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TWO-DIMENSIONAL EQUILIBRIUM
CONFIGURATIONS IN KORTEWEG FLUIDS

M. Gorgone, F. Oliveri, A. Ricciardello, and
P. Rogolino

Abstract. In this paper, after reviewing the form of the constitutive equa-
tions for a third grade Korteweg fluid, recently derived by means of an ex-
tended Liu procedure, an equilibrium problem is investigated. By considering
a two-dimensional setting, a single nonlinear elliptic equation is derived such
that the equilibrium conditions are identically satisfied. Such an equation is
discussed both analytically and numerically. Moreover, by considering a par-
ticular boundary value problem of Dirichlet type, some preliminary numerical
solutions are presented.

1. Introduction

A theory for capillarity, taking into account the interaction phenomena in the
presence of liquid and vapour phases, has been formulated in a pioneering paper by
Korteweg [1], who proposed a constitutive law of Cauchy stress tensor depending
on the first and second order gradients of mass density in 1901 (see also [2]). The
aim was to describe the cohesive forces due to long-range interactions among the
molecules. In particular, in the expression of Cauchy stress tensor introduced by
Korteweg it is possible to recognize two contributions, one representing a standard
Navier–Stokes term for compressible fluids and the other representing a capillarity
stress involving the gradients of mass density up to the second order. In the modern
literature, Korteweg-type fluids are referred to as materials of grade 3 (see [3,4]).

Despite their relevance, this class of fluids received only a moderate attention
in literature even after the seminal papers by Dunn and Serrin [5, 6], where the
compatibility with the basic tenets of rational continuum thermodynamics [7] has
been extensively studied. In particular, Dunn and Serrin observed that Korteweg
fluids are, in general, incompatible with the restrictions of the second law of thermo-
dynamics [7]. To overcome this inconvenience, in [5], an additional rate of supply
of mechanical energy, the interstitial working, suitable to model the long-range in-
teractions between the molecules, has been introduced; in such a way, an energy
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extra-flux is included in the local balance of energy. A different method for ensuring
the compatibility with the second law of thermodynamics that has been proposed
by Müller does not modify the energy balance with the inclusion of extra-terms,
but requires to relax the classical form of the entropy flux by including an entropy
extra-flux [8].

In the last years, several authors faced the problem of the compatibility of non-
local constitutive laws with entropy principle [9–18], and various generalizations
have been proposed by introducing an extension of classical Liu procedure [19] for
the exploitation of the entropy inequality.

Recently, in [20], a complete solution set of the thermodynamic restrictions
placed by the entropy principle for the third grade Korteweg fluids has been ex-
plicitly determined by means of an extended Liu procedure that uses as constraints
in the entropy inequality both the field equations and their gradient extensions up
to the order of the derivatives entering the state space. Remarkably, the recov-
ered constitutive functions are compatible with a constraint derived by Serrin [22]
guaranteeing that, at the equilibrium, the phase boundaries are not necessarily
restricted to special configurations (spherical, cylindrical, or planar).

The present paper, moving from the results on Korteweg fluids obtained in [20],
aims to investigate, both analytically and numerically, the equilibrium configura-
tions. The structure of the paper is as follows. In Section 2, we briefly review
the form of the constitutive relations derived in [20] for a third grade Korteweg
fluid. Then, Section 3 concerns with the equilibrium problem in a two-dimensional
setting; in particular, a single partial differential equation is given such that the
overdetermined system for the equilibrium of the Korteweg fluid is identically satis-
fied. Then, the obtained equilibrium condition is analyzed distinguishing the cases
when it reduces to a linear elliptic equation or when it is fully nonlinear; moreover,
considering a boundary value problem of Dirichlet type, some preliminary numer-
ical solutions are presented. Finally, Section 4 contains some comments as well as
suggestions for possible future developments.

2. Balance equations

Let ℬ be a fluid occupying a compact and simply connected region 𝒞 of a
Euclidean point space 𝐸3; at a continuum level, its evolution is ruled by the field
equations representing the local balances of mass, linear momentum and energy,
respectively,

𝜕𝜌

𝜕𝑡
+∇ · (𝜌v) = 0,

𝜌
(︁𝜕v
𝜕𝑡

+ (v · ∇)v
)︁
−∇ ·T = 𝜌f ,(2.1)

𝜌
(︁𝜕𝜀
𝜕𝑡

+ v · ∇𝜀
)︁
−T · ∇v +∇ · q = 𝜌f · v,

where 𝜌(𝑡,x) is the mass density, v(𝑡,x) ≡ (𝑣1, 𝑣2, 𝑣3) the velocity, 𝜀(𝑡,x) the
internal energy per unit mass, T the symmetric Cauchy stress tensor, q the heat
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flux, and f(𝑡,x) the external body forces per unit mass; moreover, there are no heat
sources.

Field equations (2) need to be closed by constitutive equations for the Cauchy
stress tensor and heat flux in such a way the local entropy production

𝜎𝑠 = 𝜌
(︁𝜕𝑠
𝜕𝑡

+ v · ∇𝑠
)︁
+∇ · J

be non-negative along any admissible thermodynamic process, 𝑠 being the specific
entropy, and J the entropy flux; 𝑠 and J are constitutive quantities, too.

A constitutive theory requires the choice of the so-called state variables; ac-
cording to Korteweg, Cauchy stress tensor involves second order gradients of mass
density, so that we are in the framework of a second order non-local constitutive
theory. More precisely, we analyze the class of Korteweg-type materials described
by the set of constitutive equations

ℱ = ℱ*(𝜌, 𝜀,∇𝜌,L,∇𝜀,∇∇𝜌),

where ℱ is an element of the set {T,q, 𝑠,J}, and L is the symmetric part of velocity
gradient.

The thermodynamic analysis carried out in [20] moves from the assumptions

T = (−𝑝+ 𝛼1Δ𝜌+ 𝛼2|∇𝜌|2)I+ 𝛼3∇𝜌⊗∇𝜌

+ 𝛼4∇∇𝜌+ 𝛼5(∇ · v)I+ 𝛼6L,

q = 𝑞(1)∇𝜀+ 𝑞(2)∇𝜌,

where 𝑝, 𝛼𝑖 (𝑖 = 1, . . . , 6) and 𝑞(𝑖) (𝑖 = 1, 2) are suitable material functions depend-
ing on the mass density 𝜌 and the internal energy 𝜀; moreover, the specific entropy
𝑠 is expanded around the homogeneous state (where all gradients vanish) retaining
only the lower order terms in the gradients of mass density and internal energy.

The compatibility with the second principle of thermodynamics, through the
use of an extended Liu procedure [21], allows the authors to obtain:

∙ 𝑠 = 𝑠0(𝜌, 𝜀) + 𝑠1(𝜌)|∇𝜌|2, where 𝑠0 represents the equilibrium entropy
defined for homogeneous states; moreover, in order to satisfy the principle
of maximum entropy at the equilibrium, it has to be 𝑠1(𝜌) ⩽ 0;

∙ J = q𝜕𝑠0(𝜌,𝜀)
𝜕𝜀 + 2𝜌2𝑠1(𝜌)(∇ · v)∇𝜌;

∙ the following expressions for the material functions entering the Cauchy
stress tensor:

(2.2)

𝑝(𝜌, 𝜀) = −𝜌2
𝜕𝑠0
𝜕𝜌

(︁𝜕𝑠0
𝜕𝜀

)︁−1

,

𝛼1(𝜌, 𝜀) = −2𝜌2𝑠1

(︁𝜕𝑠0
𝜕𝜀

)︁−1

,

𝛼2(𝜌, 𝜀) = −𝜌
(︁𝜕𝑠0
𝜕𝜀

)︁−1(︁
𝜌
𝜕𝑠1
𝜕𝜌

+ 2𝑠1

)︁
,

𝛼3(𝜌, 𝜀) = 2𝜌𝑠1

(︁𝜕𝑠0
𝜕𝜀

)︁−1

, 𝛼4 = 0.
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Furthermore, the physically admissible constraints

𝑞(1)
𝜕2𝑠0
𝜕𝜀2

⩾ 0, 𝑞(2)
𝜕2𝑠0
𝜕𝜌𝜕𝜀

⩾ 0,

𝛼5
𝜕𝑠0
𝜕𝜀

⩾ 0, 𝛼6
𝜕𝑠0
𝜕𝜀

⩾ 0,

together with

(2.3) 𝑞(1)
𝜕2𝑠0
𝜕𝜌𝜕𝜀

− 𝑞(2)
𝜕2𝑠0
𝜕𝜀2

= 0,

need to be satisfied.
Defining at thermodynamical equilibrium the absolute temperature 𝜃 by the

classical relation 1
𝜃 = 𝜕𝑠0

𝜕𝜀 , under the hypothesis 𝜕2𝑠0
𝜕𝜀2 ̸= 0, the internal energy 𝜀 can

be thought of as a function of 𝜌 and 𝜃, i.e., 𝜀 = 𝜀(𝜌, 𝜃).
Finally, using (2.3), it is

(2.4) 𝑞(2) = −𝑞(1)
𝜕𝜀

𝜕𝜌
,

and the heat flux turns out to be expressed by the classical Fourier law

q = 𝑞(1)
𝜕𝜀

𝜕𝜃
∇𝜃.

The above results allow to rewrite the entropy flux J, and recognize the classical
term q

𝜃 and an entropy extra-flux [8].
In the next Section, we consider the equations for a Korteweg fluid in two space

dimensions; in more detail, assuming the fluid to be in a vertical plane and subject
to gravity, we investigate the equilibrium configurations.

3. Equilibrium problem

By using the solution to the constitutive functions provided in the previous
Section, let us study the equilibrium problem on a purely mechanical framework.

The search for equilibrium configurations of a Korteweg-type fluid consists in
finding solutions of the following condition:

(3.1) ∇ · ((−𝑝+ 𝛼1Δ𝜌+ 𝛼2|∇𝜌|2)I+ 𝛼3∇𝜌⊗∇𝜌) + 𝜌g = 0,

where g is the gravity acceleration, whereas 𝑝, 𝛼𝑖 (𝑖 = 1, . . . , 3), given in (2.2),
depend only on 𝜌 and need to be evaluated at constant temperature.

Let the Korteweg fluid be in the plane 𝑥𝑦 with 𝑦 axis directed along the as-
cending vertical. The equilibrium condition (3.1) reads:

(3.2)
(−𝑝+ 𝛼1(𝜌𝑥𝑥 + 𝜌𝑦𝑦) + 𝛼2(𝜌

2
𝑥 + 𝜌2𝑦) + 𝛼3𝜌

2
𝑥)𝑥 + (𝛼3𝜌𝑥𝜌𝑦)𝑦 = 0,

(𝛼3𝜌𝑥𝜌𝑦)𝑥 + (−𝑝+ 𝛼1(𝜌𝑥𝑥 + 𝜌𝑦𝑦) + 𝛼2(𝜌
2
𝑥 + 𝜌2𝑦) + 𝛼3𝜌

2
𝑦)𝑦 − 𝜌𝑔 = 0,

where the subscripts (·)𝑥 and (·)𝑦 stand for partial derivatives with respect to
the indicated variables, and 𝑔 is the modulus of gravity acceleration. We observe
that equilibrium conditions (3.2) represent an overdetermined system of two partial
differential equations in the unknown 𝜌(𝑥, 𝑦).
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A theorem by Serrin [22], based on a result by Pucci [23], states that, unless
rather special conditions on the coefficients involved in (3.2) are satisfied, only very
simple geometric phase boundaries (spherical, cylindrical, or planar) are admitted.

In fact, in order to have the possibility to have more general geometric phase
boundaries at equilibrium, it is necessary that the constitutive quantities involved
in the Cauchy stress tensor satisfy the following condition:

(3.3) 𝛼2
3 − 𝛼1

𝜕𝛼3

𝜕𝜌
+ 2𝛼2𝛼3 = 0.

It is worth observing that condition (3.3) is not physically necessary, in the
sense that, although rather unusual, without admitting it very few equilibrium
configurations are allowed; remarkably, the constitutive relations deduced in [20]
satisfy this condition, provided that

(3.4) 𝑠0(𝜌, 𝜀) = 𝑠01(𝜌) + 𝑠02(𝜀),

where 𝑠01 and 𝑠02 are functions of the indicated arguments.
Furthermore, condition (3.4), from relations (2.3) and (2.4), implies 𝜀 = 𝜀(𝜃),

i.e., the internal energy depends only upon the absolute temperature, and the heat
flux becomes

q = 𝑞(1)
𝑑𝜀

𝑑𝜃
∇𝜃.

In the light of previous considerations, after simple algebraic manipulations,
the condition

(3.5) 2𝜌𝑠1(𝜌𝑥𝑥 + 𝜌𝑦𝑦) +
𝑑(𝜌𝑠1)

𝑑𝜌
(𝜌2𝑥 + 𝜌2𝑦)−

𝑑(𝜌𝑠01)

𝑑𝜌
+

𝑔

𝜃0
𝑦 − 𝜅 = 0,

where 𝑠01 and 𝑠1 are functions of 𝜌, 𝜃0 is the constant absolute temperature at
the equilibrium, and 𝜅 is an arbitrary integration constant, can be obtained; it
represents the only equation to be solved in order to identically satisfy conditions
(3.2) and so find the equilibrium configurations.

3.1. Equilibrium configurations. Hereafter, we present some preliminary
results, both from analytical and numerical viewpoints, about the equilibrium con-
figurations, and exhibit some solutions.

At first, we have to choose the functional expression of the constitutive quan-
tities 𝑠01(𝜌) and 𝑠1(𝜌). Let us assume

𝑠01 = 𝜅1𝜌
𝑚, 𝑠1 = −𝜅2𝜌

𝑛,

with 𝜅𝑖 ∈ R+ (𝑖 = 1, 2), and 𝑚,𝑛 ∈ R; then, equation (3.5) becomes

(3.6) 2𝜅2𝜌
𝑛+1(𝜌𝑥𝑥 + 𝜌𝑦𝑦) + 𝜅2(𝑛+ 1)𝜌𝑛(𝜌2𝑥 + 𝜌2𝑦) + 𝜅1(𝑚+ 1)𝜌𝑚 − 𝑔

𝜃0
𝑦 + 𝜅 = 0.

Let us fix in the plane 𝑥𝑦 the rectangular domain [0, ℓ1] × [0, ℓ2] (ℓ1, ℓ2 > 0)
where the equation will be studied.

Introducing dimensionless variables by the substitutions

𝑥 → ℓ1𝑥, 𝑦 → ℓ1𝑦, 𝜌 → 𝑅0𝜌,
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𝑅0 being a reference density, equation (3.6) writes

(3.7) 𝜌𝑛+1(𝜌𝑥𝑥 + 𝜌𝑦𝑦) +
𝑛+ 1

2
𝜌𝑛(𝜌2𝑥 + 𝜌2𝑦) + 𝛼(𝑚+ 1)𝜌𝑚 + 𝛽𝑦 + 𝛾 = 0,

where

𝛼 =
𝜅1

2𝜅2
ℓ21𝑅

𝑚−𝑛−2
0 ,

𝛽 = − 𝑔

2𝜅2𝜃0
ℓ31𝑅

−𝑛−2
0 ,

𝛾 =
𝜅

2𝜅2
ℓ21𝑅

−𝑛−2
0 ,

that we study in the domain

Ω = [0, 1]× [0, 𝑑], 𝑑 =
ℓ2
ℓ1
,

with Dirichlet boundary conditions

𝜌(𝑥, 0) = 𝑔1(𝑥),

𝜌(0, 𝑦) = 𝑔2(𝑦),

𝜌(𝑥, 𝑑) = 𝑔3(𝑥),

𝜌(1, 𝑦) = 𝑔4(𝑦),

where the smooth functions 𝑔1(𝑥), 𝑔2(𝑦), 𝑔3(𝑥) and 𝑔4(𝑦) will be specified below.
Equation (3.7) is a nonlinear elliptic partial differential equation that, in the

special cases where 𝑚 = ±1 and 𝑛 = −1, becomes linear. In fact, when 𝑚 = 1 and
𝑛 = −1, the condition for equilibrium (3.7) reads

𝜌𝑥𝑥 + 𝜌𝑦𝑦 + 2𝛼𝜌+ 𝛽𝑦 + 𝛾 = 0,

that, using the transformation

𝜌 = 𝜌− 𝛽𝑦 + 𝛾

2𝛼
,

becomes
𝜌𝑥𝑥 + 𝜌𝑦𝑦 + 2𝛼𝜌 = 0,

that is a Poisson equation for which many analytical solutions can be found, for
instance, in a separable form.

On the contrary, if 𝑚 = −1 and 𝑛 = −1, equation (3.7) becomes

𝜌𝑥𝑥 + 𝜌𝑦𝑦 + 𝛽𝑦 + 𝛾 = 0,

that, through the transformation

𝜌 = 𝜌− 𝛽

6
𝑦3 − 𝛾

2
𝑦2,

reduces to the Laplace equation

𝜌𝑥𝑥 + 𝜌𝑦𝑦 = 0.
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Figure 1. Plot of the density 𝜌 (left) and contour plot (right).
The values of the parameters are (from the top): (𝑚 = 1, 𝛾 = 1),
(𝑚 = 1, 𝛾 = −1), (𝑚 = −1, 𝛾 = 1), (𝑚 = −1, 𝛾 = −1).



118 GORGONE, OLIVERI, RICCIARDELLO, AND ROGOLINO

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

3

y

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

y

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

y

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

y

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

Figure 2. Plot of the density 𝜌 (left) and contour plot (right).
The values of the parameters are (from the top): (𝑚 = 1, 𝑛 = −2),
(𝑚 = 1, 𝑛 = −3), (𝑚 = 1, 𝑛 = 1), (𝑚 = 1, 𝑛 = 0).
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Let us now consider the following boundary value problem:

(3.8)

⎧⎪⎪⎨⎪⎪⎩
𝜌𝑛+1(𝜌𝑥𝑥 + 𝜌𝑦𝑦) +

𝑛+1
2 𝜌𝑛(𝜌2𝑥 + 𝜌2𝑦) + 𝛼(𝑚+ 1)𝜌𝑚 + 𝛽𝑦 + 𝛾 = 0,

(𝑥, 𝑦) ∈ [0, 1]× [0, 𝑑],

𝑢(𝑥, 0) = 𝑢(𝑥, 𝑑) = 𝜌0 − 𝑥2(1− 𝑥)2, 𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝜌1−𝜌0

𝑑 𝑦 + 𝜌0,

where 𝜌0 > 𝜌1 are suitable constants, that is numerically solved approximating
the first and second derivatives by means of second-order and fourth-order finite
difference formulas, respectively [24]. In more detail, let us consider a discretized
domain Ω𝐷, with steps 𝑑𝑥 and 𝑑𝑦 along 𝑥 and 𝑦 directions, respectively, then,

∀(𝑥, 𝑦) ∈
∘
Ω𝐷, it is

𝜌𝑥(𝑥, 𝑦) ≈
𝜌(𝑥+ 𝑑𝑥, 𝑦)− 𝜌(𝑥− 𝑑𝑥, 𝑦)

2𝑑𝑥
,

𝜌𝑦(𝑥, 𝑦) ≈
𝜌(𝑥, 𝑦 + 𝑑𝑦)− 𝜌(𝑥, 𝑦 − 𝑑𝑦)

2𝑑𝑦
,

𝜌𝑥𝑥(𝑥, 𝑦) ≈
𝜌(𝑥+ 𝑑𝑥, 𝑦)− 2𝜌(𝑥, 𝑦) + 𝜌(𝑥− 𝑑𝑥, 𝑦)

𝑑𝑥2
,

𝜌𝑦𝑦(𝑥, 𝑦) ≈
𝜌(𝑥, 𝑦 + 𝑑𝑦)− 2𝜌(𝑥, 𝑦) + 𝜌(𝑥, 𝑦 − 𝑑𝑦)

𝑑𝑦2
.

The algebraic system, resulting from the evaluation of (3.8) in each grid point,
is solved by using the Matlab™ routine fsolve with the Levenberg–Marquardt
algorithm and tolerance 10−4; moreover, we take 𝑑𝑥 = 𝑑𝑦 = 0.02.

In Figure 1, we present some numerical solutions in the linear case; we show
both the plot of the mass density as a function of 𝑥 and 𝑦, as well as the cor-
responding contour plot. In all the plots of Figure 1 the following values for the
parameters are used: 𝛼 = 1.0, 𝛽 = −1.2, 𝜌0 = 1.4, 𝜌1 = 1.3, 𝑑 = 3, 𝑛 = −1. The
values of parameters 𝑚 and 𝛾 used in each plot are specified in the caption.

On the contrary, in Figure 2, we present some numerical solutions in the non-
linear case; we show both the plot of the mass density as a function of 𝑥 and 𝑦, as
well as the corresponding contour plot. In all the plots of Figure 2 the following
values for the parameters are used: 𝛼 = 1.0, 𝛽 = −1.2, 𝛾 = −1, 𝜌0 = 1.4, 𝜌1 = 1.3,
𝑑 = 3. The values of parameters 𝑚 and 𝑛 used in each plot are specified in the
caption.

We stress that the numerical results above presented are only preliminary,
even if the derivation of a single equation for the equilibrium is, in our opinion,
remarkable; we are conscious that the analysis of equilibrium configurations of
Korteweg fluids, in three space dimensions and using boundary conditions and
parameters suggested by experiments, is worth of being deeply investigated.

4. Conclusions

In this paper, we considered the balance equations of a third grade Korteweg-
type fluid. After reviewing some recent results [20], where a thermodynamical
analysis by means of the extended Liu procedure allowed the authors to derive



120 GORGONE, OLIVERI, RICCIARDELLO, AND ROGOLINO

explicitly the constitutive functions compatible with the second law of thermody-
namics, we focused on the search of purely mechanical equilibrium configurations at
constant temperature. Limiting ourselves to a two-dimensional setting, we derived
a single scalar partial differential equation whose solutions automatically satisfy the
overdetermined system for the mechanical equilibrium of a Korteweg fluid. This
condition, that, in general, is expressed as a highly nonlinear elliptic equation, can
be solved by choosing an appropriate boundary condition of Dirichlet type. Some
numerical solutions have been obtained both in the simple linear case and in some
nonlinear ones. The results here provided are only preliminary, but seem to be
promising. Future developments are under current investigation in order to obtain
equilibrium configurations suitable to be compared with laboratory experiments.
Also, the search of equilibria and their stability in a three-dimensional setting is
planned. Finally, a problem that will be worth of being investigated in the near
future is concerned with the existence of stationary solutions with a non-uniform
temperature field; in two space dimensions, equations (3.2) give two conditions for
two unknowns, say 𝜌 and 𝜃, whereas in three space dimensions we have to solve an
overdetermined system of three equations and check their compatibility with the
existence of non-trivial solutions.
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ДВОДИМЕНЗИОНАЛНЕ РАВНОТЕЖНЕ КОНФИГУРАЦИJЕ
У КОРТЕВЕГОВИМ ФЛУИДИМА

Резиме. У овом раду, након прегледног излагања конститутивних jедначина
за Кортевегову течност трећег реда недавно добиjених проширеном Лиуовом
процедуром, истражуjе се проблем равнотеже. Узимаjући у обзир дводимензи-
оналну поставку, изводи се jедна нелинеарна елиптичка jедначина тако да су
услови равнотеже идентички задовољени. Ова jедначина се разматра и анали-
тички и нумерички. Штавише, разматрањем одређеног Дирихлеовог граничног
проблема, представљена су прелиминарна нумеричка решења.
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