

Observing equation (3.2), there are two groups of solutions. The first group has
𝑦 ̸= 0; therefore, equation (3.2) will become

(3.3) 1− 1− 𝜇

𝑟31
− 𝜇

𝑟32
= 0

Solving the equations (3.1) and (3.3), we find the two solutions of the system
corresponding to 𝐿4 and 𝐿5.

𝐿4 =
(︁1
2
− 𝜇,

√
3

2

)︁
𝐿5 =

(︁1
2
− 𝜇,

−
√
3

2

)︁
The second group has 𝑦 = 0. That is why equation (3.2) will vanish and equation
(3.1) will become

(3.4) 𝑥− (1− 𝜇)(𝑥+ 𝜇)

((𝑥+ 𝜇)2)3/2
− 𝜇(𝑥− 1 + 𝜇)

((𝑥− 1 + 𝜇)2)3/2
= 0

By simplifying Eq. (3.4), we get three cases due to 𝑥-values :

∙ If 𝑥 > 1− 𝜇, then equation (3.4) will become

𝑥5 + (4𝜇− 2)𝑥4 + (6𝜇2 − 6𝜇+ 1)𝑥3 + (4𝜇3 − 6𝜇2 + 2𝜇− 1)𝑥2(3.5)

+ (𝜇4 − 2𝜇3 + 𝜇2 − 4𝜇+ 2)𝑥+ (−3𝜇2 + 3𝜇− 1) = 0
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∙ If −𝜇 < 𝑥 < 1− 𝜇, then equation (3.4) will become

𝑥5 + (4𝜇− 2)𝑥4 + (6𝜇2 − 6𝜇+ 1)𝑥3 + (4𝜇3 − 6𝜇2 + 4𝜇− 1)𝑥2(3.6)

+ (𝜇4 − 2𝜇3 + 5𝜇2 − 4𝜇+ 2)𝑥+ (2𝜇3 − 3𝜇2 + 3𝜇− 1) = 0

∙ If 𝑥 < −𝜇, then equation (3.4) will become

𝑥5 + (4𝜇− 2)𝑥4 + (6𝜇2 − 6𝜇+ 1)𝑥3 + (4𝜇3 − 6𝜇2 + 2𝜇+ 1)𝑥2(3.7)

+ (𝜇4 − 2𝜇3 + 𝜇2 + 4𝜇− 2)𝑥+ (+3𝜇2 − 3𝜇+ 1) = 0

Each of the last three equations has five roots, four of them are complex numbers
and one is real. So, in order to find the three real solutions of equation (3.4), we
substitute by 𝜇 in equations (3.5), (3.6) and (3.7).

Then the five Lagrange points are as presented in the table below.

4. Stability of Lagrange points

When studying the stability of nonlinear second order ODEs (2.1), we first
need to reduce their order.

Let 𝑍 =

(︂
𝑥
𝑦
𝑢
𝑣

)︂
, �̇� =

(︂
𝑢
𝑣
�̇�
�̇�

)︂
, 𝑓(𝑍) =

(︂ 𝑓1
𝑓2
𝑓3
𝑓4

)︂
, where𝑓1 = 𝑢 = �̇�,𝑓2 = 𝑣 = �̇�,

𝑓3 = �̇� = 2𝑣 + 𝑥 − (1−𝜇)(𝑥+𝜇)
𝑟31

− 𝜇(𝑥−(1−𝜇))
𝑟32

, 𝑓4 = �̇� = −2𝑢 + 𝑦 − (1−𝜇)𝑦
𝑟31

− 𝜇𝑦
𝑟32

. So
that the system can take the form,

(4.1) �̇� = 𝑓(𝑍)

A solution 𝜑(𝑡) to the system (4.1) is said to be stable if every solution 𝜓(𝑡) of
the system close to 𝜑(𝑡) at initial time 𝑡 = 0 remains close for all future time. If
at least one solution 𝜓(𝑡) does not remain close, then 𝜑(𝑡) is said to be unstable.
Expressed mathematically, resembling the definition for a limit: For each choice of
𝜀 > 0 there is a 𝛿 > 0 such that |𝜑(𝑡)− 𝜓(𝑡)| < 𝜀 whenever |𝜑(0)− 𝜓(0)| < 𝛿.

The stability of the equilibrium solution L of the autonomous nonlinear system
(4.1) is related to that of its linearized system. Since the equilibrium solution of
this system is a constant vector 𝐿 for which 𝑓(𝐿) = 0. Then the system can be
linearized about 𝐿 by using Taylor’s Theorem,

𝑓(𝑍) = 𝑓(𝐿) +𝐷𝑓(𝐿) · (𝑍 − 𝐿) +𝑅(𝑍)

Since 𝑓(𝐿) = 0. Then

𝑓(𝑍) = 𝐷𝑓(𝐿) · (𝑍 − 𝐿) +𝑅(𝑍)

where 𝐷𝑓(𝐿) is the matrix of first-order partial derivatives of 𝑓(𝑍) evaluated at 𝐿.
In other words, 𝐷𝑓(𝐿) is the jacobian matrix 𝐽 evaluated at 𝐿. The remainder is
𝑅(𝑍) where 𝑍 is some value dependent on 𝑍 and 𝐿 and includes the higher order
terms of the original function. Let 𝑍 − 𝐿 = 𝑊 . Then, the linearized form of the
non-linear system (4.1) is

(4.2) �̇� = 𝐽 |𝐿 ·𝑊
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Since we have five equilibrium solutions, we will find for each solution its Jacobian
matrix such that

𝐽 =

⎛⎜⎜⎜⎜⎜⎝
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓1
𝜕𝑢

𝜕𝑓1
𝜕𝑣

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

𝜕𝑓2
𝜕𝑢

𝜕𝑓2
𝜕𝑣

𝜕𝑓3
𝜕𝑥

𝜕𝑓3
𝜕𝑦

𝜕𝑓3
𝜕𝑢

𝜕𝑓3
𝜕𝑣

𝜕𝑓4
𝜕𝑥

𝜕𝑓4
𝜕𝑦

𝜕𝑓4
𝜕𝑢

𝜕𝑓4
𝜕𝑣

⎞⎟⎟⎟⎟⎟⎠
Table 2. Jacobian matrix and its corresponding eigenvalues for
each Lagrange point.

L J Eigenvalues

𝐿1

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

8.88148 0 0 2
0 −2.94074 −2 0

⎞⎟⎟⎠
𝜆1 = −2.48441
𝜆2 = 2.48441

𝜆3 = 5.55112× 10−17 + 2.05707𝐼
𝜆4 = 5.55112× 10−17 − 2.05707𝐼

𝐿2

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

9.12177 0. 0 2
0. −3.06089 −2 0

⎞⎟⎟⎠
𝜆1 = −2.53258
𝜆2 = 2.53258

𝜆3 = 1.11022× 10−16 + 2.08641𝐼
𝜆4 = 1.11022× 10−16 − 2.08641𝐼

𝐿3

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

3.00001 −0. 0 2
−0. −0.000003 −2 0

⎞⎟⎟⎠
𝜆1 = 1.30104× 10−18 + 1.000003𝐼
𝜆2 = 1.30104× 10−18 − 1.000003𝐼

𝜆3 = −0.00281
𝜆4 = 0.00281

𝐿4

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

0.75000 1.29903 0 2
1.29903 2.25000 −2 0

⎞⎟⎟⎠
𝜆1 = −8.14453× 10−16 + 0.99999𝐼
𝜆2 = −8.14453× 10−16 − 0.99999𝐼
𝜆3 = 5.48580× 10−16 + 0.00450𝐼
𝜆4 = 5.48580× 10−16 − 0.00450𝐼

𝐿5

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

0.75000 −1.29903 0 2
−1.29903 2.25000 −2 0

⎞⎟⎟⎠
𝜆1 = 3.81639× 10−17 + 0.99999𝐼
𝜆2 = 3.81639× 10−17 − 0.99999𝐼
𝜆3 = 6.62752× 10−16 + 0.00450𝐼
𝜆4 = 6.62752× 10−16 − 0.00450𝐼

The resultant jacobian matrices and their corresponding eigenvalues are in
Table 2 at each Lagrange point.

The stability of autonomous continuous time dynamical system could be sum-
marized to:

(1) Every solution is stable if all the eigenvalues of J have negative real parts.
(2) Every solution is unstable if at least one eigenvalue of J has positive real

part.
(3) Suppose that the eigenvalues of J are all having zero real parts. Then the

linear stability is not enough, and solution behavior or its approximation
could indicate whether or not the equilibrium point is stable(see [12]).
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From the table, we can conclude that 𝐿1, 𝐿2 and 𝐿3 are unstable. However, we
cannot conclude whether or not 𝐿4 and 𝐿5 are stable. Therefore, we have to use
another method and that is the numerical solution of the ODEs (2.1) about each
Lagrange point.

5. Trajectory of satellites

In this section, we study the behavior of different solutions of the system (2.1).
These solutions are testing the satellite’s trajectories left to move freely (the initial
condition has zero velocity, �̇�(0) = 0 and �̇�(0) = 0) and starting from different
initial positions related to each Lagrange point.

The energy of the system (4.1) has the following form

𝐸 =
1

2

(︀
�̇�2 + �̇�2

)︀
− 1

2

(︀
𝑥2 + 𝑦2

)︀
− 1− 𝜇

𝑟1
− 𝜇

𝑟2

For zero kinetic energy, the remaining part 𝐸0 (the energy constant) of the
total energy is given by

(5.1) 𝐸0 = −1

2

(︀
𝑥2 + 𝑦2

)︀
− 1− 𝜇

𝑟1
− 𝜇

𝑟2
= −𝐶

2
,

The contour plot of energy given by Eq. (5.1) is presented in Fig. 2. This general
contour plot shows the energy for the Sun-Earth system.

Figure 2. Contour plot for 𝐸0 around Lagrangian points.
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Figure 3. Contour plot for 𝐸0 around a) Earth, b) 𝐿3, c) 𝐿4,
and d) 𝐿5.

To show the energy around Lagrange points, Fig. 3 is plotted representing the
energy close to Lagrange points and close to Earth. Fig. 3a is showing the earth
between 𝐿1 and 𝐿2. Fig. 3b is showing the energy degradation surrounding 𝐿3.
While Fig. 3c and 3d are showing the energy around 𝐿4 and 𝐿5. The energy has its
effect on the trajectory, as they are bounded according to the energy level they are
flowing inside. This is well observed in the next figures for the trajectory starting
from close positions to Lagrange points.

We used Matlab to plot the solutions in each case with different initial positions
𝑥0, 𝑦0, where the solution of System (2.1) is solved by Runge-Kutta method with
step size 10−3.

In Fig. 4a, 4b, and 4c, the trajectory initial positions are chosen to be close
to 𝐿1, which, if it is chosen before 𝐿1 and on the side of the Sun, the satellite will
orbit the Sun with a chaotic behavior (i.e. without any repetition for the orbit),
this is the case in Fig. 4a and 4b. While for initial positions between 𝐿1 and Earth,
the orbit of the satellite would be chaotic around Earth as in Fig. 4c.

Fig. 5 illustrates the chaotic behavior of the trajectories starting from initial
positions between Earth and 𝐿2. Both Fig. 5a and 5b are orbiting the Earth. On



SUN-EARTH LAGRANGE POINTS BEHAVIOR 33

x

-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

Sun L
1

(x
0
,y

0
) = (L

1
-10-5,-10-5)

(a)

x

-1 -0.5 0 0.5 1

y

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

L
1

Sun

(x
0
,y

0
) = ((L

1
+L

4
)/2,0)

(b)
x

0.99 0.995 1 1.005 1.01

y

×10
-3

-8

-6

-4

-2

0

2

4

6

8

EarthL
1

(x
0
,y

0
) = (L

1
+10-4,-10-4)

(c)

Figure 4. Trajectories initial positions close to 𝐿1

the other hand, for initial positions between 𝐿3 and the Sun, the trajectories would
be also chaotic but orbiting the Sun. This is introduced in Fig. 6a, 6b, and 6c for
different positions.

From Fig. 7, the satellite’s trajectory could be considered to have local stable
behavior for very close initial positions, inside a very small neighborhood to 𝐿4 and
𝐿5 as shown in Fig. 7a and 7b, respectively. The trajectories are forming repetitive
cycles around 𝐿4 or 𝐿5. For further initial positions, the trajectories are extending
and forming further cycles from 𝐿4 and 𝐿5 such as in Fig. 7c. Then, a longer cycle
could lead to an incomplete circular cycle as in Fig. 7d, and this incomplete circle
is bounded as shown from the energy effect around the Earth. This behavior for
both 𝐿4 and 𝐿5 is considered to be stable, so that asteroids are kept and collected
at 𝐿4 and 𝐿5.

On the other hand, the chaotic behavior is attracting researchers to control such
cases. In the next section, we will give a brief example to control the trajectory at
𝐿1 by using quadratic programming (𝑙 − 2 technique).
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Figure 5. Trajectories starting from close positions to 𝐿2.
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Figure 7. Trajectories starting from near positions to 𝐿4 and 𝐿5.



SUN-EARTH LAGRANGE POINTS BEHAVIOR 35

x

-1.5 -1 -0.5 0 0.5 1 1.5

y

-1.5

-1

-0.5

0

0.5

1

1.5

Sun
Earth

L
3

L
4

L
5

(x
0
,y

0
) = (L

3
+10-2,0)

(a)
x

-1.5 -1 -0.5 0 0.5 1 1.5

y

-1.5

-1

-0.5

0

0.5

1

1.5

Sun
Earth

L
3

L
4

L
5

(x
0
,y

0
) = (L

3
+10-2,-10-2)

(b)

x

-1.5 -1 -0.5 0 0.5 1 1.5

y

-1.5

-1

-0.5

0

0.5

1

1.5

Earth
L

3

L
4

L
5

Sun

(x
0
,y

0
) = (-0.8,0.2)

(c)

Figure 6. Trajectories plotted from initial position close to 𝐿3

Figure 8. The controlled trajectory (colored in blue) at 𝐿1

(marked as red star), and the distance between the final position
of satellite and 𝐿1 is the dashed line.
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6. 𝑙2-technique to control trajectory at 𝐿1

We assume that there is a satellite, supplied by two jet engines. One engine is
directed horizontally and the other is vertically. Suppose that the inserted control
components are 𝑈 (1), 𝑈 (2), added to the right hand side of the last two equations of
the System (2.1). We will use the standard 𝑙2-approach with a quadratic functional.
The objective function is 𝐽 =

∫︀ 𝑇

0

(︀
||𝑈 (1)||2 + ||𝑈 (2)||2

)︀
𝑑𝑡, which is required to be

minimized. However, the system is ordinary differential equations with no analyti-
cal solution, it is discretized numerically to determine the approximate solution and
study the trajectory. Hence the objective function can be used in its discretized
form too, as submissions instead of integration, i.e. 𝐽 =

∑︀𝑁−1
𝑛=0

(︀
||𝑈 (1)

𝑛 ||2+||𝑈 (2)
𝑛 ||2

)︀
.

To solve the problem, it is firstly solved for the linearized form of the system (Equa-
tion (4.2)), which is now considered to include the control terms as follows,

(6.1) �̇� = 𝐽 |𝐿1𝑊 +𝐵𝑈,

where 𝐵 =
(︀
0 0 1 0
0 0 0 1

)︀𝑇 . Then the minimization of 𝐽 is determined for the discretized
form of Equation (6.1), which is 𝑊𝑛+1 =𝑊𝑛 + 𝛿𝑡(𝐽 |𝐿1

𝑊𝑛 +𝐵𝑈𝑛). After that, we
apply the resulting minimized control values of 𝑈 in the nonlinear system numerical
solution. In this case, we obtain a terminal condition close to 𝐿1. We take 𝑇 = 1,
𝑁 = 5000, and 𝛿𝑡 = 1/5000. The trajectory is shown in Figure 8 which is colored
in blue. It is clear that the trajectory turned close to 𝐿1 instead of escaping away
far from 𝐿1.

Simulation of such a control method under various initial conditions has effec-
tiveness to keep a body for some space missions inside a close position to unstable
Lagrange point till it completes its task, for example recording information or tak-
ing photos.

7. Conclusion

The behavior of a satellite trajectory near the equilibrium points of the Sun-
Earth system is studied as a case of the circular restricted three body problem.
The dynamical system is solved at a stationary state and Lagrange points are
determined. Then, the linear stability of the system is discussed. We presented
a satellite trajectory numerically and showed that the trajectory is unstable near
𝐿1, 𝐿2 and 𝐿3, and its trajectory is unstable between 𝐿4 or 𝐿5 and Sun (closer
to 𝐿4 or 𝐿5 respectively). Satellite trajectory is considered to be locally stable
inside a very small neighborhood of 𝐿4 or 𝐿5. For the chaotic trajectory, quadratic
programming is used to control it. 𝐿1 is selected as an example and the control
method is successfully applied to drive the trajectory close to 𝐿1.
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ПОНАШАЊЕ ТРАJЕКТОРИJЕ САТЕЛИТА У
БЛИЗИНИ ТАЧАКА РАВНОТЕЖЕ СИСТЕМА

СУНЦЕ-ЗЕМЉА И ЊЕГОВА КОНТРОЛА

Резиме. У овом раду се проучава понашање траjекториjе сателита у близини
равнотежних тачака система Сунце-Земља. За диференциjалне jедначине коjе
описуjу кретање сателита у кружном ограниченом проблему три тела за систем
Сунце-Земља одређуjу се Лагранжове тачке. Затим се проучава стабилност у
свакоj Лагранжовоj тачки. Илустроване су траjекториjе сателита коjи почиње
да се креће у близини Лагранжове тачке, показуjући стабилно и нестабилно
понашање. Коначно, као пример, нестабилна траjекториjа jе контролисана ко-
ришћењем 𝑙2-методе у 𝐿1.
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