
THEORETICAL AND APPLIED MECHANICS
Volume 49 (2022) Issue 2, 157–181 DOI: https://doi.org/10.2298/TAM221109011F

INVERSE DYNAMICS IN RIGID BODY MECHANICS

Salvatore Federico and Mawafag F. Alhasadi

Abstract. Inverse Dynamics is used to calculate the forces and moments in
the joints of multibody systems investigated in fields such as Biomechanics
or Robotics. In a didactic spirit, this paper begins with an overview of the
derivations of the kinematical and dynamical equations of rigid bodies from the
point of view of modern Continuum Mechanics. Then, it introduces a matrix
formulation for the solution of Inverse Dynamics problems and, finally, reports
a simple two-dimensional example of application to a problem in Biomechanics.

1. Introduction

The dynamics of a rigid body is entirely determined by the translational and
rotational equations of motion,

𝑃̇ = 𝐹 ,(1.1a)

𝐿̇𝐺 = 𝑀𝐺,(1.1b)

where 𝑃 is the total linear momentum, 𝐹 is the resultant of the external forces,
𝐿𝐺 is the total angular momentum with respect to the centre of mass 𝑥𝐺 and 𝑀𝐺

is the resultant of the external moments with respect to the centre of mass 𝑥𝐺.
Equations (1.1) constitute a system of 6 non-linear ordinary differential equations
in 6 unknowns. The unknowns are the 6 generalised coordinates given, usually, by
the 3 coordinates of the centre of mass 𝑥𝐺 and 3 angular coordinates defining the
orientation of the rigid body in space. For this reason, we say that a rigid body
has 6 degrees of freedom. The resultant external generalised forces 𝐹 and 𝑀𝐺

(3 components of force plus 3 components of moment, for a total of 6 generalised
forces) are assumed to be known. The equations of motion (1.1) can be integrated
once appropriate initial conditions are given. This is the traditional approach to
Dynamics, which we can call Direct Dynamics.

We speak of Inverse Dynamics [4] when the full kinematics of a rigid body is
known experimentally (e.g., by means of a motion capture system, such as those
used customarily in Biomechanics [24]), and thus the trajectory of the system in
the configuration space is entirely known, but some of the generalised external
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force components are unknown. The number of unknown generalised forces must
be equal to the number of degrees of freedom of the system, because this is also
the number of available dynamical equations. In this way, we are guaranteed that
the problem is solvable (equal number of equations and unknowns). Since the kine-
matical quantities featuring in the derivatives 𝑃̇ and 𝐿̇𝐺 are known, the equations
of motion (1.1) become algebraic equations in the unknown generalised forces. So,
from a computational point of view, Inverse Dynamics is enormously simpler than
Direct Dynamics, in which we deal with a system of non-linear ordinary differential
equations.

For a single rigid body in space (which has 6 degrees of freedom), the typical
scenario of application of Inverse Dynamics is that in which the entire kinematics
is known, the external force vector and external moment vector applied at one
point (3+ 3 = 6 generalised forces) are unknown, and the remaining forces applied
at other points are known. This is the situation attained in each segment of a
multibody system with joints such as a robotic arm or a limb in the human body.
The unknowns in these systems are the generalised forces at each joint. These
generalised forces are internal for the system as a whole, but are external for each
segment, when considered individually.

These multibody systems with joints are solved by means of Inverse Dynamics
in an iterative manner. Let us use the anatomical terms distal and proximal, for the
joints of a segment that are farthest and closest, respectively, to a suitable reference
part of the system (e.g., the sagittal plane for the case of the human body, or the
fixed “shoulder” joint of an industrial robotic arm). The distal end of the most
distal segment may or may not be subjected to external forces, which would be
measurable, but the six generalised forces at the proximal end, which is a joint, are
unknown. One thus solves for the proximal joint forces of the most distal segment.
For the subsequent segment, the distal forces are simply equal and opposite to
the proximal forces calculated for the previous segment. Then, the procedure is
repeated again to solve for the subsequent joint, and so on.

As an illustrative example, which we shall develop in a simplified two-dimen-
sional setting in Section 6, imagine that we want to determine the forces and mo-
ments acting on the foot at the ankle joint. The foot is subjected to its own weight,
to the reaction force of the ground, which can be measured by means of a force
plate [24], and to the resultant force and moment at the ankle joint. If the kine-
matics is measured by means of a camera-based motion analysis system [1], we are
in the case depicted above: a single body, in which the force vector and moment
vector at one point (the ankle) are unknown, but for which all other forces and the
whole kinematics are known.

In a didactic spirit, this paper aims at elucidating the method of Inverse Dy-
namics, devoting particular attention to a matrix formalism that facilitates numer-
ical implementation. The general setting is that of modern Continuum Mechan-
ics [21,25]. From a methodological point of view, and particularly for the case of
kinematics, this approach may in some instances differ with that typically adopted
in rigid body mechanics [5,17,18,20,22]. In Section 2, we briefly introduce the
kinematics of a continuum body, and we show how general continuum kinematics is
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specialised to the case of a rigid body in Section 3. In Section 4, we describe rigid
body dynamics. In Section 5, we present the method of Inverse Dynamics and the
associated matrix formalism. In Section 6, we report a simple two-dimensional ex-
ample of application to a problem in Biomechanics. Section 7 summarises the work.

2. Continuum kinematics

We describe a rigid body as a particular case of continuum body, and thus em-
ploy the customary setting of modern Continuum Mechanics [21,25]. The notation
is that of some previous works [2,14].

The physical space is represented by the affine space 𝒮 = E3, obtained by
employing R3 both as the point space and as the modelling vector space [10,15].
This means that, given two points 𝑝 and 𝑥, their difference 𝑝−𝑥 is a vector attached
at the point 𝑥. The space of all vectors attached at 𝑥 that are tangent to curves
passing by 𝑥 is called the tangent space 𝑇𝑥𝒮. The disjoint union of all tangent
spaces in 𝒮 is the tangent bundle 𝑇𝒮.

A body is identified with a convenient, but arbitrary, reference configuration
ℬ, a subset of the physical space 𝒮. The tangent space 𝑇𝑋ℬ at a point 𝑋 and the
tangent bundle 𝑇ℬ are defined analogously as for the case of 𝒮.

In the treatment of kinematics, we shall follow the standard convention of
denoting material points and quantities in the body ℬ with uppercase symbols and
spatial points and quantities in the physical space 𝒮 with lowercase symbols, with
some exceptions that we shall point out.

The physical space 𝒮 and the body ℬ are assumed to be endowed with the
spatial metric tensor 𝑔 and the material metric tensor 𝐺, respectively. The metric
tensors 𝑔 and 𝐺 define the spatial scalar product 𝑦 . 𝑧 ≡ ⟨𝑦, 𝑧⟩𝑔 = 𝑦𝑖 𝑔𝑖𝑗 𝑧

𝑗 and the
material scalar product 𝑌 .𝑍 ≡ ⟨𝑌 ,𝑍⟩𝐺 = 𝑌 𝐼 𝐺𝐼𝐽 𝑍𝐽 , respectively. Also, they
induce the Euclidean norms ‖𝑦‖ =

√︀
⟨𝑦,𝑦⟩𝑔 =

√
𝑦 .𝑦 and ‖𝑌 ‖ =

√︀
⟨𝑌 ,𝑌 ⟩𝐺 =√

𝑌 .𝑌 . If orthogonal Cartesian coordinates are used in 𝒮 and ℬ, then the bases in
the tangent bundles 𝑇𝒮 and 𝑇ℬ are orthonormal. In this case, the metric tensors
are both represented by identity matrices, the distinction between vectors and
covectors (and thus between contravariant and covariant indices) fades out and the
scalar products reduce to 𝑦 . 𝑧 ≡ ⟨𝑦, 𝑧⟩𝑔 = 𝑦𝑖 𝑧𝑖 and 𝑌 .𝑍 ≡ ⟨𝑌 ,𝑍⟩𝐺 = 𝑌𝐼 𝑍𝐼 . We
shall assume Cartesian coordinates and orthonormal bases throughout and write
all indices as subscripts.

Motion of a continuum body. A time-dependent point map

𝜑 : ℬ × ℐ → 𝒮 : (𝑋, 𝑡) ↦→ 𝑥 = 𝜑(𝑋, 𝑡)

is called a motion of the continuum body ℬ if it is twice differentiable in the time
interval ℐ ⊂ R and, for every time 𝑡 ∈ ℐ, the map

(2.1) 𝜑( · , 𝑡) : ℬ → 𝒮 : 𝑋 ↦→ 𝑥 = 𝜑(𝑋, 𝑡),

called the configuration map of the body ℬ at time 𝑡, is an embedding, i.e., its
codomain-restriction to the current configuration 𝜑(ℬ, 𝑡) is a diffeomorphism. For
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𝜑( · , 𝑡) to be a diffeomorphism, it must be continuous, differentiable and with a
continuous and differentiable inverse

Φ( · , 𝑡) : 𝜑(ℬ, 𝑡) → ℬ : 𝑥 ↦→ 𝑋 = Φ(𝑥, 𝑡).

At a given material point 𝑋, the curve

(2.2) 𝜑(𝑋, · ) : ℐ → 𝒮 : 𝑡 ↦→ 𝑥 = 𝜑(𝑋, 𝑡),

is the trajectory of the material point 𝑋 in the physical space 𝒮.

Deformation gradient and polar decomposition. The differentiability of
the motion 𝜑 implies that its directional derivative at 𝑋 in the direction of the
material vector 𝑀 ∈ 𝑇𝑋ℬ is linear in 𝑀 , i.e.,

(𝜕𝑀𝜑)(𝑋, 𝑡) = lim
ℎ→0

𝜑(𝑋 + ℎ𝑀 , 𝑡)− 𝜑(𝑋, 𝑡)

ℎ
= [(𝑇𝜑)(𝑋, 𝑡)]𝑀 ∈ 𝑇𝑥𝒮,

where 𝑥 = 𝜑(𝑋, 𝑡). The linear map

(2.3) 𝐹 (𝑋, 𝑡) ≡ (𝑇𝜑)(𝑋, 𝑡) : 𝑇𝑋ℬ → 𝑇𝑥𝒮

with components

𝐹𝑖𝐾(𝑋, 𝑡) = 𝜑𝑖,𝐾(𝑋, 𝑡) ≡ 𝜕𝜑𝑖

𝜕𝑋𝐾
(𝑋),

is the tangent map (or, simply, the derivative) of the point map 𝜑( · , 𝑡) and is
traditionally called deformation gradient.1 The vector

𝑚 = 𝐹 (𝑋, 𝑡)𝑀 ∈ 𝑇𝑥𝒮,

obtained by applying 𝐹 (𝑋, 𝑡) on the material vector 𝑀 , is called the push-forward
of 𝑀 ∈ 𝑇𝑋ℬ. The determinant 𝐽 = det𝐹 is guaranteed to be strictly positive, and
thus non-singular, by the fact that 𝜑 is an embedding and thus invertible. Since it
maps between two different tangent spaces, the deformation gradient is said to be a
two-point tensor. The deformation gradient is the primary measure of deformation,
from which all other ones descend.

Cauchy’s Polar Decomposition Theorem (for a concise and elegant proof, see [8])
ensures that, as any non-singular tensor, the deformation gradient admits the right
and left multiplicative decompositions

𝐹 (𝑋, 𝑡) = 𝑅(𝑋, 𝑡)𝑈(𝑋, 𝑡) 𝐹 (𝑋, 𝑡) = 𝑉 (𝑥, 𝑡)𝑅(𝑋, 𝑡),(2.4a)
𝐹𝑖𝐾(𝑋, 𝑡) = 𝑅𝑖𝐽(𝑋, 𝑡)𝑈𝐽𝐾(𝑋, 𝑡) 𝐹𝑖𝐾(𝑋, 𝑡) = 𝑉𝑖𝑗(𝑥, 𝑡)𝑅𝑗𝐾(𝑋, 𝑡).(2.4b)

In the polar decompositions (2.4), 𝑅(𝑋, 𝑡) is a two-point proper orthogonal
tensor (i.e., with det𝑅 = 1, since det𝐹 > 0), i.e., 𝑅(𝑋, 𝑡) ∈ Orth+(𝑇𝑋ℬ, 𝑇𝑥𝒮),
called rotation tensor, 𝑈(𝑋, 𝑡) : 𝑇𝑋ℬ → 𝑇𝑋ℬ is a completely material symmetric
and positive definite tensor, called right stretch tensor, and 𝑉 (𝑥, 𝑡) : 𝑇𝑥𝒮 → 𝑇𝑥𝒮

1 The deformation gradient is in fact not a gradient, in so far as 𝜑 is not a tensor field
(specifically, not a vector field) but a point map. Thus, differentiation of 𝜑 does not need the
introduction of a covariant derivative, and its components are simple partial derivatives and do
not contain terms in the Christoffel symbols. This is explained in, e.g., [10,21].
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is a completely spatial2 symmetric and positive definite tensor, called left stretch
tensor. Thus, the theorem states that the deformation can be decomposed as a
material deformation followed by a two-point rotation (right decomposition) or a
two-point rotation followed by a spatial deformation (left decomposition).

We recall that the orthogonality of 𝑅 means that, for any two material vectors
𝑌 and 𝑍, their scalar product is preserved, i.e., if 𝑦 = 𝑅𝑌 and 𝑧 = 𝑅𝑍, then

𝑌 .𝑍 = ⟨𝑌 ,𝑍⟩𝐺 = ⟨𝑅𝑌 ,𝑅𝑍⟩𝑔 = (𝑅𝑌 ) . (𝑅𝑍)(2.5)
= ⟨𝑦, 𝑧⟩𝑔 = 𝑦 . 𝑧.

Since it preserves the scalar product induced by the material and spatial met-
ric tensors 𝐺 and 𝑔, an orthogonal tensor such as 𝑅 is said to be a two-point
isometry [13,21], i.e., a metric-preserving two-point tensor. The definition (2.5) of
isometry implies that its transpose 𝑅𝑇 and inverse 𝑅−1 coincide:3

(2.6) 𝑅−1 ≡ 𝑅𝑇 .

Lagrangian and Eulerian velocity. With reference to Figure 1, let us con-
sider the trajectory 𝜑(𝑋, · ) of the material point 𝑋, defined in Equation (2.2). By
definition, the velocity of the material point 𝑋 is given by the time derivative

(2.7) 𝜑̇(𝑋, 𝑡) ≡ 𝜕𝑡𝜑(𝑋, 𝑡) = lim
ℎ→0

𝜑(𝑋, 𝑡+ ℎ)− 𝜑(𝑋, 𝑡)

ℎ
.

Indeed, as shown in Figure 1, the numerator of the incremental ratio in Equa-
tion (2.7) is the displacement 𝜑(𝑋, 𝑡 + ℎ) − 𝜑(𝑋, 𝑡), which is a vector attached
at the current placement 𝑥 = 𝜑(𝑋, 𝑡) of the material point 𝑋. Moreover, when
the time increment ℎ tends to zero, the limit of the ratio of the displacement
𝜑(𝑋, 𝑡+ℎ)−𝜑(𝑋, 𝑡) to ℎ tends to be tangent to the trajectory of 𝑋 at the current
placement 𝑥 = 𝜑(𝑋, 𝑡) of 𝑋, and is precisely the velocity.

The velocity defined in Equation (2.7) is the Lagrangian velocity of the material
point 𝑋, and we must emphasise that it is a spatial vector, as it is attached at
𝑥 = 𝜑(𝑋, 𝑡) (see Figure 1)4. The Eulerian velocity is defined as the spatial vector
field such that

𝑣(𝑥, 𝑡) ≡ 𝜑̇(Φ(𝑥, 𝑡), 𝑡) = 𝜑̇(𝑋, 𝑡),

i.e., it obtained by expressing the Lagrangian velocity 𝜑̇ as a function of the spatial
point 𝑥.

2 The left stretch tensor 𝑉 is the first exception to the uppercase/lowercase convention of
Continuum Mechanics: it is virtually universally adopted, to avoid confusion with the velocity 𝑣.

3 Strictly speaking, here we are referring to what we call the metric transpose [12,13] and
denote 𝑅𝑡 and to what Marsden and Hughes [21] call dual and denote 𝑅*. If 𝑅(𝑋, 𝑡) maps the
tangent spaces, i.e., 𝑅(𝑋, 𝑡) : 𝑇𝑋ℬ → 𝑇𝑥𝒮, and has components 𝑅𝑎

𝐵 , the algebraic transpose [12,
13] 𝑅𝑇 (𝑥, 𝑡) maps the cotangent spaces (dual spaces of the tangent spaces), i.e., 𝑅𝑇 (𝑥, 𝑡) : 𝑇 ⋆

𝑥𝒮 →
𝑇 ⋆
𝑋ℬ and has components (𝑅𝑇 )𝐵

𝑎. In contrast, the metric transpose maps, like the inverse, the
tangent spaces, i.e., 𝑅𝑡(𝑥, 𝑡) : 𝑇𝑥𝒮 → 𝑇𝑋ℬ, and has components (𝑅𝑡)𝐴𝑏 = 𝐺𝐴𝐵 (𝑅𝑇 )𝐵

𝑎 𝑔𝑎𝑏.
With Cartesian coordinates and orthonormal bases, the distinction between the two types of
transpose fades out.

4 A detailed discussion on the distinction that we make between spatial and Eulerian on the
one hand and of material and Lagrangian on the other hand can be found in [14].
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𝜑(𝑋, ℐ)
𝑥 = 𝜑(𝑋, 𝑡)

𝜑(𝑋, 𝑡+ ℎ)

𝜑(𝑋, 𝑡+ ℎ)− 𝜑(𝑋, 𝑡)

Figure 1. The trajectory 𝜑(𝑋, ℐ) described by the motion of a
material point 𝑋 during the time interval ℐ; the point is placed
at 𝑥 = 𝜑(𝑋, 𝑡) at time 𝑡, and at 𝜑(𝑋, 𝑡 + ℎ) at time 𝑡 + ℎ. The
vector 𝜑(𝑋, 𝑡+ℎ)−𝜑(𝑋, 𝑡) is the displacement after the increment
of time ℎ. The Lagrangian velocity is given by the limit of the
incremental ratio [𝜑(𝑋, 𝑡 + ℎ) − 𝜑(𝑋, 𝑡)]/ℎ for ℎ → 0, and is, by
definition of derivative, tangent to the trajectory at 𝑥.

Velocity gradient and sym-skew decomposition. The gradient of the
velocity,5

𝑙 = grad𝑣, 𝑙𝑖𝑗 = 𝑣𝑖,𝑗 ,

is, unsurprisingly, called velocity gradient and it can be decomposed into its sym-
metric and skew-symmetric parts, as

𝑙 = 𝑑+𝑤,

where the symmetric part is the rate of deformation tensor [7] or stretching rate
tensor [25]

𝑑 = sym(𝑙) = 1
2 (𝑙+ 𝑙𝑇 ), 𝑑𝑖𝑗 =

1
2 (𝑣𝑖,𝑗 + 𝑣𝑗,𝑖),

and the skew-symmetric part is the is the spin tensor [7,25]

𝑤 = skew(𝑙) = 1
2 (𝑙− 𝑙𝑇 ), 𝑤𝑖𝑗 =

1
2 (𝑣𝑖,𝑗 − 𝑣𝑗,𝑖).

3. Rigid body kinematics

Rigid bodies do not actually exist in nature: any material body will deform if
subjected to external forces, changes of temperature, etc. The rigid body approxi-
mation is a convenient tool to describe all those systems in which the deformations
are negligible with respect to the overall motion and for the specific problem at
study. For instance, in Biomechanics, the bones are customarily regarded as rigid
when studying the overall motion of a subject [24], but must be regarded as de-
formable when studying, e.g., their remodelling [9]. When the deformations can be
neglected, the motion of a body can be approximated as being rigid, i.e., distances
and angles are preserved throughout the motion. Such a motion is the combination
of a translation and a rotation, i.e., a Euclidean motion: its deformation gradient

5 Rigorously, in the component expression, we should use a covariant derivative and write,
distinguishing contravariant and covariant indices, 𝑙𝑎𝑏 = 𝑣𝑎|𝑏. Since we assume Cartesian coor-
dinates throughout, the Christoffel symbols vanish identically and the covariant derivative 𝑣𝑎|𝑏
reduces to the simple partial derivative 𝑣𝑎,𝑏.
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𝐹 reduces to the rotation tensor 𝑅, which is an isometry, i.e., is orthogonal. Since
isometries preserve the metric, they preserve lengths (Euclidean norms) and angles.
Conventionally, a body subjected to the kinematical constraint of rigid motion is
called a rigid body.

Rigid body motion. There are two equivalent ways to introduce the kine-
matical constraint of rigid motion. The first is to impose that the distance between
two arbitrary points be constant throughout the motion. The second is to impose
that the symmetric part of the velocity gradient of the motion be identically zero
and then integrate to obtain the motion. We choose to follow the former method
and then briefly discuss the equivalence of the latter.

With reference to Figure 2, we arbitrarily choose a point 𝑋𝑃 ∈ ℬ and describe
its motion by the curve

(3.1) 𝑥𝑃 ≡ 𝜑(𝑋𝑃 , · ) : ℐ : 𝑡 ↦→ 𝑥𝑃 (𝑡) ≡ 𝜑(𝑋𝑃 , 𝑡).

If 𝑋 is another material point in ℬ, the rigidity constraint imposes that the distance
between 𝑋𝑃 and 𝑋, i.e., the norm ‖Ξ(𝑋)‖ = ‖𝑋 −𝑋𝑃 ‖ of the vector

Ξ(𝑋) = 𝑋 −𝑋𝑃 ,

called material local position vector of 𝑋, be preserved throughout the motion.
Thus, at any arbitrary time 𝑡, the distance between 𝑥𝑃 (𝑡) = 𝜑(𝑋𝑃 , 𝑡) and 𝑥 =
𝜑(𝑋, 𝑡), i.e., the norm ‖𝜉(𝑥, 𝑡)‖ = ‖𝑥− 𝑥𝑃 (𝑡)‖ of the vector

𝜉(𝑥, 𝑡) = 𝑥− 𝑥𝑃 (𝑡),

called spatial local position vector of 𝑥 = 𝜑(𝑋, 𝑡), must equal the norm ‖Ξ(𝑋)‖ =
‖𝑋 −𝑋𝑃 ‖ of Ξ(𝑋) = 𝑋 −𝑋𝑃 , i.e.,

‖𝜉(𝑥, 𝑡)‖2 = ‖𝑥− 𝑥𝑃 (𝑡)‖2 = ‖𝑋 −𝑋𝑃 ‖2 = ‖Ξ(𝑋)‖2,
or, equivalently,

[𝑥− 𝑥𝑃 (𝑡)] . [𝑥− 𝑥𝑃 (𝑡)] = [𝑋 −𝑋𝑃 ] . [𝑋 −𝑋𝑃 ].

By definition of isometry, this can only happen if, and only if, there exists a curve
of two-point isometries,

𝑅 : ℐ → Orth+(𝑇ℬ, 𝑇𝒮) : 𝑡 ↦→ 𝑅(𝑡) ∈ Orth+(𝑇𝑋ℬ, 𝑇𝑥𝒮),
which are independent of the material point 𝑋 and such that, for every 𝑋 ∈ ℬ,
𝜉(𝑥, 𝑡) is obtained by rotating Ξ(𝑋) through 𝑅(𝑡), i.e.,

(3.2) 𝜉(𝑥, 𝑡) = 𝑅(𝑡)Ξ(𝑋),

or, explicitly,
𝑥− 𝑥𝑃 (𝑡) = 𝑅(𝑡) [𝑋 −𝑋𝑃 ].

By solving for 𝑥 and recalling the general definition (2.1) of motion, we obtain the
definition of rigid body motion as

(3.3) 𝑥 = 𝜑(𝑋, 𝑡) = 𝑥𝑃 (𝑡) +𝑅(𝑡) [𝑋 −𝑋𝑃 ] = 𝑥𝑃 (𝑡) +𝑅(𝑡)Ξ(𝑋).

Using the property (2.6) of isometries, we can invert (3.3) into

(3.4) 𝑋 = Φ(𝑥, 𝑡) = 𝑋𝑃 +𝑅𝑇 (𝑡) [𝑥− 𝑥𝑃 (𝑡)] = 𝑋𝑃 +𝑅𝑇 (𝑡) 𝜉(𝑥, 𝑡).
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The rigid motion (3.3) is said to be Euclidean, i.e., it is the superposition of the
translation described by the curve 𝑥𝑃 and the rotation described by the rotation
𝑅. Therefore, the configuration space of the rigid body ℬ is

ℰ = 𝒮 ×Orth+(𝑇ℬ, 𝑇𝒮).

Rigid body deformation gradient. Since the motion is linear in the coor-
dinates of the material point 𝑋, it is straightforward to see that the deformation
gradient of the rigid motion (3.3) is independent of 𝑋 and coincident with the
rotation 𝑅(𝑡), for every 𝑡, i.e.,

𝐹 (𝑋, 𝑡) ≡ (𝑇𝜑)(𝑋, 𝑡) = 𝑅(𝑡).

Consequently, the right and left stretch tensors 𝑈 and 𝑉 reduce to the material
and spatial identity tensors, respectively. The fact that 𝐹 (𝑋, 𝑡) = 𝑅(𝑡) also implies
that that (3.2) is in fact a push-forward.

Rigid body velocity and velocity gradient. The Lagrangian velocity of
the rigid motion (3.3) is

𝜑̇(𝑋, 𝑡) = 𝑣𝑃 (𝑡) + 𝑅̇(𝑡) [𝑋 −𝑋𝑃 ](3.5)

= 𝑣𝑃 (𝑡) + 𝑅̇(𝑡)Ξ(𝑋),

where 𝑣𝑃 = 𝑥̇𝑝 is the velocity of the arbitrarily chosen point 𝑋𝑃 with current
position 𝑥𝑃 . The Eulerian velocity is obtained by substituting the inverse rigid
motion (3.4) into the Lagrangian velocity (3.5):

𝑣(𝑥, 𝑡) = 𝜑̇(Φ(𝑥, 𝑡), 𝑡) = 𝑣𝑃 (𝑡) + 𝑅̇(𝑡)𝑅𝑇 (𝑡) [𝑥− 𝑥𝑃 (𝑡)]

= 𝑣𝑃 (𝑡) + 𝑅̇(𝑡)𝑅𝑇 (𝑡) 𝜉(𝑥, 𝑡).

The tensor 𝑅̇𝑅𝑇 is computed by taking the derivative of the (spatial) identity
tensor6 𝐼 = 𝑅̇𝑅𝑇 Since the identity tensor 𝐼 does not depend on time, its derivative
is the zero tensor 0, i.e.,

0 = (𝑅𝑅𝑇 )˙= 𝑅̇𝑅𝑇 +𝑅𝑅̇𝑇 = 𝑅̇𝑅𝑇 + (𝑅̇𝑅𝑇 )𝑇 ,

and thus
𝑅̇𝑅𝑇 = −(𝑅̇𝑅𝑇 )𝑇 .

Since it equals the negative of its transpose, the tensor 𝑅̇𝑅𝑇 is a skew-
symmetric tensor, called rigid spin tensor [6] or angular velocity tensor :7

(3.6) Ω = 𝑅̇𝑅𝑇 .

Therefore the Eulerian velocity field for a rigid body takes the final form

(3.7) 𝑣(𝑥, 𝑡) = 𝑣𝑃 (𝑡) +Ω(𝑡) 𝜉(𝑥, 𝑡).

6 Here is the second exception to the uppercase/lowercase convention of Continuum Mechan-
ics. Since we do not need the material identity, we employ the symbol 𝐼 for the spatial identity,
in place of the more notationally consistent 𝑖.

7 Another deviation from the uppercase/lowercase convention: we use an uppercase symbol
for the spatial tensor Ω because we reserve the lowercase 𝜔 to the angular velocity, which we shall
introduce shortly.
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Note that, since 𝑣𝑃 (𝑡) does not depend on 𝑥 and the local position vector 𝜉(𝑥, 𝑡) =
𝑥− 𝑥𝐺(𝑡) is a linear function of 𝑥, the velocity gradient 𝑙 = grad𝑣 equals the rigid
spin tensor Ω. From this, and from the skew symmetry of the rigid spin tensor Ω,
follows that the symmetric part of 𝑙, the rate of deformation 𝑑 = 1

2 (𝑙+𝑙𝑇 ), vanishes
identically, and that the spin tensor 𝑤 is identically equal to the rigid spin tensor
Ω.8 Therefore, as anticipated, the rigid body motion (3.3) could be obtained by
integrating the differential equation 𝑙(𝑥, 𝑡) = (grad𝑣)(𝑥, 𝑡) ≡ Ω(𝑡) first with respect
to 𝑥, to obtain the velocity (3.7), and then, after a change of variables from 𝑥 to
𝑋, with respect to 𝑡.

It is customary to express the Eulerian velocity field (3.7) for a rigid body in
terms of the axial vector [7,19] of the rigid spin tensor Ω, i.e., the vector 𝜔 such
that, for every vector 𝑢,

(3.8) 𝜔 × 𝑢 = Ω𝑢.

The vector 𝜔 is called angular velocity and its components are related to those of
the rigid spin tensor Ω via

(3.9) Ω𝑖𝑘 = 𝜖𝑖𝑗𝑘 𝜔𝑗 , [Ω] =

⎡⎣ 0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

⎤⎦ .

where we made use of the Ricci/Levi-Civita symbol

𝜖𝑖𝑗𝑘 =

⎧⎪⎨⎪⎩
1 for 𝑖, 𝑗, 𝑘 even permutation of 1, 2, 3,

−1 for 𝑖, 𝑗, 𝑘 odd permutation of 1, 2, 3,
0 for 𝑖, 𝑗, 𝑘 permutation with repetition of 1, 2, 3.

Substitution into Equation (3.7) yields the customary form of the Eulerian
velocity field of the rigid body, as

(3.10) 𝑣(𝑥, 𝑡) = 𝑣𝑃 (𝑡) + 𝜔(𝑡)× 𝜉(𝑥, 𝑡).

The Eulerian rigid body velocity field, in either form (3.7) or form (3.10), is the
fundamental kinematical relation for rigid bodies. We remark, however, that the
form (3.7) featuring the rigid spin tensor Ω is the most fundamental: the angular
velocity 𝜔 is only used to yield the more customary form (3.10), but all rigid body
kinematics can be studied using (3.7) alone.

Material, fixed and moving reference frames. To establish our reference
frames, we refer again to Figure 2.

We set a system of orthogonal Cartesian coordinates {𝑋𝐾}3𝐾=1 in the body ℬ,
with origin at the point 𝑋𝑃 , which will thus have null coordinates. The orthonormal
basis associated with this system of coordinates is denoted {𝐸𝐾}3𝐾=1. These are
called material frame and material basis.

Similarly, in the physical space 𝒮, we define a system of orthogonal Cartesian
coordinates {𝑥𝑖}3𝑖=1 with origin in 𝑥𝑂 and associated orthonormal basis {𝑒𝑖}3𝑖=1,

8 For a general motion, the spin tensor 𝑤 and the rigid spin tensor Ω both depend on the
point 𝑥 and do not coincide: the spin tensor 𝑤 can be written in terms of Ω and the right stretch
tensor 𝑈 [7,25].
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material frame

𝐸1 𝐸2

𝐸3

𝑋1

𝑋2

𝑋3

ℬ

𝑋

𝑋𝑃

Ξ = 𝑋 −𝑋𝑃

𝜑( · , 𝑡)

fixed spatial frame

𝑒1 𝑒2

𝑒3

𝑥𝑂

𝑥1

𝑥2

𝑥3

𝜑(ℬ, 𝑡)

𝜉(𝑥, 𝑡) = 𝑥− 𝑥𝑃 (𝑡)

𝑥 = 𝜑(𝑋, 𝑡)

𝑥𝑃 (𝑡)

moving spatial frame

𝑒′
1(𝑡)

𝑒′
2(𝑡)

𝑒′
3(𝑡)

𝑥′
1

𝑥′
2

𝑥′
3

Figure 2. A rigid body ℬ, whose points are labelled by the mate-
rial positions 𝑋 in the material frame with origin 𝑋𝑃 and coordi-
nates 𝑋1, 𝑋2, 𝑋3, mapped by the motion 𝜑 into its current configu-
ration 𝜑(ℬ, 𝑡) ⊂ 𝒮 at time 𝑡. The current positions 𝑥 = 𝜑(𝑋, 𝑡) are
in the fixed spatial frame with origin 𝑥𝑂 and coordinates 𝑥1, 𝑥2, 𝑥3.
The moving frame with origin 𝑥𝑃 (𝑡) = 𝜑(𝑋𝑃 , 𝑡) and coordinates
𝑥′
1, 𝑥

′
2, 𝑥

′
3 is attached to the body and is obtained as the push-

forward of the material frame.

and we call these the fixed spatial frame and fixed spatial basis. The fixed spatial
basis {𝑒𝑖}3𝑖=1 is related to the material basis {𝐸𝐾}3𝐾=1 by the shifter [11,21], the
two-point, time-independent orthogonal tensor 1 ∈ Orth+(𝑇ℬ, 𝑇𝒮) such that

(3.11) 𝑒1 = 1𝐸1, 𝑒2 = 1𝐸2, 𝑒3 = 1𝐸3.

By convecting the material coordinates {𝑋𝐾}3𝐾=1 through the motion 𝜑, we
obtain the convected spatial coordinates

𝑥′
1 = 𝑋1 ∘ 𝜑, 𝑥′

2 = 𝑋2 ∘ 𝜑, 𝑥′
3 = 𝑋3 ∘ 𝜑.

Together with the origin 𝑥𝑃 (𝑡) = 𝜑(𝑋𝑃 , 𝑡) defined in Equation 3.1, these coordi-
nates constitute the moving spatial frame, which is rigidly attached to the body
throughout its motion. The moving spatial basis {𝑒′𝑘(𝑡)}3𝑘=1 is obtained by pushing
the material basis {𝐸𝐾}3𝐾=1 forward through the motion 𝜑, whose deformation
gradient is the rotation 𝑅, i.e.,

(3.12) 𝑒′1(𝑡) = 𝑅(𝑡)𝐸1, 𝑒′2(𝑡) = 𝑅(𝑡)𝐸2, 𝑒′3(𝑡) = 𝑅(𝑡)𝐸3.
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Since {𝑒′𝑘(𝑡)}3𝑘=1 is a spatial basis, it can also be obtained by a transformation of
the fixed spatial basis {𝑒𝑖}3𝑖=1. By inverting the relations in (3.11) and substituting
them into the relations in (3.12), we can eliminate the material basis vectors and
thus directly relate the fixed and moving bases via

(3.13) 𝑒′𝑘(𝑡) = 𝑄(𝑡) 𝑒𝑘,

where the time-dependent, fully spatial tensor 𝑄(𝑡) ∈ Orth+(𝑇𝒮) is defined as9

(3.14) 𝑄(𝑡) = 𝑅(𝑡)1𝑇 , 𝑄𝑖𝑘(𝑡) = 𝑅𝑖𝐾(𝑡)1𝑘𝐾 .

If the material coordinates {𝑋𝐾}3𝐾=1 and the fixed spatial coordinates {𝑥𝑖}3𝑖=1

are collinear, then the corresponding bases {𝐸𝐾}3𝐾=1 and {𝑒𝑖}3𝑖=1 are parallel,
and the shifter 1 has components 1𝑖𝐾 = 𝛿𝑖𝐾 , i.e., its representing matrix is an
identity. Under this hypothesis, the spatial rotation tensor 𝑄(𝑡) and the two-
point rotation tensor 𝑅(𝑡) have the same representing matrix. Indeed, we have
𝑄𝑖𝑘(𝑡) = 𝑅𝑖𝐾(𝑡) 𝛿𝑘𝐾 .

Poisson’s theorem. If we take the time derivative of the change of basis (3.13)
from the fixed basis {𝑒𝑖}3𝑖=1 to the moving basis {𝑒′𝑘(𝑡)}3𝑘=1, i.e.,

𝑒̇′𝑘(𝑡) = 𝑄̇(𝑡) 𝑒𝑘,

and we eliminate the fixed basis vectors 𝑒𝑘 by using the inverse 𝑒𝑘 = 𝑄𝑇 (𝑡) 𝑒′𝑘(𝑡)
of the change of basis (3.13), we obtain

𝑒̇′𝑘(𝑡) = 𝑄̇(𝑡)𝑄𝑇 (𝑡) 𝑒′𝑘(𝑡).

This derivative contains again the rigid spin tensor of Equation (3.6). Indeed, by
using the relations in (3.14), we have, by the orthogonality of the shifter 1,

𝑄̇(𝑡)𝑄𝑇 (𝑡) = 𝑅̇(𝑡)1𝑇 1𝑅𝑇 (𝑡) = 𝑅̇(𝑡)𝑅𝑇 (𝑡) = Ω(𝑡).

Therefore, we obtain, using also the definition (3.8) of angular velocity,

(3.15) 𝑒̇′𝑘(𝑡) = Ω(𝑡) 𝑒′𝑘(𝑡) ≡ 𝜔(𝑡)× 𝑒′𝑘(𝑡).

Equation (3.15) constitutes the enunciate of Poisson’s Theorem. The same result
could be obtained by taking the time derivative of the relation (3.12) between
material and spatial moving bases, directly in terms of the two-point rotation tensor
𝑅. However, the classical proof is in terms of the fully spatial rotation tensor 𝑄.

Poisson’s Theorem allows for calculating the time derivatives of vectors and
tensors that move rigidly with the body. Indeed, if 𝑢(𝑡) is one such vector, it can
be expressed in the fixed and moving bases as

𝑢(𝑡) = 𝑢𝑖(𝑡) 𝑒𝑖 = 𝑢′
𝑘 𝑒

′
𝑘(𝑡),

where the components 𝑢′
𝑘 in the moving basis do not depend on time, since 𝑢(𝑡)

and the basis vectors 𝑒′𝑘(𝑡) move rigidly together. Poisson’s Theorem (3.15) implies

(3.16) 𝑢̇(𝑡) = 𝑢′
𝑘 𝑒̇

′
𝑘(𝑡) = 𝑢′

𝑘 Ω(𝑡) 𝑒′𝑘(𝑡) = Ω(𝑡)𝑢(𝑡) = 𝜔(𝑡)× 𝑢(𝑡).

9 In the customary convention of Continuum Mechanics, tensor 𝑄 should be denoted by the
lowercase symbol 𝑞.
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This is the case of the local position vector 𝜉, Equation (3.16), which reads

𝜉(𝑥, 𝑡) = Ω(𝑡) 𝜉(𝑥, 𝑡) = 𝜔(𝑡)× 𝜉(𝑥, 𝑡),

as we have seen in the expressions (3.7) and (3.10) of the velocity field. For the
case of a second-order tensor 𝐴(𝑡) such that10

𝐴(𝑡) = 𝐴𝑖𝑗(𝑡) 𝑒𝑖 ⊗ 𝑒𝑗 = 𝐴′
𝑘𝑙 𝑒

′
𝑘(𝑡)⊗ 𝑒′𝑙(𝑡),

where, again, the components 𝐴′
𝑘𝑙 in the moving basis do not depend on time, use

of Poisson’s Theorem (3.15) in its form in terms of the rigid spin tensor Ω yields
(we omit the argument 𝑡 for the sake of a lighter notation)

𝐴̇ = 𝐴′
𝑘𝑙

[︀
(Ω 𝑒′𝑘)⊗ 𝑒′𝑙 + 𝑒′𝑘 ⊗ (Ω 𝑒′𝑙)

]︀
= 𝐴′

𝑘𝑙

[︀
(Ω 𝑒′𝑘)⊗ 𝑒′𝑙 + 𝑒′𝑘 ⊗ (𝑒′𝑙 Ω

𝑇 )
]︀

= 𝐴′
𝑘𝑙

[︀
(Ω 𝑒′𝑘)⊗ 𝑒′𝑙 − 𝑒′𝑘 ⊗ (𝑒′𝑙 Ω)

]︀
= 𝐴′

𝑘𝑙

[︀
Ω (𝑒′𝑘 ⊗ 𝑒′𝑙)− (𝑒′𝑘 ⊗ 𝑒′𝑙)Ω

]︀
= Ω𝐴−𝐴Ω,

where we used the definition of transpose and the definition of skew-symmetric
tensor. Finally, we have

(3.17) 𝐴̇(𝑡) = Ω(𝑡)𝐴(𝑡)−𝐴(𝑡)Ω(𝑡).

4. Rigid body dynamics

In order to derive the explicit expressions of the equations of motion (1.1),
we need to first introduce the total mass 𝑚 of the body, the centre of mass 𝑥𝐺

and then derive the expressions of the total linear momentum 𝑃 and the total
angular momentum 𝐿𝐺 with respect to the centre of mass 𝑥𝐺. From this point
on, all quantities are spatial and, following the customary notation in rigid body
mechanics, we shall use uppercase symbols for the total quantities 𝑃 and 𝐿𝐺 as
well as for the external forces and moments.

Mass density. The mass density is the strictly positive scalar field

𝜚( · , 𝑡) : 𝜑(ℬ, 𝑡) → R+ : 𝑥 ↦→ 𝜚(𝑥, 𝑡)

such that its integral over the current configuration 𝜑(ℬ, 𝑡) of the body is the total
mass

(4.1) 𝑚 =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) d𝜐,

which is a constant during the motion, i.e., 𝑚̇ = 0.

10 For this spatial tensor, we have the last deviation from the uppercase/lowercase convention
in this section.



INVERSE DYNAMICS IN RIGID BODY MECHANICS 169

Centre of mass. The centre of mass 𝑥𝐺 is defined as the point with local
position vector

(4.2) 𝑚 𝜉𝐺(𝑡) = 𝑚 [𝑥𝐺(𝑡)− 𝑥𝑃 (𝑡)] =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) 𝜉(𝑥, 𝑡) d𝜐.

If the origin 𝑥𝑃 of the moving frame coincides with the centre of mass 𝑥𝐺, then the
local position vector of the centre of mass vanishes identically:

(4.3) 𝑚 𝜉𝐺(𝑡) = 𝑚 [𝑥𝐺(𝑡)− 𝑥𝐺(𝑡)] =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) 𝜉(𝑥, 𝑡) d𝜐 ≡ 0.

With this choice, the kinematical equations (3.7) and (3.10) become

𝑣(𝑥, 𝑡) = 𝑣𝐺(𝑡) +Ω(𝑡) 𝜉(𝑥, 𝑡),

and

(4.4) 𝑣(𝑥, 𝑡) = 𝑣𝐺(𝑡) + 𝜔(𝑡)× 𝜉(𝑥, 𝑡).

Linear momentum. The total linear momentum 𝑃 is given by the integral
of the linear momentum density 𝑝 = 𝜚𝑣, i.e.,

𝑃 (𝑡) =

∫︁
𝜑(ℬ,𝑡)

𝑝(𝑥, 𝑡) d𝜐 =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡)𝑣(𝑥, 𝑡) d𝜐.

Using the kinematical equation (4.4) and the linearity of the integral operator, and
bringing out of the integral sign the quantities 𝑣𝐺 and 𝜔, which do not depend on
the point 𝑥, we have

𝑃 (𝑡) =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡)
(︀
𝑣𝐺(𝑡) + 𝜔(𝑡)× 𝜉(𝑥, 𝑡)

)︀
d𝜐

=

[︂ ∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) d𝜐

]︂
𝑣𝑃 (𝑡) + 𝜔(𝑡)×

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) 𝜉(𝑥, 𝑡) d𝜐.

The first integral is the mass 𝑚 (Equation (4.1)) and the second integral is the mass
times the local position vector (4.2) of the centre of mass 𝑥𝐺, which vanishes iden-
tically (Equation (4.3)) since the origin of the moving frame is 𝑥𝐺 itself. Therefore,
the total linear momentum 𝑃 reduces to the remarkably simple expression

(4.5) 𝑃 (𝑡) = 𝑚𝑣𝐺(𝑡),

expressing that, as far as linear motion is concerned, a rigid body behaves like
a single particle with mass equal to the total mass 𝑚 and velocity equal to the
velocity 𝑣𝐺 of the centre of mass.

Angular momentum. The total angular momentum 𝐿𝐺 with respect to the
centre of mass 𝑥𝐺 is the integral of the angular momentum density ℓ𝐺(𝑥, 𝑡) =
𝜉(𝑥, 𝑡)×

[︀
𝜚(𝑥, 𝑡)𝑣(𝑥, 𝑡)

]︀
, i.e.,

𝐿𝑂(𝑡) =

∫︁
𝜑(ℬ,𝑡)

ℓ𝐺(𝑥, 𝑡) d𝜐 =

∫︁
𝜑(ℬ,𝑡)

𝜉(𝑥, 𝑡)×
[︀
𝜚(𝑥, 𝑡)𝑣(𝑥, 𝑡)

]︀
d𝜐.
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Using again the kinematical equation (4.4) and the linearity of the integral operator,
we get

(4.6) 𝐿𝐺(𝑡) =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) 𝜉(𝑥, 𝑡)× 𝑣𝐺(𝑡) d𝜐

+

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) 𝜉(𝑥, 𝑡)×
[︀
𝜔(𝑡)× 𝜉(𝑥, 𝑡)

]︀
d𝜐.

In the second integral, we use Lagrange’s identity 𝑞 × (𝑟 × 𝑠) = (𝑞 . 𝑠)𝑟 − (𝑞 . 𝑟)𝑠
and write the double cross product as

𝜉(𝑥, 𝑡)× (𝜔(𝑡)× 𝜉(𝑥, 𝑡)) =
[︀
𝜉(𝑥, 𝑡) . 𝜉(𝑥, 𝑡)

]︀
𝜔(𝑡)−

[︀
𝜉(𝑥, 𝑡) .𝜔(𝑡)

]︀
𝜉(𝑥, 𝑡),

which, by using the definitions of identity tensor, i.e., 𝜔(𝑡) = 𝐼 𝜔(𝑡), and of tensor
product, i.e.,

[︀
𝜉(𝑥, 𝑡) .𝜔(𝑡)

]︀
𝜉(𝑥, 𝑡) =

[︀
𝜉(𝑥, 𝑡)⊗ 𝜉(𝑥, 𝑡)

]︀
𝜔(𝑡), becomes

𝜉(𝑥, 𝑡)× (𝜔(𝑡)× 𝜉(𝑥, 𝑡)) =
[︀
𝜉(𝑥, 𝑡) . 𝜉(𝑥, 𝑡)

]︀
𝐼 𝜔(𝑡)−

[︀
𝜉(𝑥, 𝑡)⊗ 𝜉(𝑥, 𝑡)

]︀
𝜔(𝑡)(4.7)

=
[︀(︀
𝜉(𝑥, 𝑡) . 𝜉(𝑥, 𝑡)

)︀
𝐼 − 𝜉(𝑥, 𝑡)⊗ 𝜉(𝑥, 𝑡)

]︀
𝜔(𝑡).

Substituting (4.7) into (4.6) and, again, bringing 𝑣𝐺 and 𝜔 out of the integral sign
since they do not depend on 𝑥, we obtain

𝐿𝐺(𝑡) =

[︂ ∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡) 𝜉(𝑥, 𝑡) d𝜐

]︂
× 𝑣𝐺(𝑡)(4.8)

+

[︂ ∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡)
[︀(︀
𝜉(𝑥, 𝑡) . 𝜉(𝑥, 𝑡)

)︀
𝐼 − 𝜉(𝑥, 𝑡)⊗ 𝜉(𝑥, 𝑡)

]︀
d𝜐

]︂
𝜔(𝑡).

The first integral is 𝑚 𝜉𝐺 and vanishes identically since the origin of the moving
frame is in the centre of mass 𝑥𝐺 (Equation (4.3)). The second integral is the tensor
of inertia with respect to the centre of mass 𝑥𝐺 [20],

(4.9) 𝐽𝐺(𝑡) =

∫︁
𝜑(ℬ,𝑡)

𝜚(𝑥, 𝑡)
[︀(︀
𝜉(𝑥, 𝑡) . 𝜉(𝑥, 𝑡)

)︀
𝐼 − 𝜉(𝑥, 𝑡)⊗ 𝜉(𝑥, 𝑡)

]︀
d𝜐.

Using the expression (4.9) of the tensor of inertia, the angular momentum 𝐿𝐺 with
respect to the centre of mass 𝑥𝐺 takes the final form

(4.10) 𝐿𝐺 = 𝐽𝐺 𝜔.

Tensor of inertia. Note that, in contrast with the mass 𝑚, the tensor of
inertia 𝐽𝐺 does depend on time. This can be seen by looking at the representations
of 𝐽𝐺 in the fixed basis {𝑒𝑖}3𝑖=1, which is time-independent, and in the moving basis
{𝑒′𝑘(𝑡)}3𝑘=1, which is time-dependent:

𝐽𝐺(𝑡) = 𝐽𝐺𝑖𝑗(𝑡) 𝑒𝑖 ⊗ 𝑒𝑗 = 𝐽 ′
𝐺𝑘𝑙 𝑒

′
𝑘(𝑡)⊗ 𝑒′𝑙(𝑡).

The moving components 𝐽 ′
𝐺𝑘𝑙 are intrinsic and time-independent and thus are

preferred to the time-dependent fixed components 𝐽𝐺𝑖𝑗 . We shall always assume
that the intrinsic and time-independent components 𝐽 ′

𝐺𝑘𝑙 in the moving basis are
known from the outset, and that the time-dependent components 𝐽𝐺𝑖𝑗 in the fixed
basis are obtained by means of the transformation

𝐽𝐺𝑖𝑗(𝑡) = 𝑄𝑖𝑘(𝑡) 𝐽
′
𝐺𝑘𝑙 𝑄𝑗𝑙(𝑡), [𝐽𝐺](𝑡) = [𝑄](𝑡) [𝐽𝐺]

′ [𝑄]𝑇 (𝑡).



INVERSE DYNAMICS IN RIGID BODY MECHANICS 171

Kinetic energy. The most elegant way to introduce the tensor of inertia is in
fact via the definition of kinetic energy, as done, e.g., by Landau and Lifshitz [20].
The kinetic energy 𝒦 is the integral of the kinetic energy density 𝑘 = 1

2 𝜚𝑣 .𝑣, i.e.,

𝒦(𝑡) =

∫︁
𝜑(ℬ,𝑡)

𝑘(𝑥, 𝑡) d𝜐 =

∫︁
𝜑(ℬ,𝑡)

1

2
𝜚(𝑥, 𝑡)𝑣(𝑥, 𝑡) .𝑣(𝑥, 𝑡) d𝜐.

Substitution of the rigid body velocity field (3.10) and passages similar to those
that brought the angular momentum 𝐿𝐺 from the form (4.6) to the form (4.8)
yield

𝒦(𝑡) = 1
2 𝑚𝑣𝐺(𝑡) .𝑣𝐺(𝑡) +

1
2 𝜔(𝑡) . [𝐽𝐺(𝑡)𝜔(𝑡)],

which shows that the kinetic energy of a rigid body ℬ is given by the sum of two
terms. The first is the kinetic energy associated with the translational motion and
equals that of a single particle whose mass is equal to that of ℬ and whose motion
is that of the centre of mass 𝑥𝐺. The second is an intrinsic kinetic energy term,
associated with the rotational motion. In the second term, we note how the tensor
of inertia 𝐽𝐺 behaves as a metric tensor, by virtue of its symmetry and positive
definiteness. Finally, we note that, by inserting an identity tensor in the first term,
we can write the kinetic energy as the sum of two quadratic forms, i.e.,

𝒦(𝑡) = 1
2 𝑣𝐺(𝑡) . [𝑚 𝐼 𝑣𝐺(𝑡)] +

1
2 𝜔(𝑡) . [𝐽𝐺(𝑡)𝜔(𝑡)]

where the spherical tensor 𝑚 𝐼, called mass tensor, is to be considered a metric
tensor as well, being symmetric and positive definite.

Equations of Motion. The derivatives of the linear momentum (4.5) and
angular momentum (4.10) are given by

𝑃̇ = 𝑚𝑎𝐺,(4.11a)

𝐿̇𝐺 = 𝐽𝐺 𝛼+ 𝜔 × 𝐽𝐺 𝜔,(4.11b)

where 𝑎𝐺 = 𝑣̇𝐺 is the acceleration of the centre of mass 𝑥𝐺 and 𝛼 = 𝜔̇ is the angular
acceleration. The derivative (4.11a) of the linear momentum is straightforward, but
the derivative (4.11b) of the angular momentum deserves some attention. The term
𝜔 × 𝐽𝐺 𝜔 arises from the derivative of the tensor of inertia 𝐽𝐺, which is evaluated
using the application (3.17) of Poisson’s theorem to second-order tensors. Using
this result, along with the definition (3.8) of angular velocity 𝜔 in terms of the rigid
spin tensor Ω, we have

𝐿̇𝐺 = 𝐽𝐺 𝜔̇ + 𝐽𝐺 𝜔 = 𝐽𝐺 𝛼+ [Ω𝐽𝐺 − 𝐽𝐺 Ω]𝜔

= 𝐽𝐺 𝛼+Ω𝐽𝐺 𝜔 − 𝐽𝐺 Ω𝜔 = 𝐽𝐺 𝛼+ 𝜔 × 𝐽𝐺 𝜔 − 𝐽𝐺 [𝜔 × 𝜔],

which, for the vanishing of the cross product 𝜔 × 𝜔, yields (4.11b).
Using the derivatives (4.11), the equations of motion (1.1) take the explicit form

𝑚𝑎𝐺 = 𝐹 ,(4.12a)
𝐽𝐺 𝛼+ 𝜔 × 𝐽𝐺 𝜔 = 𝑀𝐺.(4.12b)

In the rotational equation (4.12b), it is important to study the conditions under
which the term 𝜔 × 𝐽𝐺 𝜔 vanishes. Since the tensor of inertia 𝐽𝐺 is positive
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definite, 𝐿𝐺 = 𝐽𝐺 𝜔 is always non-zero, excluding the trivial case of null angular
velocity. Therefore, the cross product 𝜔×𝐽𝐺 𝜔 vanishes if, and only if, the angular
momentum 𝐿𝐺 = 𝐽𝐺 𝜔 is parallel to the angular velocity 𝜔. Parallelism means that

𝐿𝐺 = 𝐽𝐺 𝜔 = 𝜆𝜔,

i.e., that the angular velocity 𝜔 is an eigenvector of the tensor of inertia 𝐽𝐺.
Therefore, when the condition 𝜔×𝐽𝐺 𝜔 = 0 is met, we say that the body is rotating
about a principal direction of inertia and the rotational equation of motion (4.12b)
reduces to 𝐽𝐺 𝛼 = 𝑀𝐺. When the angular velocity 𝜔 is not an eigenvector of the
tensor of inertia 𝐽𝐺 (i.e., the body is not rotating about a principal axis of inertia),
the term 𝜔 × 𝐽𝐺 𝜔 in (4.12b) tends to deviate the direction of the axis of rotation
(i.e., the direction of 𝜔). This has of course tremendous importance in Engineering
applications, such as the dynamics of rotors.

5. Inverse dynamics

Let the rigid body ℬ be subjected to a discrete number 𝑛 of concentrated
external forces 𝐹 (𝑖) and concentrated external moments 𝑀 (𝑖), applied at the 𝑛
points with positions 𝑥(𝑖) with local position vectors 𝜉(𝑖) with respect to the centre
of mass 𝑥𝐺 (see Figure 3). In this case, the resultant force 𝐹 (not to be confused
with the deformation gradient (2.3)) and resultant moment 𝑀𝐺, evaluated with
respect to the centre of mass 𝑥𝐺, are

𝐹 =

𝑛∑︁
𝑖=1

𝐹 (𝑖),

𝑀𝐺 =

𝑛∑︁
𝑖=1

𝑀 (𝑖) +

𝑛∑︁
𝑖=1

𝜉(𝑖) × 𝐹 (𝑖).

Under this hypothesis, the equations of motion (4.12) read

𝑚𝑎𝐺 =

𝑛∑︁
𝑖=1

𝐹 (𝑖),

𝐽𝐺 𝛼+ 𝜔 × 𝐽𝐺 𝜔 =

𝑛∑︁
𝑖=1

𝑀 (𝑖) +

𝑛∑︁
𝑖=1

𝜉(𝑖) × 𝐹 (𝑖).

In the setting of Inverse Dynamics [4], we have that:
(1) The kinematical variables 𝑥𝐺, 𝑣𝐺, 𝑎𝐺, 𝜔, 𝛼, along with all the positions

𝑥(𝑖) and corresponding position vectors 𝜉(𝑖), are all known functions of
time, determined experimentally;

(2) The forces 𝐹 (𝑖) and moments 𝑀 (𝑖) at the application points 𝑥(𝑖) are
known for all 𝑖 ∈ {1, ..., 𝑛− 1};

(3) Only the force 𝐹 (𝑛) and moment 𝑀 (𝑛) at 𝑥(𝑛) are unknown.
If we isolate the terms containing the force and moment at 𝑥(𝑛) and group

the terms containing the forces and moments at 𝑥(1),..., 𝑥(𝑛−1), we can write the
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inverse dynamics equations as

𝑚𝑎𝐺 = 𝐹 (𝑛) + 𝐹0,(5.1a)

𝐽𝐺 𝛼+ 𝜔 × 𝐽𝐺 𝜔 = 𝜉(𝑛) × 𝐹 (𝑛) +𝑀 (𝑛) +𝑀0,(5.1b)

where we defined the resultants of the known forces and moments as

𝐹0 =

𝑛−1∑︁
𝑖=1

𝐹 (𝑖),

𝑀0 =

𝑛−1∑︁
𝑖=1

𝜉(𝑖) × 𝐹 (𝑖) +

𝑛−1∑︁
𝑖=1

𝑀 (𝑖).

The two vectorial equations (5.1) constitute a system of 6 algebraic equations in
the 6 unknowns (generalised forces) 𝐹

(𝑛)
1 , 𝐹 (𝑛)

2 , 𝐹 (𝑛)
3 , 𝑀 (𝑛)

1 , 𝑀 (𝑛)
2 , 𝑀 (𝑛)

3 .

𝑒1

𝑒2

𝑒3

𝑥𝑂

𝑥1

𝑥2

𝑥3

𝑒′
1(𝑡)

𝑒′
2(𝑡)

𝑒′
3(𝑡)

𝑥𝐺(𝑡)

𝑥′
1

𝑥′
2

𝑥′
3

𝑥(𝑖)

𝜉(𝑖)(𝑡)

𝐹 (𝑖)(𝑡)

𝑀 (𝑖)(𝑡)

𝑥(𝑛)

𝜉(𝑛)(𝑡)
𝐹 (𝑛)(𝑡)

𝑀 (𝑛)(𝑡)

𝜑(ℬ, 𝑡)

Figure 3. A rigid body subjected to external forces and moments
at 𝑛 points with positions 𝑥(𝑖). The forces and moments at all
points except 𝑥(𝑛) and all kinematical variables are assumed to
be known. Inverse Dynamics allows for calculating the unknown
forces and moments at the point with position 𝑥(𝑛).

In order to solve the system of algebraic equations constituted by Equations (5.1),
we write them in a 6× 6 matrix formalism as

𝑚 {𝑎𝐺}
3×1

= {𝐹 (𝑛)}
3×1

+ {𝐹0}
3×1

,(5.2a)
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[𝐽𝐺]
3×3

{𝛼}
3×1

+ [Ω]
3×3

[𝐽𝐺]
3×3

{𝜔}
3×1

= [𝐵]
3×3

{𝐹 (𝑛)}
3×1

+ {𝑀 (𝑛)}
3×1

+ {𝑀0}
3×1

.(5.2b)

The cross product 𝜔 × 𝐽𝐺 𝜔 has been expressed in terms of the rigid spin tensor
Ω via (3.8), i.e.,

𝜔 × 𝐽𝐺 𝜔 = Ω𝐽𝐺 𝜔,

and then, with the matrix representation (3.9) of Ω, written in matrix form as

{𝜔 × 𝐽𝐺 𝜔}
3×1

= [Ω]
3×3

{𝐽𝐺 𝜔}
3×1

= [Ω]
3×3

[𝐽𝐺]
3×3

{𝜔}
3×1

.

The cross product 𝜉(𝑛) × 𝐹 (𝑛) has been represented as

{𝜉(𝑛) × 𝐹 (𝑛)}
3×1

= [𝐵]
3×3

{𝐹 (𝑛)}
3×1

,

where the matrix [𝐵] of the moment arms associated with the local position vector
𝜉(𝑛) is defined by

𝐵𝑖𝑘 = 𝜖𝑖𝑗𝑘 𝜉
(𝑛)
𝑗 , [𝐵] =

⎡⎢⎣ 0 −𝜉
(𝑛)
3 𝜉

(𝑛)
2

𝜉
(𝑛)
3 0 −𝜉

(𝑛)
1

−𝜉
(𝑛)
2 𝜉

(𝑛)
1 0

⎤⎥⎦ ,

omitting the superscript (𝑛) in the symbols 𝐵𝑖𝑘 and [𝐵] for the sake of a lighter no-
tation. Note that, while [Ω] is the matrix representation of the true skew-symmetric
tensor Ω, the matrix [𝐵] does not represent any true tensor. Indeed, the transfor-
mation [𝐵] = [𝑄] [𝐵]′ [𝑄]𝑇 is equivalent to the transformation {𝜉(𝑖)} = [𝑄] {𝜉(𝑖)}′
of the components of the true vector 𝜉(𝑖) only when [𝑄] is a proper orthogonal
matrix.11

Now, in (5.2), we use {𝑎𝐺} = {𝑣̇𝐺} and {𝛼} = {𝜔̇}, and insert an identity
matrix [𝐼] between the mass 𝑚 and the acceleration {𝑎𝐺} = {𝑣̇𝐺} of the centre of
mass, and obtain

𝑚 [𝐼]
3×3

{𝑣̇𝐺}
3×1

= {𝐹 (𝑛)}
3×1

+ {𝐹0}
3×1

,(5.3a)

[𝐽𝐺]
3×3

{𝜔̇}
3×1

+ [Ω]
3×3

[𝐽𝐺]
3×3

{𝜔}
3×1

= [𝐵]
3×3

{𝐹 (𝑛)}
3×1

+ {𝑀 (𝑛)}
3×1

+ {𝑀0}
3×1

.(5.3b)

We are now ready to assemble Equations (5.3) into the single 6× 6 equation

(5.4)

⎡⎣𝑚 [𝐼]
3×3

[0]
3×3

[0]
3×3

[𝐽𝐺]
3×3

⎤⎦⎡⎣{𝑣̇𝐺}3×1

{𝜔̇}
3×1

⎤⎦+

⎡⎣ [0]
3×3

[0]
3×3

[0]
3×3

[Ω]
3×3

⎤⎦⎡⎣𝑚 [𝐼]
𝑟×3

[0]
3×3

[0]
3×3

[𝐽𝐺]
3×3

⎤⎦⎡⎣{𝑣𝐺}3×1

{𝜔}
3×1

⎤⎦
=

⎡⎣ [𝐼]
3×3

[0]
3×3

[𝐵]
3×3

[𝐼]
3×3

⎤⎦⎡⎣{𝐹 (𝑛)}
3×1

{𝑀 (𝑛)}
3×1

⎤⎦+

⎡⎣ {𝐹0}
3×1

{𝑀0}
3×1

⎤⎦ ,

11 See the discussion on the transformation of two-forms, i.e., second-order skew-symmetric
tensors, in [16].
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having denoted with [0] the 3 × 3 zero matrix. In compact form, Equation (5.4)
reads

[M]
6×6

{𝑢̇}
6×1

+ [𝑊 ]
6×6

[M]
6×6

{𝑢}
6×1

= [𝐴]
6×6

{F}
6×1

+ {F0}
6×1

.(5.5)

The 6× 1 vector of the generalised velocities,

{𝑢}
6×1

=

⎡⎣{𝑣𝐺}3×1

{𝜔}
3×1

⎤⎦ ,

is a block vector, with the 1-block consisting of the components of the velocity
𝑣𝐺 of the centre of mass and with the 2-block consisting of the components of the
angular velocity 𝜔. The 6× 6 matrix of the generalised masses,

[M]
6×6

=

⎡⎣𝑚 [𝐼]
3×3

[0]
3×3

[0]
3×3

[𝐽𝐺]
3×3

⎤⎦ ,

is a symmetric block-diagonal matrix, with the 11-block being an identity matrix
[𝐼] multiplied by the mass 𝑚 of the body and the 22-block being the symmetric
matrix [𝐽𝐺] of the tensor of inertia 𝐽𝐺. We emphasise again that the matrix [𝐽𝐺]
does depend on time, as it is written in the fixed reference frame. The 6 × 6
generalised spin matrix,

[𝑊 ]
6×6

=

⎡⎣ [0]
3×3

[0]
3×3

[0]
3×3

[Ω]
3×3

⎤⎦ ,

is a skew-symmetric block-diagonal matrix, with all blocks being null except for the
22-block, which is the skew-symmetric matrix [Ω] of the rigid spin tensor Ω. The
generalised spin matrix [𝑊 ] “kills” all terms in [M]{𝑢} except those corresponding
to the term [Ω] [𝐽𝐺] {𝜔} in the rotational equation (5.3b) (term 𝜔×𝐽𝐺 𝜔 in (5.1b)).
The 6× 6 matrix of the generalised moment arms associated with 𝜉(𝑛) is the block-
lower-triangular matrix

[𝐴]
6×6

=

⎡⎣ [𝐼]
3×3

[0]
3×3

[𝐵]
3×3

[𝐼]
3×3

⎤⎦ .

The two identity blocks on the main diagonal simply “recopy” the three components
of the force {𝐹 (𝑛)} into the translational equation (5.3a) and the three components
of the moment {𝑀 (𝑛)} into the rotational equation (5.3b), respectively. The zero
in the 12-block reflects the fact that no component of the moment {𝑀 (𝑛)} can
enter the translational equation (5.3a). The matrix [𝐵] in the 21-block provides
the moment arms of the components of the unknown force {𝐹 (𝑛)} in the rotational
equation (5.3b). The 6×1 block vectors of the unknown generalised forces at point
𝑥(𝑛) and of the resultants of the known generalised forces are defined as

{F}
6×1

=

⎡⎣{𝐹 (𝑛)}
3×1

{𝑀 (𝑛)}
3×1

⎤⎦ , {F0}
6×1

=

⎡⎣ {𝐹0}
3×1

{𝑀0}
3×1

⎤⎦ .
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Note that, similarly as for the case of [𝐵] (and, consequentially, of [𝐴]), we omit
the superscript (𝑛) in the symbol {F}.

The matrix form (5.5) of the inverse dynamics equations (5.1) is solved for the
vector of the unknown generalised forces {F} by inversion of the matrix [𝐴] of the
generalised moment arms, i.e.,

{F}
6×1

= [𝐴]
6×6

−1(︀
[M]
6×6

{𝑢̇}
6×1

+ [𝑊 ]
6×6

[M]
6×6

{𝑢}
6×1

− {F0}
6×1

)︀
.

The inverse of [𝐴] is, perhaps surprisingly, simply obtained by changing the sign of
the 21-block [𝐵], i.e.,

[𝐴]
6×6

−1 =

⎡⎣ [𝐼]
3×3

[0]
3×3

−[𝐵]
3×3

[𝐼]
3×3

⎤⎦ .

This is easy to verify by exploiting the block structure of [𝐴]:⎡⎣ [𝐼]
3×3

[0]
3×3

[𝐵]
3×3

[𝐼]
3×3

⎤⎦⎡⎣ [𝐼]
3×3

[0]
3×3

−[𝐵]
3×3

[𝐼]
3×3

⎤⎦ =

⎡⎣ [𝐼]
3×3

[0]
3×3

[0]
3×3

[𝐼]
3×3

⎤⎦ .

6. One-body example: inverse dynamics of the foot

Here, we present the two-dimensional analysis of a one-body problem in Inverse
Dynamics, similar to that in the paper by Andrews [4]. We shall see how the matrix
formulation described in Section (5) becomes particularly simple.

A runner’s foot, schematised by a two-dimensional body contained in the plane
spanned by 𝑒1 and 𝑒2, as shown in Figure 4, lands on a force plate with the ball
of the foot. The resultant reaction force 𝐹𝑃 recorded by a force plate is applied at
the centre of pressure 𝑥𝑃 [24]. The mass 𝑚, the moment of inertia 𝐽𝐺 ≡ 𝐽𝐺33 with
respect to the centre of mass 𝑥𝐺 and the geometry of the foot (norms ‖𝜉𝑇 ‖ = ℓ and
‖𝜉𝑃 ‖ = 𝑏 of the local position vectors 𝜉𝑇 and 𝜉𝑃 of the talar joint (ankle) 𝑥𝑇 and
the centre of pressure 𝑥𝑃 with respect to the centre of mass 𝑥𝐺, angle 𝛽 between
𝜉𝑇 and 𝜉𝑃 ) are known. The kinematics (coordinates 𝑥𝐺1 and 𝑥𝐺2 of the centre of
mass 𝑥𝐺 as a function of the time 𝑡 and rotation angle 𝜃 of 𝜉𝑇 with respect to the
horizontal direction 𝑒1 as a function of time 𝑡) is known from motion analysis data.
Our goal is to find the resultant force 𝐹𝑇 and the resultant moment 𝑀𝑇 at the
talar joint 𝑥𝑇 .

Since the problem is in two dimensions and the body is contained in the 𝑒1-𝑒2
plane, we have

{𝜉𝑇 }𝑇 = [ℓ cos 𝜃 ℓ sin 𝜃 0] {𝜉𝑃 }𝑇 = [𝑏 cos(𝜃 + 𝛽) 𝑏 sin(𝜃 + 𝛽) 0]

{𝜔}𝑇 = [0 0 𝜔] = [0 0 𝜃] {𝛼}𝑇 = [0 0 𝜔̇] = [0 0 𝜃]

{𝐹𝑃 }𝑇 = [𝐹𝑃1 𝐹𝑃2 0] {𝑚𝑔}𝑇 = [0 −𝑚𝑔 0]

{𝐹𝑇 }𝑇 = [𝐹𝑇1 𝐹𝑇2 0] {𝑀𝑇 }𝑇 = [0 0 𝑀𝑇 ].

Note that, for the angles 𝜃 and 𝛽 of Figure (4), both components of 𝜉𝑃 are negative.
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𝑒1

𝑒2

𝑥𝑂

𝑥𝐺

𝑚 𝑔

𝑥𝑇

𝜉𝑇

𝜃

𝐹𝑇

𝑀𝑇

𝑥𝑃

𝜉𝑃

𝐹𝑃

𝛽

Figure 4. Schematised foot landing on a force plate, which mea-
sures the reaction 𝐹𝑃 at the centre of pressure 𝑥𝑃 ; the goal of the
Inverse Dynamics problem in this case is to calculate the resultant
force and moment at the talar joint 𝑥𝑇 . The senses of the unknown
force 𝐹𝑇 and moment 𝑀𝑇 are tentative.

In the vectorial equation of equilibrium to translation,

𝐹 = 𝑚 𝑔 + 𝐹𝑃 + 𝐹𝑇 = 𝑚𝑎𝐺,

only the first and second scalar equations are non-trivial:

𝐹𝑃1 + 𝐹𝑇1 = 𝑚𝑎𝐺1 = 𝑚𝑣̇𝐺1,(6.1a)
−𝑚𝑔 + 𝐹𝑃2 + 𝐹𝑇2 = 𝑚𝑎𝐺2 = 𝑚𝑣̇𝐺2.(6.1b)

The vectorial equation of equilibrium to rotation with respect to the centre of mass
reads

𝑀𝐺 =������
𝜉𝐺 × (𝑚 𝑔) + 𝜉𝑃 × 𝐹𝑃 + 𝜉𝑇 × 𝐹𝑇 +𝑀𝑇 = 𝐽𝐺 𝛼+(((((𝜔 × 𝐽𝐺 𝜔,

where 𝜉𝐺 × (𝑚 𝑔) = 0 since 𝜉𝐺 = 0, and 𝜔 × 𝐽𝐺 𝜔 = 0 since we are in two
dimensions (in a two-dimensional system, the direction orthogonal to the plane
is a principal direction of inertia and thus the angular velocity, which is in the
directional orthogonal to the plane, is an eigenvector of the tensor of inertia).
Again because we are in two dimensions, the only non-trivial scalar equation is the
third, which reads

(6.2) 𝑏 cos(𝜃+ 𝛽)𝐹𝑃2 − 𝑏 sin(𝜃+ 𝛽)𝐹𝑃1 + ℓ cos 𝜃 𝐹𝑇2 − ℓ sin 𝜃 𝐹𝑇1 +𝑀𝑇 = 𝐽𝐺 𝜔̇.

The three scalar equations (6.1) and (6.2) read, in explicit matrix form,⎡⎣ 𝑚 0 0
0 𝑚 0
0 0 𝐽𝐺

⎤⎦⎡⎣𝑣̇𝐺1

𝑣̇𝐺2

𝜔̇

⎤⎦ =

⎡⎣ 1 0 0
0 1 0

−ℓ sin 𝜃 ℓ cos 𝜃 1

⎤⎦⎡⎣𝐹𝑇1

𝐹𝑇2

𝑀𝑇

⎤⎦
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+

⎡⎣ 𝐹𝑅1

𝐹𝑅2 −𝑚𝑔
𝑏 cos(𝜃 + 𝛽)𝐹𝑃2 − 𝑏 sin(𝜃 + 𝛽)𝐹𝑃1

⎤⎦ ,

and, in compact form,
[M]
3×3

{𝑢̇}
3×1

= [𝐴]
3×3

{F}
3×1

+ {F0}
3×1

,

where [M] is the matrix of the generalised masses, {𝑢} is the vector of the generalised
velocities, [𝐴] is the matrix of the generalised moment arms associated with 𝜉𝑇 ,
{F} is the vector of the unknown generalised joint forces at the talar joint 𝑥𝑇 , and
{F0} is the vector of the known generalised external forces. The solution is found,
as in the general case, by inversion of the matrix [𝐴], i.e.,

{F}
3×1

= [𝐴]
3×3

−1
(︀
[M]
3×3

{𝑢̇}
3×1

− {F0}
3×1

)︀
,

where the inverse [𝐴]−1 is found similarly to the general three-dimensional case.
Indeed, this 3× 3 matrix [𝐴] too can be considered as a block matrix, i.e.,

[𝐴]
3×3

=

⎡⎣ [𝐼]
2×2

{0}
2×1

{𝐵}
1×2

1
1×1

⎤⎦ =

⎡⎣ 1 0 0
0 1 0

−ℓ sin 𝜃 ℓ cos 𝜃 1

⎤⎦ ,

and we can again verify that its inverse is

[𝐴]
3×3

−1 =

⎡⎣ [𝐼]
2×2

{0}
2×1

−{𝐵}
1×2

1
1×1

⎤⎦ =

⎡⎣ 1 0 0
0 1 0

ℓ sin 𝜃 −ℓ cos 𝜃 1

⎤⎦ .

7. Summary and outlook

We presented a fully three-dimensional matrix framework for the solution of
problems in Inverse Dynamics, along with an example in the simplified two-dimen-
sional setting. In a didactic spirit, the full kinematics and dynamics of rigid bodies
have been derived, with an approach based on the methods of modern Continuum
Mechanics, of which rigid body mechanics is, in fact, a particular case. The hope
is that this work can be of aid in the classroom, for the delivery of rigid body
mechanics in general, and of Inverse Dynamics in particular.

The continuum mechanical approach could be of help in future developments.
One example could be the generalisation to pseudo-rigid bodies, i.e., bodies un-
dergoing affine deformations (with stretch tensors 𝑈 and 𝑉 independent of 𝑋
and 𝑥, respectively). Another example could be the study of the effect of small
deformations, which could be seen as deviations from rigid body motion and repre-
sented as an infinitesimal displacement field 𝑢 superposed to the rigid motion (3.3),
i.e., a perturbed motion 𝜑(𝑋, 𝑡) = 𝜑(𝑋, 𝑡) + 𝑢(𝑥, 𝑡) (see, e.g., [3,15]). Finally, in
Biomechanics, a body segment is normally regarded as being rigid but, while this
approximation is well suited for the bones, it is not quite so for the soft tissues
surrounding the bone, which can deform and vibrate considerably [23]. A contin-
uum mechanical approach could help in devising strategies to optimally “filter” the
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effect of these “wobbling masses”, to extract rigid body kinematical data that is as
faithful as possible to the movement of the bones.
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ИНВЕРЗНА ДИНАМИКА У МЕХАНИЦИ КРУГОГ ТЕЛА

Резиме. Разматрамо проблем инверзне динамике, израчунавање сила и моме-
ната сила у зглобовима система више крутих тела, коjи се jавља у областима
као што су биомеханика или роботика. У педагошком духу, рад почиње прика-
зом извођења кинематичких и динамичких jедначина крутог тела са станови-
шта савремене механике континуума. Затим уводимо матричну формулациjу
за решење проблема инверзне динамике и, на краjу, приказуjемо jедноставан
дводимензионални пример примене проблема у биомеханици.
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