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GRADIENT-DEPENDENT TRANSPORT
COEFFICIENTS IN THE

NAVIER–STOKES–FOURIER SYSTEM

Mátyás Szücs and Róbert Kovács

Abstract. In the engineering praxis, Newton’s law of viscosity and Fourier’s
heat conduction law are applied to describe thermomechanical processes of
fluids. Despite several successful applications, there are some obscure and
unexplored details, which are partly answered in this paper using the method-
ology of irreversible thermodynamics. Liu’s procedure is applied to derive the
entropy production rate density, in which positive definiteness is ensured via
linear Onsagerian equations; these equations are exactly Newton’s law of vis-
cosity and Fourier’s heat conduction law. The calculations point out that,
theoretically, the transport coefficients (thermal conductivity and viscosity)
can also depend on the gradient of the state variables in addition to the well-
known dependence of the state variables. This gradient dependency of the
transport coefficients can have a significant impact on the modeling of such
phenomena as welding, piston effect or shock waves.

1. Introduction

In engineering practice, classical constitutive laws such as Newton’s law of
viscosity and Fourier’s heat conduction law are still fundamental and have been used
successfully in several situations. These constitutive laws, together with the balance
equations, form the Navier–Stokes–Fourier system. However, as with any other
models in physics, these also have a limited range of validity. There are situations
and phenomena which could outreach that limit, and thus, a reliable and practically
helpful explanation is necessary by revisiting the background of these models.

In irreversible thermodynamics, various approaches exist, and they provide nu-
merous ideas about the generalization possibilities. For instance, the Rational Ex-
tended Thermodynamics [1] approach considers compatibility with kinetic theory
rigorously. Hence, it best works for rarefied gas systems and is much less advanta-
geous for room temperature solids. The Extended Irreversible Thermodynamic [2]
approach treats kinetic theory loosely, leaving open the possibilities for adapting
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any suitable elements. Furthermore, that approach utilizes only dissipative fluxes
as extra state variables, therefore limiting the possibilities when other types of state
variables would be necessary (e.g. the fabric density in fracture mechanics [3]). In-
ternal Variable Methodology [4] extends the possibilities by allowing other variables
beyond dissipative fluxes and also treats the entropy flux more flexibly [5–7].

Although the classical continuum thermodynamic background for the Navier–
Stokes–Fourier system is known (see e.g. [8,9]) and its several extensions and gen-
eralizations are already existing, its review with the tools of modern irreversible
thermodynamics helps improve the understanding and provide ideas about their
extensions and possible couplings.

This is exactly our aim in the present paper: starting with the balance equa-
tions and the dissipation inequality, the transport equations for the classical Navier-
Stokes–Fourier system is derived via Liu’s procedure [10]. Liu’s procedure, a
rigorous mathematical technique provides further insight into both classical and
generalized theories. Furthermore, it also reveals the possible–and non-trivial–
nonlinearities (state variable dependency). The main result of this investigation
is that transport coefficients can depend not only on the state variables, but their
gradients, too. This kind of dependence can have a great impact on the modeling
of such phenomena, in which sudden changes appear, such as welding [11], piston
effect [12] or shock waves [13].

2. The Navier–Stokes–Fourier system

In general, continuum theories are formed by balance equations and constitu-
tive equations (also including thermostatic relationships and transport equations).
While balance equations express the conservation of extensive quantities indepen-
dent of the material and hence describe dynamics, constitutive equations char-
acterize the material itself. More closely, thermostatic relationships connect the
extensive and intensive state variables through the entropy function, and, in paral-
lel, transport equations assemble relationships among the thermodynamical fluxes
and forces. These latter ones are usually the gradients of intensive state variables.

2.1. Balance equations. Let us assume a one-component non-polar fluid,
and only the thermomechanical interactions are considered. Neglecting volumetric
source terms such as field strength or heat sources, the substantial forms of the
conservation of mass, linear momentum, and total energy are

�̇�+ 𝜚∇ · v = 0,(2.1)
𝜚v̇ +P · ∇ = 0,(2.2)
𝜚�̇�+∇ · J𝐸 = 0,(2.3)

where 𝜚, v and 𝑒 are the density, velocity field and (mass) specific total energy,
respectively, P = PT is the symmetric pressure tensor (here T denotes the transpose
of a second order tensor), which is a consequence of the conservation of angular
momentum, J𝐸 is the current density of total energy. The substantial or comoving

∙̇ := 𝜕𝑡 ∙+(∙ ⊗ ∇) · v



GRADIENT-DEPENDENT TRANSPORT COEFFICIENTS 125

characterizes the change of a quantity in time at a fixed material point, while it
flows with velocity v, here and later on 𝜕𝑡 denotes the partial time derivative, and
∇ is the nabla operator, which represents gradient or divergence depending on the
tensorial multiplication.

2.2. Constitutive equations. The second law of thermodynamics, i.e. the
thermodynamical stability of

∙ the material itself,
∙ and the realized process

is expressed through entropy. The first part belongs to thermostatic considerations,
while the second one prescribes requirements on the dynamics.

2.2.1. Thermostatic constitution. Now, we briefly summarize the thermostatic
properties of the material, which is in connection with the entropy, hence, the main
properties of entropy are collected here:

(1) There exist independent thermodynamical bodies, which are characterized
by extensive state variables. The thermodynamical state space is spanned
by these extensive state variables, namely, the internal energy 𝑈 , the
volume 𝑉 , and the mass 𝑚. Entropy 𝑆 is a potential function of the state
space in the variables (𝑈, 𝑉,𝑚), from which the intensive state functions,
more closely temperature 𝑇 , pressure 𝑝, and the chemical potential 𝜇
follow as

𝜕𝑆

𝜕𝑈

⃒⃒⃒
𝑉,𝑚

=
1

𝑇
(𝑈, 𝑉,𝑚),

𝜕𝑆

𝜕𝑉

⃒⃒⃒
𝑈,𝑚

=
𝑝

𝑇
(𝑈, 𝑉,𝑚),

𝜕𝑆

𝜕𝑚

⃒⃒⃒
𝑈,𝑉

= −𝜇

𝑇
(𝑈, 𝑉,𝑚),

respectively. This relationship is expressed through the Gibbs relation

(2.4) d𝑆 =
1

𝑇
d𝑈 +

𝑝

𝑇
d𝑉 − 𝜇

𝑇
d𝑚.

(2) Entropy is an extensive state function.
(a) More precisely, entropy is a first-order Euler homogeneous function

of its variables. For example

(2.5) 𝑆(𝑐 · 𝑈, 𝑐 · 𝑉, 𝑐 ·𝑚) = 𝑐 · 𝑆(𝑈, 𝑉,𝑚)

with the positive constant 𝑐.
(b) From the previous statement, the introduction of specific entropy

follows. The mass-specific entropy (later called specific entropy) is
defined as

(2.6) 𝑠(𝑢, 𝑣) :=
1

𝑚
𝑆
(︁𝑈

𝑚
,
𝑉

𝑚

)︁
with 𝑢 = 𝑈

𝑚 and 𝑣 = 𝑉
𝑚 denoting the (mass) specific internal energy

and specific volume, respectively. Analogously, the volume-specific
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entropy, also known as the entropy density, is

(2.7) 𝜚𝑆(𝜚, 𝜚𝑈 ) :=
1

𝑉
𝑆
(︁𝑈
𝑉
,
𝑚

𝑉

)︁
,

where 𝜚𝑈 = 𝑈
𝑉 and 𝜚 = 𝑚

𝑉 are the internal energy density and the
(mass) density, respectively.

(c) The Euler relation for the entropy is

(2.8) 𝑆(𝑈, 𝑉,𝑚) =
1

𝑇
(𝑈, 𝑉,𝑚)𝑈 +

𝑝

𝑇
(𝑈, 𝑉,𝑚)𝑉 − 𝜇

𝑇
(𝑈, 𝑉,𝑚)𝑚.

As consequences of (2.4), (2.5), (2.6), (2.7) and (2.8) the specific
entropy and the entropy density are

𝑠(𝑢, 𝑣) =
1

𝑇
(𝑢, 𝑣)𝑢+

𝑝

𝑇
(𝑢, 𝑣)𝑣 − 𝜇

𝑇
(𝑢, 𝑣),

𝜚𝑆(𝜚𝑈 , 𝜚) =
1

𝑇
(𝜚𝑈 , 𝜚)𝜚𝑈 +

𝑝

𝑇
(𝜚𝑈 , 𝜚)−

𝜇

𝑇
(𝜚𝑈 , 𝜚)𝜚,

and the Gibbs relation on the specific entropy and the entropy density
are

d𝑠 =
1

𝑇
d𝑢+

𝑝

𝑇
d𝑣,(2.9)

d𝜚𝑆 =
1

𝑇
d𝜚𝑈 − 𝜇

𝑇
d𝜚,

respectively.
(3) The specific entropy is a concave function of its variables, i.e.

𝜕2𝑠

𝜕𝑢2

⃒⃒⃒
𝑣
⩾ 0,

𝜕2𝑠

𝜕𝑣2

⃒⃒⃒
𝑢
⩾ 0, det∇(𝑢,𝑣)𝑠 ⩾ 0.

The so-called internal stability criteria on the isochoric specific heat ca-
pacity

𝑐𝑣 :=
𝜕𝑢

𝜕𝑇

⃒⃒⃒
𝑣
> 0

and isothermal compressibility coefficient

𝜒𝑇 := −1

𝑣

𝜕𝑣

𝜕𝑝

⃒⃒⃒
𝑇
> 0

follows from this condition (or vice versa), which actually realizes the Le
Châtelier–Braun principle. These describe relationships among changes
irrespective of what external actions have created those changes.

Next to the isochoric specific heat capacity and isothermal compressibility co-
efficient

∙ the isobaric thermal expansion coefficient 𝛽𝑝 := 1
𝑣

𝜕𝑣
𝜕𝑇 |𝑝 and

∙ the isobaric specific heat capacity 𝑐𝑝 := 𝑐𝑣−𝑇
(︀
𝜕𝑝
𝜕𝑇 |𝑣

)︀2
/𝜕𝑝
𝜕𝑣 |𝑇= 𝑐𝑣+𝑇𝑣

𝛽2
𝑝

𝜒𝑇

is applied to characterize the thermostatic behavior of the material. There is no
restriction on the sign of 𝛽𝑝. Usually, it is positive, however, e.g., in the case of
water between 0∘C and 4∘C it is negative. From the conditions 𝑇 > 0, 𝑣 > 0
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and 𝜒𝑇 > 0 follows that 𝑐𝑝 ⩾ 𝑐𝑣, and equality exist when thermal expansion is
neglected.

2.2.2. Constitution on the transport properties. The second part of the second
law prescribes conditions on the dynamics, which is expressed through entropy
production. The balance of entropy reads as

(2.10) 𝜚�̇�+∇ · J𝑆 = Σ𝑆

with the entropy current density J𝑆 and the entropy production rate density Σ𝑆 ,
which is a positive semi-definite function along a realized process, i.e., Σ𝑆 ⩾ 0, thus
ensuring dynamic stability of the process. It means that positive semi-definiteness
of the entropy production rate density imposes constraints on the transport prop-
erties. (2.10) is frequently given via the dissipation inequality

0 ⩽ 𝜚�̇�+∇ · J𝑆 .

From a mathematical point of view, the balances (2.1)–(2.3) are constraints
to evaluate the dissipation inequality. Here, we apply a rigorous mathematical
technique, namely Liu’s procedure. Liu’s procedure specifies the entropy production
rate density and the relationship of entropy current density to the thermodynamical
currents, too. Furthermore, it also highlights the possible state variable dependence
of the transport properties.

Liu’s procedure is based on Liu’s theorem, which is a special case of Farkas’
lemma on conditional algebraic inequalities [14,15]. Briefly, the inequality

(2.11) 𝛼(x̂) · y + 𝛽(x̂) ⩾ 0,

holds for all y such that

(2.12) A(x̂) · y +B(x̂) = 0,

if and only if there exists Λ-called Lagrange–Farkas multiplier-such that

𝛼(x̂)−Λ ·A(x̂) = 0,(2.13)
𝛽(x̂)−Λ ·B(x̂) ⩾ 0.(2.14)

Here and later on x denotes the variables, which span the thermodynamical state
space (the basic variables), x̂ the elements of the constitutive state space, which in
general contains x and its temporal and spatial derivatives, y contains the elements
of the process direction space, which is spanned by the derivatives of the constitu-
tive variables x̂ that are not already given in x̂. Furthermore, A, B, 𝛼 and 𝛽 con-
tains the derivatives of the constitutive functions with respect to the constitutive
variables. Usually, equations (2.11) and (2.12) together are called Coleman–Mizel
formulation of continuum thermodynamics, equation (2.13) is called Liu-equation
and (2.14) is the dissipation inequality. For deeper mathematical details, see e.g.
the appendices of [16] and [17].

Usually, Liu’s procedure is utilized in the local description. However, now we
perform the calculations in the substantial one due to two reasons:

∙ First, the formulas in the substantial description are more transparent;
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∙ Second, the substantial description is much more connected to the mate-
rial itself, than the local one. Therefore, thermodynamical calculations,
including Liu’s procedure, are more natural in the present approach.

In order to check the results, we have realized these calculations in the local de-
scription as well, leading to the same outcome. Furthermore, [1] also presents this
approach, which connects Galilean invariance to the Lagrange–Farkas multipliers,
on which in this case [1] refers as internal Lagrange multipliers.

Let us present Liu’s procedure applied to the Navier–Stokes–Fourier system.
First, one has to fix variables and functions. The state space is spanned by the
variables x := (𝜚,v, 𝑒). In case of Navier–Stokes–Fourier system–as a basic example
of classical irreversible thermodynamics–the constitutive state space is spanned
by x̂ := (𝜚,v, 𝑒,∇𝜚,v ⊗ ∇,∇𝑒), thus the process direction space is spanned by
y := (�̇�, v̇, �̇�, (∇𝜚)̇, (v⊗∇)̇, (∇𝑒)̇, (∇𝜚)⊗∇, (v⊗∇)⊗∇, (∇𝑒)⊗∇). The constitutive
functions are (𝑠,P,J𝐸 ,J𝑆).

According to Liu’s procedure, the dissipation inequality constrained by the
balances (2.1)–(2.3) reads as

0 ⩽ 𝜚�̇�+∇ · J𝑆 − 𝑏1(�̇�+ 𝜚∇ · v)− b2 · (𝜚v̇ +P · ∇)− 𝑏3(𝜚�̇�+∇ · J𝐸)(2.15)

=
(︁
𝜚
𝜕𝑠

𝜕𝜚
− 𝑏1

)︁
�̇�+ 𝜚

(︁ 𝜕𝑠

𝜕v
− b2

)︁
· v̇ + 𝜚

(︁𝜕𝑠
𝜕𝑒

− 𝑏3

)︁
�̇�+ 𝜚

𝜕𝑠

𝜕(∇𝜚)
· (∇𝜚)̇

+ 𝜚
𝜕𝑠

𝜕(v ⊗∇)
: (v ⊗∇)̇+ 𝜚

𝜕𝑠

𝜕(∇𝑒)
·(∇𝑒)̇+

(︁𝜕J𝑆

𝜕𝜚
−b2 ·

𝜕P

𝜕𝜚
−𝑏3

𝜕J𝐸

𝜕𝜚

)︁
·∇𝜚

+
(︁𝜕J𝑆

𝜕v
− 𝑏1𝜚1− b2 ·

𝜕P

𝜕v
− 𝑏3

𝜕J𝐸

𝜕v

)︁
: (v ⊗∇)

+
(︁𝜕J𝑆

𝜕𝑒
− b2 ·

𝜕P

𝜕𝑒
− 𝑏3

𝜕J𝐸

𝜕𝑒

)︁
· ∇𝑒

+
(︁ 𝜕J𝑆

𝜕(∇𝜚)
− b2 ·

𝜕P

𝜕(∇𝜚)
− 𝑏3

𝜕J𝐸

𝜕(∇𝜚)

)︁
: [(∇𝜚)⊗∇]

+
(︁ 𝜕J𝑆

𝜕(v ⊗∇)
− b2 ·

𝜕P

𝜕(v ⊗∇)
− 𝑏3

𝜕J𝐸

𝜕(v ⊗∇)

)︁
:·[(v ⊗∇)⊗∇]

+
(︁ 𝜕J𝑆

𝜕(∇𝑒)
− b2 ·

𝜕P

𝜕(∇𝑒)
− 𝑏3

𝜕J𝐸

𝜕(∇𝑒)

)︁
: [(∇𝑒)⊗∇].

The Liu equations are obtained from the previous inequality as the multiplicators
of the independent elements of the process direction space, i.e.,

�̇� : 𝜚
𝜕𝑠

𝜕𝜚
− 𝑏1 = 0,(2.16)

v̇ :
𝜕𝑠

𝜕v
− b2 = 0,

�̇� :
𝜕𝑠

𝜕𝑒
− 𝑏3 = 0,

(∇𝜚)̇: 𝜚
𝜕𝑠

𝜕(∇𝜚)
= 0,(2.17)
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(v ⊗∇)̇: 𝜚
𝜕𝑠

𝜕(v ⊗∇)
= 0,

(∇𝑒)̇: 𝜚
𝜕𝑠

𝜕(∇𝑒)
= 0,(2.18)

(∇𝜚)⊗∇ :
𝜕J𝑆

𝜕(∇𝜚)
− b2 ·

𝜕P

𝜕(∇𝜚)
− 𝑏3

𝜕J𝐸

𝜕(∇𝜚)
= 0,(2.19)

(v ⊗∇)⊗∇ :
𝜕J𝑆

𝜕(v ⊗∇)
− b2 ·

𝜕P

𝜕(v ⊗∇)
− 𝑏3

𝜕J𝐸

𝜕(v ⊗∇)
= ⊬,(2.20)

(∇𝑒)⊗∇ :
𝜕J𝑆

𝜕(∇𝑒)
− b2 ·

𝜕P

𝜕(∇𝑒)
− 𝑏3

𝜕J𝐸

𝜕(∇𝑒)
= 0.(2.21)

Equations (2.16)–(2.18) prescribe conditions on the specific entropy, according to
(2.17)–(2.18) specific entropy is independent on the gradients; thus, specific entropy
is a function of x, i.e. 𝑠 = 𝑠(x), for which the Gibbs-relation is

(2.22) d𝑠 =
𝜕𝑠

𝜕𝜚
d𝜚+

𝜕𝑠

𝜕v
· dv +

𝜕𝑠

𝜕𝑒
d𝑒 =

𝑏1
𝜚
d𝜚+ b2 · dv + 𝑏3d𝑒.

Integrating equations (2.19)–(2.21) with respect to the gradients the entropy current
density is obtained in the form of

(2.23) J𝑆(x̂) =
𝜕𝑠

𝜕v
(x) ·P(x̂) +

𝜕𝑠

𝜕𝑒
(x)J𝐸(x̂) + Ĵ𝑆(x),

where Ĵ𝑆 denotes a residual entropy current density, which is assumed as zero.
Since the coefficients of (2.19) and (2.21), i.e. (∇𝜚) and (∇𝑒) are symmetric ten-
sors, and the coefficient of (2.20), i.e. (v ⊗ ∇) is symmetric in its second and
third indices, Liu’s procedure provides information only about the dependence of
symmetrical parts. A further and open question is how the antisymmetric parts
of these quantities contribute to entropy current density. Since entropy production
remains unchanged when these antisymmetric parts also appear, thus the physical
content stay unchanged. However, this property together with the residual entropy
current density may be exploitable in numerics.

Replacing our previous results in (2.15) we obtain

0 ⩽
(︁ 𝜕

𝜕𝜚

𝜕𝑠

𝜕v
·P+

𝜕

𝜕𝜚

𝜕𝑠

𝜕𝑒
J𝐸

)︁
· ∇𝜚(2.24)

+
(︁ 𝜕

𝜕v
⊗ 𝜕𝑠

𝜕v
·P− 𝜚2

𝜕𝑠

𝜕𝜚
1− 𝜕

𝜕v

𝜕𝑠

𝜕𝑒
⊗ J𝐸

)︁
: (v ⊗∇)

+
(︁ 𝜕

𝜕𝑒

𝜕𝑠

𝜕v
·P+

𝜕

𝜕𝑒

𝜕𝑠

𝜕𝑒
J𝐸

)︁
· ∇𝑒

=
(︁ 𝜕𝑠

𝜕v

)︁
⊗∇ : P+∇

(︁𝜕𝑠
𝜕𝑒

)︁
· J𝐸 − 𝜚2

𝜕𝑠

𝜕𝜚
1 : (v ⊗∇).

Applying the well-known relationship among the specific total energy, the specific
internal energy, and the specific kinetic energy

(2.25) 𝑒 = 𝑢+
1

2
v · v
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the Gibbs-relation is

d𝑠 =
1

𝑇
d𝑢− 𝑝

𝜚2𝑇
d𝜚 =

1

𝑇
d𝑒− v

𝑇
· dv − 𝑝

𝜚2𝑇
d𝜚,

where we applied that d𝑣 = − 1
𝜚2 d𝜚 and equations (2.9) and (2.22), hence the partial

derivatives of the specific entropy with respect to (𝜚,v, 𝑒) are

𝜕𝑠

𝜕𝑒
=

1

𝑇
,

𝜕𝑠

𝜕v
= −v

𝑇
,

𝜕𝑠

𝜕𝜚
= − 𝑝

𝜚2𝑇
.

Substituting these derivatives into (2.24) one obtains

0 ⩽ −
(︁v

𝑇

)︁
⊗∇ : P+∇

(︁ 1

𝑇

)︁
· J𝐸 +

𝑝

𝑇
1 : (v ⊗∇)(2.26)

= − 1

𝑇
(P− 𝑝1) : (v ⊗∇) + (J𝐸 − v ·P) · ∇

(︁ 1

𝑇

)︁
.

Here, we can recognize the usual and well-known quadratic expression of thermo-
dynamic forces and fluxes with the dissipative fluxes

Π(x̂) := P(x̂)− 𝑝(x)1,

J𝑄(x̂) := J𝐸(x̂)− v ·P(x̂),(2.27)

where the first one is the viscous pressure tensor and the latter one is the heat
current density. Assuming isotropy–thus different tensorial orders and characters
do not couple according to Curie’s principle [8]–the positive semi-definiteness of
(2.26) is ensured via the linear Onsagerian equations

J𝑄(x̂) = 𝑙(x̂) · ∇
(︁ 1

𝑇
(x)

)︁
= −𝜆(x̂)∇(𝑇 (x)),(2.28)

Π(x̂) = −𝜇Vol(x̂)− 𝜇Sh(x̂)

3
(∇ · v)1− 𝜇Sh(x̂)

2
(v ⊗∇+∇⊗ v),(2.29)

where 𝜆 = 𝑙
𝑇 2 ⩾ 0 denotes the thermal conductivity, while 𝜇Vol ⩾ 0 and 𝜇Sh ⩾ 0

are the volumetric and shear viscosity coefficients.
Our analysis with Liu’s procedure resulted in the same constitutive functions

as classical irreversible thermodynamics with some notable differences. Since the
state space was fixed from the beginning of the analysis, the dependence of the con-
stitutive functions and quantities on the state space is determined. As the indicated
variable dependence shows, in general, the transport coefficients in (2.28)–(2.29)
can depend on the gradient variables, too.

Now, let us determine the entropy current density in the light of our results
so far, thus replacing (2.27) into (2.23) the well-known relationship between the
entropy current density and heat current density is obtained, i.e.

J𝑆(y) = −v

𝑇
(ȳ) ·P(y) +

1

𝑇
(ȳ)J𝐸(y) =

1

𝑇
(J𝐸 − v ·P) =

1

𝑇
J𝑄.

The relationship among the specific total energy, the specific internal energy
and the specific kinetic energy (2.25) establishes a connection between the balances
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of linear momentum (2.2) and total energy (2.3), i.e.

0 = 𝜚�̇�+∇ · J𝐸

(2.25)
(2.27)
= 𝜚�̇�+∇ · J𝑄 + v · (𝜚v̇ +∇ ·P) +P : (v ⊗∇),

where the third expression is exactly the balance of linear momentum (2.2), thus
the well-known balance equation of internal energy

𝜚�̇�+∇ · J𝑄 = −P : (v ⊗∇)

follows.

3. Analysis and conclusions

In the engineering praxis, thermomechanical processes of fluids are modeled via
the Navier–Stokes–Fourier system, which is formed by the balances of mass, linear
momentum, and internal energy, thermostatic constitutive equations on tempera-
ture, pressure, and constitutive equations on the transport phenomena, i.e. New-
ton’s law of viscosity and Fourier’s heat conduction law. These equations are given
in the variables (𝑇, 𝜚,v) or (𝑇, 𝑝,v).

Replacing (2.29) into (2.2) one obtains the Navier–Stokes equation

𝜚v̇ = −∇𝑝+
[︁𝜇Vol − 𝜇Sh

3
(∇ · v)1+

𝜇Sh

2
(v ⊗∇+∇⊗ v)

]︁
· ∇.

Since

𝜚�̇� = 𝜚𝑐𝑣�̇� −
(︁
𝑇
𝛽𝑝

𝜒𝑇
− 𝑝

)︁1
𝜚
�̇�

(2.1)
= 𝜚𝑐𝑣�̇� +

(︁
𝑇
𝛽𝑝

𝜒𝑇
− 𝑝

)︁
∇ · v

and applying (2.28) the balance of internal energy can be given as

𝜚𝑐𝑣�̇� = −∇ · (𝜆∇𝑇 )− 𝑇
𝛽𝑝

𝜒𝑇
∇ · v

+
[︁𝜇Vol − 𝜇Sh

3
(∇ · v)1+

𝜇Sh

2
(v ⊗∇+∇⊗ v)

]︁
: (v ⊗∇).

Let us now express ∇ · v from (2.1) in the variables (𝑇, 𝑝), i.e.

∇ · v = −1

𝜚
�̇� = 𝛽𝑝�̇� − 𝜒𝑇 �̇�

then

𝜚
(︁
𝑐𝑣 +

𝑇

𝜚

𝛽2
𝑝

𝜒𝑇

)︁
�̇� = −∇ · (𝜆∇𝑇 ) + 𝛽𝑝𝑇 �̇�

+
[︁𝜇Vol − 𝜇Sh

3
(∇ · v)1+

𝜇Sh

2
(v ⊗∇+∇⊗ v)

]︁
: (v ⊗∇),

where on the left hand side the isobaric specific heat capacity is recognized, i.e.,

𝜚𝑐𝑝�̇� = −∇ · (𝜆∇𝑇 ) + 𝛽𝑝𝑇 �̇�

+
[︁𝜇Vol − 𝜇Sh

3
(∇ · v)1+

𝜇Sh

2
(v ⊗∇+∇⊗ v)

]︁
: (v ⊗∇).
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Our previous calculations have pointed out that the transport coefficients 𝜆,
𝜇Vol, and 𝜇Sh can depend on the state variables and on their gradients, too. Ac-
cording to Noll’s material frame-indifference [18], we exclude velocity dependence.
The thermostatic constitutions provide the opportunity to transform energy and
density dependence into temperature and pressure dependence, i.e. the functional
relationships

𝜆 = 𝜆(𝑇,∇𝑇, 𝑝,∇𝑝,v ⊗∇),

𝜇Vol = 𝜇Vol(𝑇,∇𝑇, 𝑝,∇𝑝,v ⊗∇),

𝜇Sh = 𝜇Sh(𝑇,∇𝑇, 𝑝,∇𝑝,v ⊗∇)

can be assumed on the transport coefficients.
This gradient dependency can significantly affect such phenomena, where sud-

den changes can appear. For example, the piston effect is induced by fast thermal
expansion in the hydraulic boundary layer, resulting in a pressure wave coupled to
the temperature field. Since this phenomenon requires particular fluid properties,
it is most probable nearby the critical point [19], where the material properties
and transport properties are notably sensitive to pressure and temperature. This is
a challenging task for thermodynamic modeling and numerical simulations. How-
ever, according to acoustic wave propagation, large gradients in the temperature
and pressure fields occur.

Another example is the propagation of shock waves for which a steep change
occurs between the two sides of the wave. Here, the presence of nonlinear transport
coefficients essentially influences the outcome. Adding that the shock wave thick-
ness is usually around the same magnitude as the mean free path [20], the presence
of steep gradients in the thermodynamic model becomes crucial.

Shock waves are often investigated for rarefied gases, which are low-pressure
gas states, and mass density dependence is crucial for transport properties. Besides,
both thermal and fluid parts must be extended and coupled in a particular way on
the level of the constitutive equations, i.e. for that situation, the NSF theory is not
applicable [21,22]. Additionally, since the transport coefficients are not indepen-
dent of each other [22], it is of great importance to investigate the corresponding
methodologies from closer, allowing further possibilities. In this respect, it would
also be interesting to investigate how kinetic theory could implement such proper-
ties. For example, [23] shows a particular example, when the transport coefficients
depend on the velocity gradient and that result is found on kinetic grounds. Al-
though it is not a necessary property of the model, it could improve the agreement
between theory and experimental data.

However, measuring gradient dependency is a non-trivial task. When one ob-
serves size-dependent material coefficients [24], probably an evident manifestation
of gradient dependency is identified. This requires further investigation as it is not
straightforward how to clearly separate the effects from each other.

That type of nonlinearity is not yet investigated from a numerical point of
view. It stands as an open question, how to treat them compatibly with space-time
aspects and how it influences the dissipation and dispersion errors in a scheme.
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More importantly, how to construct a scheme that preserves the system’s total
energy in the same way as symplectic integrators work.

As a closing remark, we would like to emphasize that the ∇𝑇 dependence of the
thermal conductivity is not equivalent to the heat flux dependence, which appears
in some recent studies [25], not even in Fourier’s case. For a non-Fourier equation-
such as the Maxwell–Cattaneo–Vernotte equation-the heat flux dependence could
be another interpretation for the ∇𝑇 dependence.

Overall, the present study is devoted to open further discussion and research
on the transport coefficients as these quantities are the most crucial part of any
modeling task.
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ГРАДИJЕНТНО ЗАВИСНИ ТРАНСПОРТНИ КОЕФИЦИJЕНТИ
У НАВИJЕР-СТОКС-ФУРИJЕОВОМ СИСТЕМУ

Резиме. У инжењерскоj пракси, Њутнов закон вискозности и Фуриjеов за-
кон провођења топлоте се примењуjу у описивању термомеханичких процеса
у флуидима. И поред њихове успешне примене, постоjе неjасни и недовољно
истражени детаљи на коjе jе делимично одговорено у овом раду применом ме-
тода иреверзибилне термодинамике. Лиуов поступак jе примењен за извођење
стопе продукциjе ентропиjе, у коjоj jе позитивна дефинитност обезбеђена пу-
тем линеарних Онзагерових jедначина, а коjе управо представљаjу Њутнов
закон вискозности и Фуриjеов закон провођења топлоте. Прорачуни указуjу
да теориjски одређени транспортни коефициjенти (топлотна проводљивост и
вискозност) могу зависити и од градиjената променљивих стања. Ова гради-
jентна зависност транспортних коефициjената може имати значаjан утицаj на
моделирање поjава као што су заваривање, клипни ефекат или ударни таласи.
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