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TRANSMUTATION OF CENTRAL FORCES
AND BERTRAND’S THEOREM

Christian Carimalo

Abstract. The transmutation of central forces, or dual law, is a transfor-
mation linking potentials in power law relative to the distance, that is, those
having a positive exponent to those having a negative exponent. A well known
example is that of the Newtonian and Hookean potentials, which are also
strongly linked by Bertrand’s famous theorem. This article shows how the use
of dual law provides a better understanding of this theorem, and a new way
to complete its demonstration.

1. Introduction

Looking for possible trajectories of a classical and nonrelativistic particle mov-
ing in a spherically symmetric potential produced by a point source 𝑂, one finds
that stable circular orbits and closed quasi-circular orbits can only be realized at any
distance 𝑟 from the source by attractive potentials of the form 𝑉 p𝑟q “ ´𝐾{𝑟𝛼 with
𝐾𝛼 ą 0 and 𝛼 “ 2´ 𝛽2, where 𝛽 is a rational number, [1]. In addition, Bertrand’s
theorem states that among such potentials, only the Newtonian potential ´𝐾𝑁{𝑟
(𝐾𝑁 ą 0, 𝛽𝑁 “ 1) and the Hookean potential 𝐾𝐻𝑟

2{2 (𝐾𝐻 ą 0, 𝛽𝐻 “ 2) satisfy
these requirements, [2]. As is well known, these closed orbits are ellipses for the two
potentials, having the source as a focus in the Newtonian case and as a center in the
Hookean case. This curious concordance has already been noted and described by
I. Newton in his Principia, [3]. In fact, this similarity between closed orbits given
by two different laws of forces can be explained by what T. Needham has called
the transmutation of central forces, [4]. Its generalization to other power laws and
mathematical extensions of the idea have been carried out by various authors in
the past, [5–8], or even recently, see [9]. Its description in current formulation can
also be found in [10].

In this article, we investigate how this property manifests in the proof of
Bertrand’s theorem.
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2. Duality formulas

Let us briefly describe the context. The trajectories of a particle moving in a
spherically symmetric potential 𝑉 p𝑟q are planar. Let us consider a bounded tra-
jectory (produced by an attractive potential), lying inside a circular crown defined
by 𝑟𝑚 ď 𝑟 ď 𝑟𝑀 , the values of 𝑟𝑚 and 𝑟𝑀 depending on the values of the energy
𝐸 and the angular momentum 𝐿 ą 0 of the particle. The orthoradial velocity of
the particle having mass 𝑚 is given by 𝑣𝜃 “ 𝑟 9𝜃 “ 𝐿{p𝑚𝑟q and is always positive if
𝐿 ‰ 0. Consequently, the particle inside the said crown turns indefinitely around
the source. When 𝑟 “ 𝑟𝑚 or 𝑟 “ 𝑟𝑀 , we have turning points where the radial
velocity 𝑣𝑟 “ 9𝑟 of the particle cancels. Then,

(2.1) 𝐸 “
𝑚 9𝑟2

2
`

𝐿2

2𝑚𝑟2
` 𝑉 p𝑟q “

𝐿2

2𝑚𝑟2𝑚
` 𝑉 p𝑟𝑚q “

𝐿2

2𝑚𝑟2𝑀
` 𝑉 p𝑟𝑀 q

Using the two equations

9𝜃 “
𝐿

𝑚𝑟2
, 9𝑟 “ ˘

c

2

𝑚

´

𝐸 ´
𝐿2

2𝑚𝑟2
´ 𝑉 p𝑟q

¯

,

the function 𝜃p𝑟q, which is the inverse of the polar equation 𝑟p𝜃q of the trajectory,
is obtained from the integral

𝜃p𝑟q “

c

𝐿2

2𝑚

ż 𝑟

𝑟𝑚

𝑑𝑠

𝑠2
b

`

𝐸 ´ 𝐿2

2𝑚𝑠2 ´ 𝑉 p𝑠q
˘

,

the positivity of 9𝜃 being taken into account, and setting 𝜃p𝑟𝑚q “ 0. Let 𝑃𝑚 and
𝑃𝑀 be two successive turning points. The separation angle between the two axes
𝑂𝑃𝑚 and 𝑂𝑃𝑀 is thus given by

(2.2) Δ𝜃 “

c

𝐿2

2𝑚

ż 𝑟𝑀

𝑟𝑚

𝑑𝑟

𝑟2
b

`

𝐸 ´ 𝐿2

2𝑚𝑟2 ´ 𝑉 p𝑟q
˘

It can be shown that if the trajectory is closed, these two axes are axes of
symmetry, thanks to the spherical symmetry of the potential. It is known that
a plane curve having two crossing axes of symmetry is closed if and only if their
separation angle is commensurable with 𝜋. This is exactly the matter of Bertrand’s
theorem to find which potentials can give to Eq. (2.2) a value commensurable
with 𝜋 that additionally must not depend on the values of 𝐸 and 𝐿p‰ 0q. The
first selection is obtained by imposing that, at any distance from the source, the
potential produces: 1) stable circular orbits and 2) closed quasi-circular orbits. As
said previously, the only potentials satisfying these requirements are those of the
form ´𝐾{𝑟𝛼 with 𝐾𝛼 ą 0 and 𝛼 “ 2 ´ 𝛽2 in order to satisfy point 1), and where
𝛽 must be a rational number in order to satisfy point 2). We then obtain

(2.3) Δ𝜃 “
𝜋

𝛽

It is thus sufficient to deal with the following two cases
i) case (a): 𝑉𝑎p𝑟q “ ´𝐾𝑎{𝑟𝑎 with 𝐾𝑎 ą 0 and 𝑎 “ 2 ´ 𝛽2

𝑎 ą 0,
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ii) case (b): 𝑉𝑏p𝑟q “ 𝐾𝑏𝑟
𝑏{2 with 𝐾𝑏 ą 0 and 𝑏 “ 𝛽2

𝑏 ´ 2 ą 0,

where, at this stage, 𝛽𝑎 and 𝛽𝑏 need not be rational, but must verify 0 ă 𝛽𝑎 ă
?
2

and 𝛽𝑏 ą
?
2.

First, let us give to Eq. (2.2) a more manageable form. In case (a), using (2.1)
and making the substitution 𝑟 “ 𝑟𝑚{𝑥, we obtain

Δ𝜃 “ Δ𝜃𝑎 “

ż 1

𝑥𝑎

𝑑𝑥
a

𝐴𝑎p𝑥q
,

where

(2.4) 𝐴𝑎p𝑥q “ 1 ´ 𝑥2 ´ 𝜒𝑎p1 ´ 𝑥𝑎q, and 𝜒𝑎 “
1 ´ 𝑥2𝑎
1 ´ 𝑥𝑎𝑎

ą 1, 𝑥𝑎 “
𝑟𝑚
𝑟𝑀

ă 1

The equivalent form for case (b) is

Δ𝜃 “ Δ𝜓𝑏 “

ż 1

𝑦𝑏

𝑑𝑦
a

𝐵𝑏p𝑦q
,

where

(2.5) 𝐵𝑏p𝑦q “ 1 ´ 𝑦2 ´ 𝜂𝑏p𝑦
´𝑏 ´ 1q, and 𝜂𝑏 “

1 ´ 𝑦2𝑏
𝑦´𝑏
𝑏 ´ 1

, 𝑦𝑏 “
𝑟𝑚
𝑟𝑀

ă 1

It is easy to check that Δ𝜃𝑎 “ 𝜋, independent of 𝑥𝑎, for 𝑎 “ 1, and Δ𝜓𝑏 “ 𝜋{2,
independent of 𝑦𝑏, for 𝑏 “ 2. Thus the Newtonian and the Hookean potentials
satisfy requirements 1) and 2).

In Eq. (2.5), let us now make the substitution 𝑥 “ 𝑦1`𝑏{2. We obtain

𝑑𝑥 “ p1 ` 𝑏{2q𝑦𝑏{2𝑑𝑦, 𝑦2`𝑏 “ 𝑥2, 𝑦𝑏 “ 𝑥𝑐 with 𝑐 “
2𝑏

2 ` 𝑏
ă 2,

whence

Δ𝜓𝑏 “
2

2 ` 𝑏

ż 1

𝑥𝑐

𝑑𝑥
a

𝐴𝑐p𝑥q
with 𝐴𝑐p𝑥q “ 1 ´ 𝑥2 ´ 𝜒𝑐p1 ´ 𝑥𝑐q

and
𝜒𝑐 “ p1 ´ 𝑥2𝑐q{p1 ´ 𝑥𝑐𝑐q, 𝑥𝑐 “ 𝑦

1`𝑏{2
𝑏 , and 𝜒𝑐 “ 1 ` 𝜂𝑏 ą 1

Thus, we can establish a correspondence between cases (a) and (b) by setting
𝑐 “ 𝑎, which leads to

(2.6) Δ𝜓𝑏 “
2

2 ` 𝑏
Δ𝜃𝑎 “

2 ´ 𝑎

2
Δ𝜃𝑎, 𝑥𝑎 “ 𝑦

1`𝑏{2
𝑏

This duality between the two kinds of potentials may be summarized in terms
of their parameters 𝛽𝑎 and 𝛽𝑏 by the simple relation

(2.7) 𝛽𝑎𝛽𝑏 “ 2

from which it is clear that 𝛽𝑎 and 𝛽𝑏 are rational or not together.
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3. Transmutation of central forces, dual law

The duality observed in the preceding section can be explained in the framewok
of a transformation between potentials with negative exponents and potentials with
positive exponents, called transmutation of central forces by Needham or dual law
by Arnol’d. We give below a brief presentation of the formalism (see [10] for more
details and references).

As trajectories provided by central forces are planar, we can as well represent
them in the complex plane. Define 𝑧 “ 𝑥` 𝑖𝑦 “ |𝑧|𝑒𝑖𝜓, 𝑥 and 𝑦 being the Cartesian
coordinates of the particle moving in the 𝑥𝑂𝑦 plane, and 𝜓 its polar angle relative
to the axis 𝑂𝑥. By means of complex numbers and with appropriate units, the
fundamental equation of motion reads

(3.1) :𝑧 “ 𝐹 p𝑧q, with 𝐹 p𝑧q “ ´
𝑧

|𝑧|

𝑑𝑉

𝑑|𝑧|
p|𝑧|q

where 𝑉 p|𝑧|q is supposed to be given by

𝑉 p|𝑧|q “
|𝑧|𝜇

𝜇
with 𝜇 ą 0, hence 𝐹 p𝑧q “ ´𝑧|𝑧|𝜇´2

To simplify, we have taken 𝑚 “ 1. The energy 𝐸 takes the form

𝐸 “
| 9𝑧|2

2
` 𝑉 p|𝑧|q “ constant ą 0

Consider the transformation

(3.2) 𝑧 Ñ 𝑍 “ |𝑍|𝑒𝑖𝜃 “ 𝑧𝜎, 𝑡 Ñ 𝜏 with
𝑑𝜏

𝑑𝑡
“ |𝑧|𝛾

where 𝜎 and 𝛾 are such that the Kepler’s law of areas is unchanged, i.e with 𝜃 “ 𝜎𝜓,

|𝑍|2
𝑑𝜃

𝑑𝜏
“ 𝜎|𝑧|2𝜎´𝛾´2|𝑧|2

𝑑𝜓

𝑑𝑡
“ constant

Clearly, this is satisfied if and only if

𝜎 “ 1 `
𝛾

2

The new fundamental equation is then

𝑑2𝑍

𝑑𝜏2
“

𝑑

𝑑𝜏

´𝑑𝑧𝜎

𝑑𝜏

¯

“
1

|𝑧|𝛾

𝑑

𝑑𝑡

´ 1

|𝑧|𝛾

𝑑𝑧𝜎

𝑑𝑡

¯

“
𝜎

|𝑧|𝛾

𝑑

𝑑𝑡

´𝑧𝛾{2 9𝑧

|𝑧|𝛾

¯

“
𝜎

|𝑧|𝛾

𝑑

𝑑𝑡

´

9𝑧

𝑧‹𝛾{2

¯

(3.3)

“
𝜎

|𝑧|𝛾

”

´𝑧|𝑧|𝜇´2

𝑧‹𝛾{2
´
𝛾

2

| 9𝑧|2

𝑧‹1`𝛾{2

ı

“ ´
𝜎𝛾

|𝑧|𝛾𝑧‹1`𝛾{2

”

|𝑧|𝜇

𝛾
`

| 9𝑧|2

2

ı

.

In Eq. (3.3), the expression in square brackets is the energy 𝐸 at the condition
that 𝛾 is taken equal to 𝜇. In that case we obtain

𝑑2𝑍

𝑑𝜏2
“ ´

𝜎𝛾𝐸𝑧𝜎

|𝑧|2𝜎`𝛾
“ ´𝜎𝛾𝐸𝑍|𝑍|´2´𝛾{𝜎
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that is, an equation similar to (3.1) with a force deriving from the attractive po-
tential 𝑉 1p|𝑍|q “ 𝐾|𝑍|𝜈{𝜈 where

𝜈 “ ´𝛾{𝜎 “ ´
2𝜇

2 ` 𝜇
ă 0, 𝐾 “ 𝜎𝛾𝐸 ą 0

Thus, the transformation (3.2) subjected to the above conditions allows us to
convert the potential 𝑟𝑏 with 𝑏 “ 𝛾 “ 𝜇 ą 0 into the potential ´𝐾𝑎{𝑟𝑎 with
𝑎 “ ´𝜈 “ 2𝑏

𝑏`2 ď 2, 𝐾𝑎 “ 𝐾{𝑎 ą 0. In this operation, any variation of the angle
𝜃 “ 𝜃𝑎 is correlated to that of the angle 𝜓 “ 𝜓𝑏 through the simple relation

Δ𝜃𝑎 “ 𝜎Δ𝜓𝑏 “
𝑏` 2

2
Δ𝜓𝑏 “

2

2 ´ 𝑎
Δ𝜓𝑏

in accordance with Eq. (2.6), which is thus simply due to the above described
duality.

It is worth mentioning here that the transmutation (3.2) can also be viewed
as a generalized canonical transformation, as shown in [11]. In this respect, let
us note that the energy equation Eq. (2.1) can be rewritten in terms of the polar
equations 𝑥p𝜃q “ 𝑟𝑚{𝑟p𝜃q or 𝑦p𝜓q “ 𝑟𝑚{𝑟p𝜓q in the form

(3.4)
´𝑑𝑥

𝑑𝜃

¯2

“ 𝐴𝑎p𝑥q for case (a),
´ 𝑑𝑦

𝑑𝜓

¯2

“ 𝐵𝑏p𝑦q for case (b)

As seen above, these expressions are linked by the transformation

𝑥 “ 𝑦1` 𝑏
2 , 𝜃 “

´

1 `
𝑏

2

¯

𝜓, 𝑎 “
2𝑏

𝑏` 2

4. Bertrand’s theorem

Bertrand’s theorem is achieved by requiring that for closed orbits the separation
angle Δ𝜃 between symmetry axes must be an intrinsic property of the potential,
independent of the parameters characterizing these orbits, namely, the energy 𝐸
and the angular momentum 𝐿. Then, its value can be found giving to 𝐸 some
extreme value allowing an easy computation of the integrals in Eqs. (2.4) and
(2.5). The way to do this is suggested by Eq. (2.1): since we require closed orbits
at any distance from the source, we should consider the limit 𝑟𝑀 Ñ `8, which
amounts to 𝐸 Ñ 0 for case (a) and 𝐸 Ñ `8 for case (b). This is the final step of
the original demonstration by Bertrand, proposed as an exercise by Arnol’d in [12].
Thanks to the dual law, it is sufficient to consider the limit 𝑦𝑏 “ 𝑟𝑚{𝑟𝑀 Ñ 0 in Eq.
(2.5), which immediately leads to 𝐵𝑏p𝑦q Ñ 1 ´ 𝑦2 and

(4.1) lim
𝑦𝑏Ñ0

Δ𝜓𝑏 “

ż 1

0

𝑑𝑦
a

1 ´ 𝑦2
“
𝜋

2

for any 𝑏 ą 0. The conclusion of Bertrand’s theorem is then obtained by combining
this result with two important relations: first, Eq. (2.3), which leads to 𝛽𝑏 “ 2
(Hooke’s potential), and subsequently the duality relation Eq. (2.7), which leads to
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𝛽𝑎 “ 1 (Newton’s potential). If we consider instead the limit 𝑥𝑎 Ñ 0 in Eq. (2.4),
we have 𝜒𝑎 Ñ 1, 𝐴𝑎p𝑥q Ñ 𝑥𝑎 ´ 𝑥2 and

(4.2) lim
𝑥𝑎Ñ0

Δ𝜃𝑎 “

ż 1

0

𝑑𝑥
?
𝑥𝑎 ´ 𝑥2

“
𝜋

2 ´ 𝑎
“

𝜋

𝛽2
𝑎

for any 𝑎 P s0, 2r. Then, 𝛽𝑎 “ 1 from Eq. (2.3) and 𝛽𝑏 “ 2 from Eq. (2.7). However,
there is now a subtle difference. Indeed, taking the extreme limits 𝐸 infinite or
𝐸 “ 0 without precaution can lead us into the domain of unbounded trajectories.
Hopefully, there is no problem considering 𝐸 infinite in the Hookean case, because
all corresponding trajectories are closed (ellipses). But in the Newtonian case, it is
known that taking 𝐸 “ 0 gives parabolas which are not closed orbits. Thus, having
found a value Δ𝜃 for unbounded trajectories, we would have to prove additionally
that it is the same for closed orbits, and that it is finally well-founded to identify
this result with Eq. (2.3). This may be considered as a drawback of the method
and one has to be cautious in interpreting Eq. (4.2).

In this regard, let us mention that S. A. Chin in [13] and later J. Galbraith and
J. Williams in [14] claimed to have found a new “elementary" proof of Bertrand’s
theorem, by directly searching the solutions of Eqs. (3.4) when 𝑥𝑎 or 𝑦𝑏 equals
zero. This method is viewed as an attempt to avoid handling integrals, but is in
fact not very different from the previous one. However, it really has the above-
mentioned drawback. Considering case (a) with 𝑥𝑎 Ñ 0, it consists in writing the
corresponding Eq. (3.4) in the simplified form

´𝑑𝑥

𝑑𝜃

¯2

“ 𝐴𝑎p𝑥q » 𝑥𝑎 ´ 𝑥2

which is in fact a differential version of Eq. (4.2). Then, using the substitution
𝑢 “ 𝑥1´𝑎{2 that is currently used to simplify the integral in the latter equation, we
obtain

´𝑑𝑢

𝑑𝜑

¯2

“ 1 ´ 𝑢2, with 𝜑 “ Ω𝜃, Ω “ 1 ´
𝑎

2

The general solution of this new equation is 𝑢 “ 𝜇 cos𝜑 ` 𝜈 sin𝜑. Here, the
constants 𝜇 and 𝜈 are fixed using the constraints 𝑢p0q “ 1, 𝑑𝑢{𝑑𝜑p0q “ 0. We find
𝑢 “ cos𝜑 and finally

𝑟 “
𝑟𝑚

pcos𝜑q
2{p2´𝑎q

with the additional condition cos𝜑 ě 0. This is not the polar equation of a closed
orbit and the angle gap Δ𝜃 “ 𝜋{p2´ 𝑎q is that between the position at 𝑟 “ 𝑟𝑚 and
a position at infinity. It remains to show that it is also the value of the separa-
tion angle between the axes of symmetry of the closed orbits that the potential is
supposed to provide.

This is indeed the case for the Newtonan potential and it is probably the main
merit of this discussion to highlight this fact. It is the consequence of the symmetry
generated by the celebrated Laplace-Runge-Lenz vector, [15–17], initially discov-
ered for closed orbits (ellipses) but that also extends to unbounded trajectories
(parabolas, hyperbolas).
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Independently of all this, having a rigorous proof of (4.1) for closed orbits is
advisable anyway. By means of suitable bounds of the integral in Eq. (2.5), it was
done in [18] by V. Jovanović, who already pointed out the lack of mathematical
details of previous demonstrations. However, even there, no mention is made about
Eq (4.2), its subtlety and how it is related to Eq. (4.1). Moreover, in our opinion,
all previous proofs do not sufficiently highlight the exceptionality of the Newtonian
and Hookean potentials, nor how the limit in Eq. (4.1) is reached for any other
exponent 𝑏. That is why we propose in the next section a new demonstration of this
equation, based on a particular property of 𝐵𝑏p𝑦q. The choice to deal with 𝐵𝑏p𝑦q

instead of 𝐴𝑎p𝑥q comes from the difficulty of finding an upper bound for Δ𝜃𝑎, due
to the limitation 𝑎 ă 2..

5. Another demonstration of Eq. (4.1)

As shown in the short Appendix by elementary methods, at fixed 𝑦 and 𝑦𝑏,
𝐵𝑏p𝑦q is a strictly increasing function of the exponent 𝑏. It is thus bounded by its
limits 𝐵0p𝑦q and 𝐵8p𝑦q for 𝑏 Ñ 0 and for 𝑏 Ñ `8:

𝐵0p𝑦q ă 𝐵𝑏p𝑦q ă 𝐵8p𝑦q

The upper limit corresponds to an infinite potential and the lower one to a
potential written as a constant plus a logarithmic component that cannot produce
closed orbits, apart circles (p𝑟{𝑟0q𝑏 » 1 ` 𝑏 lnp𝑟{𝑟0q for 𝑏 ! 1). Thus, these limits
are related to unphysical situations that should be discarded. However, we are
justified to consider them from a pure mathematical point of view. They lead to
the following bounding of Δ𝜓𝑏:

Δ𝜓8 ă Δ𝜓𝑏 ă Δ𝜓0

with

(5.1) Δ𝜓0 “

ż 1

𝑦𝑏

𝑑𝑦
a

𝐵0p𝑦q
, Δ𝜓8 “

ż 1

𝑦𝑏

𝑑𝑦
a

𝐵8p𝑦q

It is easy to show that

𝐵8p𝑦q “ 1 ´ 𝑦2 for 𝑦𝑏 ă 𝑦 ď 1, 𝐵8p𝑦𝑏q “ 0

and
𝐵0p𝑦q “ 1 ´ 𝑦2 ´ p1 ´ 𝑦2𝑏 q

ln 𝑦

ln 𝑦𝑏
Thus,

(5.2) Δ𝜓8 “

ż 1

𝑦𝑏

𝑑𝑦
a

1 ´ 𝑦2
“
𝜋

2

”

1 ´
2

𝜋
sin´1 𝑦𝑏

ı

Following the same reasoning used in the Appendix, we get

´
ln 𝑦

1 ´ 𝑦
ď ´

ln 𝑦𝑏
1 ´ 𝑦𝑏

or
ln 𝑦

ln 𝑦𝑏
ď

1 ´ 𝑦

1 ´ 𝑦𝑏
,

and
𝐵0p𝑦q ě p1 ´ 𝑦qp𝑦 ´ 𝑦𝑏q,
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whence

Δ𝜓0 ď

ż 1

𝑦𝑏

𝑑𝑦
a

p1 ´ 𝑦qp𝑦 ´ 𝑦𝑏q
“ 𝜋

This rather natural bound ensures that all of the above integrals are convergent
whatever the value of 𝑦𝑏 P r0, 1s. Let us now investigate what happens to the
integrand of Δ𝜓0 in the vicinity of the lower bound 𝑦𝑏 when the latter goes to zero.
Taking 𝑦 “ 𝑦𝑏p1 ` 𝜖q with 𝜖 ! 1, we get

𝐵0 » 𝜖
”

´ 2𝑦2𝑏 ´
1 ´ 𝑦2𝑏
ln 𝑦𝑏

ı

»
𝑦 ´ 𝑦𝑏
𝑦𝑏| ln 𝑦𝑏|

Thus, for 𝑦𝑏 ă 𝜈 ! 1,
ż 𝜈

𝑦𝑏

𝑑𝑦
?
𝐵0

»
a

𝑦𝑏| ln 𝑦𝑏|

ż 𝜈

𝑦𝑏

𝑑𝑦
?
𝑦 ´ 𝑦𝑏

“ 2
a

𝑦𝑏| ln 𝑦𝑏|
?
𝜈 ´ 𝑦𝑏 Ñ 0

From this result we conclude that we can safely take 𝑦𝑏 “ 0 in Δ𝜓0, getting
lim𝑦𝑏Ñ0 Δ𝜓0 “ 𝜋{2. Moreover, from Eq. (5.2) we have lim𝑦𝑏Ñ0 Δ𝜓8 “ 𝜋{2. Thus,
as the upper and lower bounds of Δ𝜓𝑏 take the same value 𝜋{2 in the limit 𝑦𝑏 Ñ 0,
we can finally assert that Eq. (4.1) is verified for any 𝑏 ě 0.

Let us add a few comments. Clearly, Δ𝜓8 and Δ𝜓0 do depend on 𝑦𝑏: as 𝑦𝑏
tends to zero, they both move to 𝜋{2 which is a maximum value for the former
and a minimum value for the second. The bounding equation Eq. (5.1) shows that
almost all Δ𝜓𝑏 also depend on 𝑦𝑏, as they move to the same limit 𝜋{2 as 𝑦𝑏 Ñ 0.
The only exception is for 𝑏 “ 2, for which Δ𝜓2 “ 𝜋{2, whatever the value of 𝑦𝑏. For
potential with positive exponents, this latter case is thus the only one satisfying the
condition of Bertrand’s theorem, i.e. giving Δ𝜓𝑏 “ 𝜋{𝛽𝑏 with 𝛽𝑏 being a rational
number independent of 𝑦𝑏 (here 𝛽𝑏 “ 2). The case of potentials with negative
exponents is subsequently solved applying Eqs. (2.6) and (2.7), which leads to
𝛽𝑎 “ 1 (𝑎 “ 1) and Δ𝜃1 “ 𝜋.

For other potentials, including non-homogeneous ones, finding rational values
of Δ𝜓{𝜋 is not excluded. But Bertrand’s result implies that they can be obtained
only with particular closed orbits. For homogeneous potentials, Eq. (2.3) may not
even be valid for such orbits. Moreover, if for some 𝑏, a closed orbit exists with
rational Δ𝜓𝑏{𝜋, then from Eq. (2.6), there exists a corresponding trajectory given
by the dual potential, which is also closed only if 𝑏 and thus 𝑎 are rational. Finally,
note that Δ𝜓𝑏p𝑦𝑏q, with given 𝑏, depends on 𝑦𝑏 only. Hence, the fact that Δ𝜓𝑏{𝜋 is
rational or not generally concerns a continuous set of (bounded) trajectories having
the same 𝑦𝑏, generated by varying 𝐸 and 𝐿 between their allowed limits.

6. Conclusion

In this article, several points regarding Bertrand’s theorem have been clarified.
We have shown how the amazing association found in this theorem between the
Hookean and Newtonian potentials is fully understood in the framework of the
transmutation of forces, also called dual law. The final step of the original demon-
stration of Bertrand’s theorem has also been discussed. We have drawn attention
to the fact that the usual method considering extreme values of energy can lead
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to non-closed trajectories, which are out of the scope of Bertrand’s theorem, and
thus, can lead to a misinterpretation of the result. We have proposed another proof
of Eq. 4.1, and then Eq. (4.2), based on a simple property of 𝐵𝑏p𝑦q as a function
of 𝑏, and the dual law, with the aim to highlight both the exceptionality property
of the Hookean and Newtonian potentials to provide a value of Δ𝜓 or Δ𝜃 that is
commensurable with 𝜋 and independent of the orbit, and the way these values are
only reached as limits for other homogeneous potentials. We have also emphasized
the fact that the value 𝜋 found in the Newtonian case applies as well to unbounded
trajectories, which is due to the corresponding underlying dynamical symmetry.

We hope that these clarifications will be useful for a better understanding of
Bertrand’s theorem.

Appendix. 𝐵𝑏p𝑦q as a function of 𝑏

We have
B𝐵𝑏
B𝑏

“ 𝜂𝑏
𝑦´𝑏 ´ 1

𝑏
r𝑔p𝑢𝑏q ´ 𝑔p𝑢qs,

where 𝑢 “ 𝑦𝑏, 𝑢𝑏 “ 𝑦𝑏𝑏 , and

𝑔p𝑢q “ ´
ln𝑢

1 ´ 𝑢
The function 𝑔p𝑢q is such that 𝑔p0q “ `8, 𝑔p1q “ 1 and

𝑔1p𝑢q “
ℎp𝑣q

p1 ´ 𝑢q2
, where ℎp𝑣q “ 1 ´ 𝑣 ` ln 𝑣 with 𝑣 “ 1{𝑢 ě 1

The function ℎp𝑣q is such that ℎp1q “ 0, ℎp`8q “ ´8 and

ℎ1p𝑣q “ ´1 ` 1{𝑣 ď 0

Hence, ℎp𝑣q being a stricly decreasing function remains negative for 𝑣 ą 1 and
correspondingly 𝑔1p𝑢q ă 0. Then, 𝑔p𝑢q is also a stricly decreasing function and
remains less than 𝑔p𝑢𝑏q for 𝑢𝑏 ă 𝑢 ď 1. Consequently, at fixed 𝑦 and 𝑦𝑏, 𝐵𝑏p𝑥q is a
strictly increasing function of 𝑏 P r0,`8r.
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ТРАНСМУТАЦИJА ЦЕНТРАЛНИХ СИЛА
И БЕРТРАНДОВА ТЕОРЕМА

Резиме. Трансмутациjа централних сила, или дуални закон, jе трансформа-
циjа коjа повезуjе потенциjале различитог степена у односу на растоjање, то
jест, оне коjи имаjу позитиван експонент са онима коjи имаjу негативан експо-
нент. Добро jе познат пример Њутновог и Хуковог потенциjала, коjи су такође
повезани Бертрандовом чувеном теоремом. Оваj рад показуjе како употреба
дуалног закона омогућава боље разумевање ове важне теореме.
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