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STABILITY OF SOLUTION FOR RAO–NAKRA
SANDWICH BEAM MODEL WITH

KELVIN–VOIGT DAMPING AND TIME DELAY

Victor R. Cabanillas, Carlos Alberto Raposo, and
Leyter Potenciano-Machado

Abstract. This paper deals with stability of solution for a one-dimensional
model of Rao–Nakra sandwich beam with Kelvin–Voigt damping and time
delay given by

𝜌1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑎𝑢𝑥𝑥𝑡 − 𝜇𝑢𝑥𝑥𝑡( · , 𝑡− 𝜏) = 0,

𝜌3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑏𝑣𝑥𝑥𝑡 = 0,

𝜌ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 − 𝜅𝛼(−𝑢+ 𝑣 + 𝛼𝑤𝑥)𝑥 − 𝑐𝑤𝑥𝑥𝑡 = 0.

A sandwich beam is an engineering model that consists of three layers: two
stiff outer layers, bottom and top faces, and a more compliant inner layer
called “core layer”. Rao–Nakra system consists of three layers and the as-
sumption is that there is no slip at the interface between contacts. The top
and bottom layers are wave equations for the longitudinal displacements un-
der Euler–Bernoulli beam assumptions. The core layer is one equation that
describes the transverse displacement under Timoshenko beam assumptions.
By using the semigroup theory, the well-posedness is given by applying the
Lumer–Phillips Theorem. Exponential stability is proved by employing the
Gearhart-Huang-Prüss’ Theorem.

1. Introduction

Physical phenomena are usually modeled by equations involving differential op-
erators of evolution type. A unique equation is not enough to describe, for instance,
thermoelastic and viscoelastic processes of a given material, where the longitudi-
nal and transverse displacement are the unknown parameters. These parameters
follow different behavior depending on the material composition, and hence dif-
ferent differential equations govern them. In real life, transmission of the internal
energy inherent to the system requires (needs) a short time to circulate from one
place to another. In general, and for the sake of simplicity, time delays are usu-
ally neglected by the model. However, some experiments have shown that time
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delay could change the behavior of the original structure of physical phenomena.
It could destabilize the system, and therefore some dissipative mechanism has to
be introduced to thwart this effect.

In this manuscript, we deal with a Rao–Nakra system with viscoelastic damping
and a time delay term in the first entry. More precisely, for (𝑥, 𝑡) ∈ (0, 𝐿) × R+,
𝐿 > 0, we consider the system

𝜌1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑎𝑢𝑥𝑥𝑡 − 𝜇𝑢𝑥𝑥𝑡( · , 𝑡− 𝜏) = 0,(1.1)
𝜌3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑏𝑣𝑥𝑥𝑡 = 0,(1.2)
𝜌ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 − 𝜅𝛼(−𝑢+ 𝑣 + 𝛼𝑤𝑥)𝑥 − 𝑐𝑤𝑥𝑥𝑡 = 0,(1.3)

subject to the Dirichlet–Neumann boundary conditions

(1.4)
𝑟𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 𝑣(0, 𝑡) = 𝑣(𝐿, 𝑡) = 0, in R+,

𝑤(0, 𝑡) = 𝑤𝑥(0, 𝑡) = 𝑤(𝐿, 𝑡) = 𝑤𝑥(𝐿, 𝑡) = 0, in R+

and with corresponding initial data

(1.5)
𝑟(𝑢(𝑥, 0), 𝑣(𝑥, 0), 𝑤(𝑥, 0)) = (𝑢0(𝑥), 𝑣0(𝑥), 𝑤0(𝑥)), in (0, 𝐿),

(𝑢𝑡(𝑥, 0), 𝑣𝑡(𝑥, 0), 𝑤𝑡(𝑥, 0)) = (𝑢1(𝑥), 𝑣1(𝑥), 𝑤1(𝑥)), in (0, 𝐿).

Small vibrations of a beam are given by

𝜚1𝑢𝑡𝑡 − 𝑘(𝑢𝑥 + 𝜓)𝑥 = 0,(1.6)
𝜚2𝜓𝑡𝑡 − 𝑏𝜓𝑥𝑥 + 𝑘(𝑢𝑥 + 𝜓) = 0.(1.7)

This famous model has been introduced by S. P. Timoshenko [1] in 1921, where
𝑢(𝑥, 𝑡), 𝜓(𝑥, 𝑡) model the transverse displacement of the beam and the angular
direction of the filament of the beam, respectively, and 𝜚1, 𝜚2, 𝑘, 𝑏 are positive real
numbers. Since then, (1.6)–(1.7) have been widely studied by several authors in
different contexts.

The Mead–Markus sandwich beam [2], of length 𝐿 > 0 was introduced in 1969.
The equations of motion based on the formulation given by Fabiano and Hansen [3]
become

𝑚𝑢𝑡𝑡 +
(︁
𝐴+

𝐵2

𝐶

)︁
𝑢𝑥𝑥𝑥𝑥 − 𝐵

𝐶
𝑠𝑥𝑥𝑥 − 𝛼𝑢𝑡𝑥𝑥 = 0 in (0, 𝐿)× (0,∞),(1.8)

𝛽𝑠𝑡 + 𝛾𝑠− 1

𝐶
𝑠𝑥𝑥 +

𝐵

𝐶
𝑢𝑥𝑥𝑥 = 0 in (0, 𝐿)× (0,∞).(1.9)

For (1.8)–(1.9), 𝑤(𝑥, 𝑡) denotes the transverse displacement of the beam, 𝑠(𝑥, 𝑡) is
proportional to the shear of the middle layer, 𝑢(𝑥, 𝑡) represents moment control, 𝑚
is the mass of the beam, 𝐴, 𝐵 and 𝐶 are material constants, 𝛾 and 𝛽 are the elastic
and damping coefficients of the middle layer, respectively.

The following model for two-layer laminated beam was proposed by Hansen
and Spies [4] in 1997 based on Timoshenko’s theory

𝜚𝑤𝑡𝑡 +𝐺(𝜓 − 𝑤𝑥)𝑥 = 0, in (0, 𝐿)× R+,(1.10)

𝐼𝜚(3𝑠𝑡𝑡 − 𝜓𝑡𝑡)−𝐷(3𝑆𝑥𝑥 − 𝜓𝑥𝑥)−𝐺(𝜓 − 𝑢𝑥) = 0, in (0, 𝐿)× R+,(1.11)

3𝐼𝜚𝑠𝑡𝑡 − 3𝐷𝑠𝑥𝑥 + 3𝐺(𝜓 − 𝑤𝑥) + 4𝜇𝑠+ 4𝛿𝑠𝑡 = 0, in (0, 𝐿)× R+,(1.12)
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where 𝜚,𝐺, 𝐼𝜚, 𝐷, 𝛾 and 𝛿 are positive constants and represent density, shear stiff-
ness, mass moment of inertia, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. The function 𝑤(𝑥, 𝑡) denotes the transversal dis-
placement, 𝜓(𝑥, 𝑡) represents the rotational displacement, and 𝑠(𝑥, 𝑡) is proportional
to the amount of slip along with the interface at time 𝑡 and longitudinal spatial
variable 𝑥. This model has received a lot of attention from several authors over the
past several years. Please refer to [5] where the authors considered the dynamics
of laminated Timoshenko beams.

The general three-layer laminated beam model was developed in 1999 by Liu–
Trogdon–Yong [6]

𝜚1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝜏 = 0,(1.13)
𝜚3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝜏 = 0,(1.14)

𝜚ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 −𝐺1ℎ1(𝑤𝑥 + 𝜑1)𝑥 −𝐺3ℎ3(𝑤𝑥 + 𝜑3)𝑥 − ℎ2𝜏𝑥 = 0,(1.15)

𝜚1𝐼1𝜑1,𝑡𝑡 − 𝐸1𝐼1𝜑1,𝑥𝑥 − ℎ1
2
𝜏 +𝐺1ℎ1(𝑤𝑥 + 𝜑1) = 0,(1.16)

𝜚3𝐼3𝜑3,𝑡𝑡 − 𝐸3𝐼3𝜑3,𝑥𝑥 − ℎ3
2
𝜏 +𝐺3ℎ3(𝑤𝑥 + 𝜑3) = 0.(1.17)

The physical parameters ℎ𝑖, 𝜌𝑖, 𝐸𝑖, 𝐺𝑖, 𝐼𝑖 > 0 are the thickness, density, Young’s
modulus, shear modulus, and moments of inertia of the 𝑖-th layer for 𝑖 = 1, 2, 3,
from the bottom to the top, respectively. In addition, 𝜚ℎ = 𝜚1ℎ1+𝜚2ℎ2+𝜚3ℎ3 and
𝐸𝐼 = 𝐸1𝐼1 + 𝐸3𝐼3.

The Rao–Nakra system

𝜚1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝑘(−𝑢+ 𝑣 + 𝛾𝑤𝑥) = 0, in (0, 𝐿)× R+,

𝜚3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝑘(−𝑢+ 𝑣 + 𝛾𝑤𝑥) = 0, in (0, 𝐿)× R+,

𝜚ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 − 𝛼𝑘(−𝑢+ 𝑣 + 𝛾𝑤𝑥)𝑥 = 0, in (0, 𝐿)× R+,

(1.18)

is obtained from (1.13)–(1.17) when the core material is considered to be linearly
elastic i.e., 𝜏 = 2𝐺2𝜍 with the shear strain

𝜍 =
1

2ℎ2
(−𝑢+ 𝑣 + 𝛾𝑤𝑥) and 𝛾 = ℎ2 +

1

2
(ℎ1 + ℎ3),

where 𝑘 := 𝐺2

ℎ2
, the shear modulus 𝐺2 = 𝐸2

2(1+𝜈) , and −1 < 𝜈 < 1
2 is the Poisson

ratio.
When the extensional motion of the bottom and top layers is neglected, we

obtain the two-layer laminated beam model proposed by Hansen–Spies. When
𝑠(𝑥, 𝑡) = 0, system (1.10)–(1.12) reduces to the Timoshenko system. For more
sandwich beam models found in the literature see for instance [7, 8] with refer-
ences therein.

Systems with delay in time have been studied, among others, in several branches
of Mathematics and Physics. Indeed, the control of Partial Differential Equations
with delay has become an attractive area of research because time delays so often
arise in many physical, chemical, biological, and economic phenomena, see [9] and
the references therein. Whenever the energy is physically transmitted from one
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place to another, there is a delay associated with the transmission, see [10]. The
central question is that the delays source can destabilize a system that is asymp-
totically stable in the absence of delays, see for instance [11–14] and the references
therein.

Our motivation is the following Rao–Nakra model with internal damping and
Kelvin-Voigt damping, considered in [15]

𝜌1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝑘(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑎1𝑢𝑥𝑥𝑡 + 𝑎2𝑢𝑡 = 0,(1.19)
𝜌3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝑘(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑏1𝑢𝑥𝑥𝑡 + 𝑏2𝑢𝑡 = 0,(1.20)

𝜌ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 − 𝛼𝑘(−𝑢+ 𝑣 + 𝛼𝑤𝑥)𝑥 − 𝑐1𝑤𝑥𝑥𝑥𝑥𝑡 + 𝑐2𝑢𝑡 = 0,(1.21)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ⩾ 0, 𝑖 = 1, 2. The authors in [15] showed that (1.19)–(1.21) is
unstable if only one damping is imposed on the beam equation; beyond this, the
exponential stability holds when all three displacements are damped while poly-
nomial stability holds when just two of the three equations are damped. For the
case 𝑎2 = 𝑏2 = 𝑐2 = 0 we recover the system (1.1)–(1.3) without time delay and
Kelvin–Voigt damping in the bottom layer. For 𝑎1 = 𝑏1 = 𝑐1 = 0 in [16], the poly-
nomial stability was proved when damping is just on one of the three wave equations
and exponential stability was obtained by Özkan Özer-Hansen [17] when standard
boundary damping is imposed on one end of the beam for all three displacements.

In the literature, we find several studies on the effects of delay on beam systems.
We will provide several examples to emphasize the importance of systems involving
delays. For instance, Said-Houari and Larski [18] studied the following Timoshenko
system with delay

𝜌1𝜙𝑡𝑡 −𝐾(𝜙𝑥 + 𝜓)𝑥 = 0,

𝜌2𝜓𝑡𝑡 − 𝑏𝜓𝑥𝑥 +𝐾(𝜙𝑥 + 𝜓) + 𝜇1𝜓𝑡 + 𝜇2𝜓(𝑡− 𝜏) = 0,

and they proved that the associated energy decays exponentially, whenever 𝜇2 < 𝜇1.
Raposo et al. [19] demonstrated the exponential stability of a thermoviscoelastic
Timoshenko system with heat conduction modeled by the Cattaneo law. Nicaise
and Pignotti [20] studied the abstract evolution delay model

𝑈𝑡(𝑡) = 𝒜𝑈(𝑡) + 𝐹 (𝑈(𝑡)) + 𝑘ℬ𝑈(𝑡− 𝜏), 𝑈(0) = 0, ℬ𝑈(𝑡− 𝜏) = 𝑓(𝑡).

Under smallness assumption on the time delay feedback, and assuming that ℬ is
a bounded operator on adequate spaces, they showed that the system is exponen-
tially stable.

The main purpose of this paper is to study the asymptotic behavior of the
solution associated with (1.1)–(1.5) by showing that the system is exponentially
stable, see Theorem 4.2. The paper is structured as follows. In Section 2, we
introduce the new variable as in [21] to deal with the delay parameter and we
obtain an equivalent system to (1.1)–(1.5). Then, we prove that the full energy
of the equivalent system is not increasing. In Section 3, the well-posedness of the
problem (1.1)–(1.5) is presented by using a semigroup approach. Finally, in Section
4 the exponential stability of the 𝐶0-semigroup of contractions on an appropriated
Hilbert space is proved by employing the Gearhart–Huang–Prüss’ theorem [22–24].
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2. Statement of the problem

To deal with the delay term, as in [21], we introduce an auxiliary function 𝜂
defined by

(2.1) 𝜂(𝑥, 𝑦, 𝑡) = 𝑢𝑡(𝑥, 𝑡− 𝜏𝑦), (𝑥, 𝑦, 𝑡) ∈ (0, 𝐿)× (0, 1)× R+.

An immediate application of the chain rule yields

𝜏𝜂𝑡(𝑥, 𝑦, 𝑡) + 𝜂𝑦(𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦, 𝑡) ∈ (0, 𝐿)× (0, 1)× R+.

Hereafter, we will use the notation 𝜂(𝑦) to refer to 𝜂(𝑥, 𝑦, 𝑡) and only when necessary,
we will use 𝜂(𝑦, 𝑡), for example in case when dealing with the delay term. Hence,
the system (1.1)–(1.3) becomes

𝜌1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)

− 𝑎𝑢𝑥𝑥𝑡 − 𝜇𝜂𝑥𝑥(1) = 0 in (0, 𝐿)× R+,
(2.2)

𝜌3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑏𝑣𝑥𝑥𝑡 = 0 in (0, 𝐿)× R+,(2.3)

𝜌ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 − 𝜅𝛼(−𝑢+ 𝑣 + 𝛼𝑤𝑥)𝑥 − 𝑐𝑤𝑥𝑥𝑡 = 0 in (0, 𝐿)× R+,(2.4)

𝜏𝜂𝑡(𝑦) + 𝜂𝑦(𝑦) = 0 in (0, 𝐿)× (0, 1)× R+.(2.5)

In addition to the boundary and initial conditions (1.4)–(1.5), we add the following
condition about 𝜂:

(2.6) 𝜂(𝑥, 𝑦, 0) = 𝑓0(𝑥,−𝜏𝑦) 𝑥 ∈ (0, 𝐿), 𝑦 ∈ (0, 1),

where 𝑓0 is a function defined in a suitable Sobolev space, see Section 3 for more
details. By the very definition of 𝜂, we also have

(2.7) 𝜂(𝑥, 0, 𝑡) = 𝑢𝑡(𝑥, 𝑡), 𝜂(𝑥, 1, 𝑡) = 𝑢𝑡(𝑥, 𝑡− 𝜏) 𝑥 ∈ (0, 𝐿), 𝜏 ∈ (0, 𝑡).

Henceforth ⟨ · , · ⟩ and ‖ · ‖ will denote the usual inner product and norm in
𝐿2(0, 𝐿), that is

⟨𝑢, 𝑣⟩ =
∫︁ 𝐿

0

𝑢(𝑥)𝑣(𝑥)𝑑𝑥, ‖𝑢‖2 =

∫︁ 𝐿

0

|𝑢(𝑥)|2𝑑𝑥.

In order to find the energy associated with the system (2.2)–(2.5), proceeding
formally, we respectively multiply (2.2), (2.3) and (2.4) by 𝑢𝑡, 𝑣𝑡 and 𝑤𝑡 in 𝐿2(0, 𝐿)
and (2.5) by 𝛿

𝜏 𝜂𝑥𝑥 in 𝐿2(0, 1;𝐿2(0, 𝐿)). Thus, adding the resulting identities, by
previously using integration by parts, we obtain after taking the real part that

1

2

𝑑

𝑑𝑡

[︂
𝜌1ℎ1‖𝑢𝑡‖2 + 𝜌3ℎ3‖𝑣𝑡‖2 + 𝜌ℎ‖𝑤𝑡‖2 + 𝐸1ℎ1‖𝑢𝑥‖2 + 𝐸3ℎ3‖𝑣𝑥‖2

+ 𝐸𝐼‖𝑤𝑥𝑥‖2 + 𝜅‖ − 𝑢+ 𝑣 + 𝛼𝑤𝑥‖2 +
𝛿

2

∫︁ 1

0

‖𝜂𝑥(𝑦)‖2𝑑𝑦
]︂

+ 𝑎‖𝑢𝑥𝑡‖2 + 𝑏‖𝑣𝑥𝑡‖2 + 𝑐‖𝑤𝑥𝑡‖2 + 𝜇⟨𝜂𝑥(1), 𝜂𝑥(0)⟩

+
𝛿

2𝜏
‖𝜂𝑥(1)‖2 −

𝛿

2𝜏
‖𝜂𝑥(0)‖2 = 0,

with 𝛿 being a constant whose value will be fixed later, see (2.9).
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The previous identity motivates us to define the energy associated with the
system (2.2)–(2.5) as

𝐸(𝑡) =
1

2

[︂
𝜌1ℎ1‖𝑢𝑡‖2 + 𝜌3ℎ3‖𝑣𝑡‖2 + 𝜌ℎ‖𝑤𝑡‖2 + 𝐸1ℎ1‖𝑢𝑥‖2 + 𝐸3ℎ3‖𝑣𝑥‖2(2.8)

+ 𝐸𝐼‖𝑤𝑥𝑥‖2 + 𝜅‖ − 𝑢+ 𝑣 + 𝛼𝑤𝑥‖2 + 𝛿

∫︁ 1

0

‖𝜂𝑥(𝑦)‖2𝑑𝑦
]︂
,

and hence we obtain
𝑑

𝑑𝑡
𝐸(𝑡) =− 𝑎‖𝑢𝑥𝑡‖2 − 𝑏‖𝑣𝑥𝑡‖2 − 𝑐‖𝑤𝑥𝑡‖2

− 𝜇⟨𝜂𝑥(1), 𝜂𝑥(0)⟩ −
𝛿

2𝜏
‖𝜂𝑥(1)‖2 +

𝛿

2𝜏
‖𝜂𝑥(0)‖2.

Note that 𝜂𝑥(0) = 𝜂𝑥(𝑥, 0, 𝑡) = 𝑢𝑥𝑡(𝑥, 𝑡). Thus, applying Young’s inequality,
obtain
𝑑

𝑑𝑡
𝐸(𝑡) ⩽ −𝑏‖𝑣𝑥𝑡‖2 − 𝑐‖𝑤𝑥𝑡‖2 +

(︁ |𝜇|
2

− 𝛿

2𝜏

)︁
‖𝜂𝑥(1)‖2 +

(︁
− 𝑎+

|𝜇|
2

+
𝛿

2𝜏

)︁
‖𝜂𝑥(0)‖2.

Then, imposing the following condition on the constants 𝑎, 𝛿 and 𝜇

(2.9) 𝑎 >
𝛿

𝜏
> |𝜇|

we deduce that 𝑑
𝑑𝑡𝐸(𝑡) ⩽ 0. Hence, the energy of the system (2.2)–(2.5) is not

increasing. The previous computations are only formal. The next step will make
sense of those by defining the appropriate phase space and domain through a semi-
group approach.

3. Well-posedness

We start this section by presenting the well-known Lumer–Phillips Theorem in
its version for Hilbert spaces.

Theorem 3.1 (Lumer–Phillips, [25]). Let 𝒜 be a linear operator with dense
domain 𝐷(𝒜) in a Hilbert space 𝑋. If 𝒜 is dissipative and there is a 𝜆0 > 0
such that the range 𝑅(𝜆0 𝐼 − 𝒜) = 𝑋, then 𝒜 is the infinitesimal generator of a
𝐶0-semigroup of contractions on 𝑋.

For existence of solution, we use the following corollary of the Lumer–Phillips
Theorem, see [26, Theorem 1.2.4].

Corollary 3.1. Let 𝒜 be a linear operator with dense domain 𝐷(𝒜) in a
Hilbert space 𝑋. If 𝒜 is dissipative and 0 ∈ 𝜌(𝒜), the resolvent set of 𝒜, then 𝒜 is
𝒜 is the infinitesimal generator of a 𝐶0-semigroup of contractions on 𝑋.

Now, by introducing the vector function 𝑈 = (𝑢, 𝜙, 𝑣, 𝜉, 𝑤, 𝑧, 𝜂)𝑇 , the system
(2.2)–(2.5) can be rewritten as{︃

𝑑
𝑑𝑡𝑈(𝑡) = 𝒜𝑈(𝑡), 𝑡 > 0,

𝑈(0) = 𝑈0 = (𝑢0, 𝑢1, 𝑣0, 𝑣1, 𝑤0, 𝑤1, 𝑓0)
𝑇 ,
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where the operator 𝒜 : 𝐷(𝒜) ⊂ 𝑋 → 𝑋 is defined for 𝑈 = (𝑢, 𝜙, 𝑣, 𝜉, 𝑤, 𝑧, 𝜂)𝑇 by

(3.1) 𝒜𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜙
𝐸1

𝜌1
𝑢𝑥𝑥 + 𝜅

𝜌1ℎ1
(−𝑢+ 𝑣 + 𝛼𝑤𝑥) +

𝑎
𝜌1ℎ1

𝜙𝑥𝑥 + 𝜇
𝜌1ℎ1

𝜂𝑥𝑥(1)

𝜉
𝐸3

𝜌3
𝑣𝑥𝑥 − 𝜅

𝜌3ℎ3
(−𝑢+ 𝑣 + 𝛼𝑤𝑥) +

𝑏
𝜌3ℎ3

𝜉𝑥𝑥
𝑧

−𝐸𝐼
𝜌ℎ𝑤𝑥𝑥𝑥𝑥 + 𝜅𝛼

𝜌ℎ (−𝑢+ 𝑣 + 𝛼𝑤𝑥)𝑥 + 𝑐
𝜌ℎ𝑧𝑥𝑥

− 1
𝜏 𝜂𝑦(𝑦)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the phase space is

𝑋 = 𝐻1
0 × 𝐿2 ×𝐻1

0 × 𝐿2 ×𝐻2 ∩𝐻1
0 × 𝐿2 × 𝐿2(0, 1;𝐻1

0 )

which is a Hilbert space with respect to the inner product

⟨𝑈, �̃�⟩𝑋 = 𝜌1ℎ1⟨𝜙,𝜙⟩+ 𝐸1ℎ1⟨𝑢𝑥, �̃�𝑥⟩+ 𝜌3ℎ3⟨𝜉, 𝜉⟩(3.2)
+ 𝐸3ℎ3⟨𝑣𝑥, 𝑣𝑥⟩+ 𝜌ℎ⟨𝑧, 𝑧⟩+ 𝐸𝐼⟨𝑤𝑥𝑥, �̃�𝑥𝑥⟩

+ 𝜅⟨−𝑢+ 𝑣 + 𝛼𝑤𝑥,−�̃�+ 𝑣 + 𝛼�̃�𝑥⟩+ 𝛿

∫︁ 1

0

⟨𝜂𝑥(𝑦), 𝜂𝑥(𝑦)⟩𝑑𝑦

and norm

‖𝑈‖2𝑋 = 𝜌1ℎ1‖𝜙‖2 + 𝐸1ℎ1‖𝑢𝑥‖2 + 𝜌3ℎ3‖𝜉‖2 + 𝐸3ℎ3‖𝑣𝑥‖2 + 𝜌ℎ‖𝑧‖2

+ 𝐸𝐼‖𝑤𝑥𝑥‖2 + 𝜅‖ − 𝑢+ 𝑣 + 𝛼𝑤𝑥‖2 + 𝛿

∫︁ 1

0

‖𝜂𝑥(𝑦)‖2𝑑𝑦,

where 𝑈 = (𝑢, 𝜙, 𝑣, 𝜉, 𝑤, 𝑧, 𝜂)𝑇 , �̃� = (�̃�, 𝜙, 𝑣, 𝜉, �̃�, 𝑧, 𝜂)𝑇 ∈ 𝑋. Recall that the
domain of 𝒜 consist of all 𝑈 ∈ 𝑋 so that 𝒜𝑈 ∈ 𝑋. Consequently, a straightforward
computation shows that the domain of operator 𝒜 can be defined by

(3.3) 𝐷(𝒜) = (𝐻2 ∩𝐻1
0 )

4 × (𝐻4 ∩𝐻2
0 )× (𝐻2 ∩𝐻1

0 )× 𝐿2(0, 1;𝐻2 ∩𝐻1
0 ).

In order to apply an efficient semigroup method, one needs to show the associ-
ated operator’s dissipative property to the system. The following result shows that
our operator 𝒜 enjoys such a property.

Proposition 3.1. The operator 𝒜 defined by (3.1) and (3.3) is dissipative and
satisfies

(3.4) Re⟨𝒜𝑈,𝑈⟩𝑋 ⩽ −𝛼‖𝜙𝑥‖2 − 𝑏‖𝜉𝑥‖2 − 𝑐‖𝑧𝑥‖2 − 𝛽‖𝜂𝑥(1)‖2

for all 𝑈 = (𝑢, 𝜙, 𝑣, 𝜉, 𝑤, 𝑧, 𝜂)𝑇 ∈ 𝐷(𝒜). Here 𝛼 := 𝑎 − 𝛿
2𝜏 − |𝜇|

2 > 0 and 𝛽 :=
𝛿
2𝜏 − |𝜇|

2 > 0.

Proof. Let 𝑈 = (𝑢, 𝜙, 𝑣, 𝜉, 𝑤, 𝑧, 𝜂)𝑇 ∈ 𝐷(𝒜). According to the definition of
the inner product in 𝑋 given in (3.2), and applying several times integration by
parts formula combined with Fundamental Theorem of Calculus, one deduces

Re⟨𝒜𝑈,𝑈⟩𝑋 =− 𝑎‖𝜙𝑥‖2 − 𝑏‖𝜉𝑥‖2 − 𝑐‖𝑧𝑥‖2

− 𝜇Re⟨𝜂𝑥(1), 𝜂𝑥(0)⟩ −
𝛿

2𝜏
‖𝜂𝑥(1)‖2 +

𝛿

2𝜏
‖𝜂𝑥(0)‖2.



78 CABANILLAS, RAPOSO, AND POTENCIANO-MACHADO

Taking into account that 𝜂𝑥(0) = 𝜂𝑥(𝑥, 0, 𝑡) = 𝜙𝑥(𝑥, 𝑡), Young’s inequality yields

Re⟨𝒜𝑈,𝑈⟩𝑋 ⩽ −
(︁
𝑎− |𝜇|

2
− 𝛿

2𝜏

)︁
‖𝜙𝑥‖2 − 𝑏‖𝜉𝑥‖2 − 𝑐‖𝑧𝑥‖2 −

(︁ 𝛿

2𝜏
− |𝜇|

2

)︁
‖𝜂𝑥(1)‖2.

From condition (2.9) imposed on 𝑎, 𝛿 and 𝜇, it follows directly that 𝒜 is dissipative
and the estimate (3.4) is then satisfied. □

Proposition 3.2. Let 𝜌(𝒜) be the resolvent of the operator 𝒜. Then 0 ∈ 𝜌(𝒜).

Proof. By reductio ad absurdum, we assume that 0 ∈ 𝜎(𝒜), the spectrum of
the operator 𝒜. This implies that there exists a sequence

𝑈𝑛 = (𝑢𝑛, 𝜙𝑛, 𝑣𝑛, 𝜉𝑛, 𝑤𝑛, 𝑧𝑛, 𝜂𝑛)
𝑇 ∈ 𝐷(𝒜),

indexed by 𝑛 ∈ N, with ‖𝑈𝑛‖𝑋 = 1 such that 𝒜𝑈𝑛 = 𝑜(1), that is, 𝒜𝑈𝑛 → 0 in 𝑋.
Then by (3.4), one has

(3.5) ‖𝜙𝑛,𝑥‖, ‖𝜉𝑛,𝑥‖, ‖𝑧𝑛,𝑥‖, ‖𝜂𝑛,𝑥(1)‖ ⩽ ‖𝒜𝑈𝑛‖𝑋 = 𝑜(1).

The definition (2.1) and Poincaré inequality leads to

(3.6) ‖𝜙𝑛‖, ‖𝜉𝑛‖, ‖𝑧𝑛‖, ‖𝜂𝑛‖𝐿2(0,1;𝐿2(0,𝐿)) = 𝑜(1).

Let 𝑉𝑛 = (0,−𝑢𝑛, 0,−𝑣𝑛, 0,−𝑤𝑛, 0). Since (𝑉𝑛) is bounded in 𝑋, we have that
⟨𝒜𝑈𝑛, 𝑉𝑛⟩ = 𝑜(1). Then

(3.7) 𝐸1ℎ1‖𝑢𝑛,𝑥‖2 + 𝐸3ℎ3‖𝑣𝑛,𝑥‖2 + 𝐸𝐼‖𝑤𝑛,𝑥𝑥‖2 + 𝜅‖ − 𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥‖2

+ 𝑎⟨𝜙𝑛,𝑥, 𝑢𝑛,𝑥⟩+ 𝑏⟨𝜉𝑛,𝑥, 𝑣𝑛,𝑥⟩+ 𝑐⟨𝑧𝑛,𝑥, 𝑤𝑛,𝑥⟩+ 𝜇⟨𝜂𝑛,𝑥(1), 𝑢𝑛,𝑥⟩ = 𝑜(1).

The estimates obtained in (3.5) and the boundedness of the sequences (𝑢𝑛,𝑥), (𝑣𝑛,𝑥)
and (𝑤𝑛,𝑥) in 𝐿2 lead us to

(3.8) ‖𝑢𝑛,𝑥‖, ‖𝑣𝑛,𝑥‖, ‖𝑤𝑛,𝑥𝑥‖, ‖ − 𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥‖ = 𝑜(1).

From (3.6) and (3.8), we deduce that ‖𝑈𝑛‖𝑋 = 𝑜(1), which contradicts our assump-
tion. Hence, 0 ∈ 𝜌(𝒜), and the proof is now completed. □

Theorem 3.2. The operator 𝒜 defined above is the infinitesimal generator of
a 𝐶0−semigroup 𝑒𝑡𝒜 of contractions in the Hilbert space 𝑋.

Proof. It is obvious that 𝐷(𝒜) is dense in 𝑋. By the previous proposi-
tions, the operator 𝒜 is dissipative and 0 ∈ 𝜌(𝒜). Then, by Corollary 3.1, 𝒜 is
the infinitesimal generator of a 𝐶0−semigroup 𝑒𝑡𝒜 of contractions in the Hilbert
space 𝑋. □

The well-posedeness is given by the following result.

Theorem 3.3. Let 𝑈0 ∈ 𝑋, then there exists a unique weak solution 𝑈 of
problem (1.1)–(1.5) satisfying

(3.9) 𝑈 ∈ 𝐶([0,+∞);𝑋).

Moreover, if 𝑈0 ∈ 𝐷(𝒜), then

(3.10) 𝑈 ∈ 𝐶([0,+∞);𝐷(𝒜)) ∩ 𝐶1([0,+∞);𝑋).
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Proof. From semigroup theory, see e.g. [25], since 𝒜 is the infinitesimal gen-
erator of a 𝐶0−semigroup 𝑒𝑡𝒜 of contractions in the Hilbert space 𝑋, we deduce
that 𝑈(𝑡) = 𝑒𝑡𝒜𝑈0 is the unique solution of problem (1.1)–(1.5) satisfying (3.9)
and (3.10). □

4. Exponential stability

In this section we will prove that the 𝐶0−semigroup 𝑒𝒜𝑡 of contractions is
exponentially stable. For this purpose, we will use the following theorem that gives
necessary and sufficient conditions for the exponential stability of a 𝐶0−semigroup
of contractions. This result was independently obtained by Gearhart [22] and
Huang [23], and more recently by Pruss [24].

Theorem 4.1. Let 𝜌(𝒜) be the resolvent set of the operator 𝒜 and 𝑆(𝑡) = 𝑒𝑡𝒜

be the 𝐶0-semigroup of contractions generated by 𝒜. Then 𝑆(𝑡) is exponentially
stable if and only if

(4.1) 𝑖R ⊂𝜌(𝒜)

and

(4.2) lim sup
|𝜆|→∞

‖(𝑖𝜆𝐼 −𝒜)−1‖ <∞.

In order to establish our main result we will prove that the operator 𝒜 satisfies
(4.1) and (4.2). Let’s start with the first condition.

Proposition 4.1. Let 𝜌(𝒜) be the resolvent of the operator 𝒜. Then

𝑖R ⊂ 𝜌(𝒜).

Proof. We prove the inclusion by using a contradiction argument. If the
inclusion does not hold, then there exist 𝜔 ∈ R, 𝜔 ̸= 0 with ‖𝒜−1‖ ⩽ |𝜔| <∞, and
a couple of sequences (𝜆𝑛) ⊂ R, (𝑈𝑛) ⊂ 𝐷(𝒜) with

|𝜆𝑛| < |𝜔|, 𝜆𝑛 → 𝜔, as 𝑛→ ∞
and

(4.3) 𝑈𝑛 := (𝑢𝑛, 𝜙𝑛, 𝑣𝑛, 𝜉𝑛, 𝑤𝑛, 𝑧𝑛, 𝜂𝑛)
𝑇 , ‖𝑈𝑛‖𝑋 = 1, ‖(𝑖𝜆𝑛𝐼 −𝒜)𝑈𝑛‖𝑋 → 0.

Setting
(𝑖𝜆𝑛𝐼 −𝒜)𝑈𝑛 = 𝐹𝑛, 𝐹𝑛 = (𝑓1𝑛, 𝑓

2
𝑛, . . . , 𝑓

6
𝑛, 𝑓

7
𝑛)

𝑇

and by previous convergence in 𝑋, we have

(4.4)

𝑓1𝑛, 𝑓
3
𝑛 → 0 in 𝐻1

0 (0, 𝐿), as 𝑛→ ∞,

𝑓2𝑛, 𝑓
4
𝑛, 𝑓

6
𝑛 → 0 in 𝐿2(0, 𝐿), as 𝑛→ ∞,

𝑓5𝑛 → 0 in 𝐻2(0, 𝐿) ∩𝐻1
0 (0, 𝐿), as 𝑛→ ∞,

𝑓7𝑛 → 0 in 𝐿2(0, 1;𝐻1
0 (0, 𝐿)), as 𝑛→ ∞.

To take advantage of the dissipative property of 𝒜, we take the inner product in 𝑋
of (𝑖𝜆𝑛𝐼−𝒜)𝑈𝑛 against 𝑈𝑛, and after taking the real part of the resulting identity,
we immediately deduce from Proposition 3.1 that

𝜙𝑛,𝑥, 𝜉𝑛,𝑥, 𝑧𝑛,𝑥, 𝜂𝑛,𝑥(1) → 0 in 𝐿2(0, 𝐿) as 𝑛→ ∞.
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Moreover, thanks to Poincaré inequality, we also have the convergences

(4.5) 𝜙𝑛, 𝜉𝑛, 𝑧𝑛, 𝜂𝑛(1) → 0 in 𝐿2(0, 𝐿) as 𝑛→ ∞.

The next step consists in proving that the sequence (𝑈𝑛) converges to zero in 𝑋,
which would be a contradiction with the unitary property of 𝑈𝑛, see (4.3), and the
proof shall be completed. To do so, the identity (𝑖𝜆𝑛𝐼−𝒜)𝑈𝑛 = 𝐹𝑛 reads as follows

𝑖𝜆𝑛𝑢𝑛 − 𝜙𝑛 = 𝑓1𝑛, in 𝐻1
0 ,(4.6)

𝑖𝜆𝑛𝜙𝑛 − 𝐸1

𝜌1
𝑢𝑛,𝑥𝑥 − 𝜅

𝜌1ℎ1
(−𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥)

− 𝑎

𝜌1ℎ1
𝜙𝑛,𝑥𝑥 − 𝜇

𝜌1ℎ1
𝜂𝑛,𝑥𝑥(1) = 𝑓2𝑛, in 𝐿2,

(4.7)

𝑖𝜆𝑛𝑣𝑛 − 𝜉𝑛 = 𝑓3𝑛, in 𝐻1
0 ,(4.8)

𝑖𝜆𝑛𝜉𝑛 − 𝐸3

𝜌3
𝑣𝑛,𝑥𝑥 +

𝜅

𝜌3ℎ3
(−𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥)−

𝑏

𝜌3ℎ3
𝜉𝑛,𝑥𝑥 = 𝑓4𝑛, in 𝐿2,(4.9)

𝑖𝜆𝑛𝑤𝑛 − 𝑧𝑛 = 𝑓5𝑛, in 𝐻2 ∩𝐻1
0 ,(4.10)

𝑖𝜆𝑛𝑧𝑛 +
𝐸𝐼

𝜌ℎ
𝑤𝑛,𝑥𝑥𝑥𝑥 − 𝜅𝛼

𝜌ℎ
(−𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥)𝑥 − 𝑐

𝜌ℎ
𝑧𝑛,𝑥𝑥 = 𝑓6𝑛, in 𝐿2,(4.11)

𝑖𝜆𝑛𝜂𝑛(𝑦) +
1

𝜏
𝜂𝑛,𝑦(𝑦) = 𝑓7𝑛(𝑦), in 𝐿2(0, 1;𝐻1

0 ).(4.12)

Combining (4.4)–(4.5) with (4.6), (4.8) and (4.10), we easily get the conver-
gences

𝑢𝑛, 𝑣𝑛, 𝑤𝑛,→ 0 in 𝐻1
0 (0, 𝐿), −𝑢𝑛+ 𝑣𝑛+𝛼𝑤𝑛,𝑥 → 0 in 𝐿2(0, 𝐿), as 𝑛→ ∞.

It remains to prove that 𝑤𝑛,𝑥𝑥 → 0 in 𝐿2 and 𝜂𝑛 → 0 in 𝐿2(0, 1;𝐻1
0 ). Taking

the inner product of (4.11) with by 𝜌ℎ𝑤𝑛 in 𝐿2(0, 𝐿), and integrating by parts, we
obtain

𝐸𝐼‖𝑤𝑛,𝑥𝑥‖2 =− 𝜅𝛼⟨−𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥, 𝑤𝑛,𝑥⟩
− 𝑐⟨𝑧𝑛,𝑥, 𝑤𝑛,𝑥⟩ − 𝑖𝜆𝑛𝜌ℎ⟨𝑧𝑛, 𝑤𝑛⟩+ 𝜌ℎ⟨𝑓6𝑛, 𝑤𝑛⟩.

By previous convergences, one can easily check that each term on the right-hand
side goes to zero in C when 𝑛 → ∞. Hence 𝑤𝑛,𝑥𝑥 → 0 in 𝐿2 when 𝑛 → ∞ as
desired. On the other hand, equation 4.12 can be explicitly solved. Indeed, using
that 𝜂𝑛(𝑥, 0) = 𝜙𝑛 combined with a variation of parameters method, we easily get

𝜂𝑛(𝑥, 𝑦) = 𝑒−𝑖𝜏𝜆𝑛𝑦𝜙𝑛 + 𝜏

∫︁ 𝑦

0

𝑒𝑖𝜏𝜆𝑛(𝑠−𝑦)𝑓7𝑛(𝑥, 𝑠)𝑑𝑠, a.e. (𝑥, 𝑦) ∈ (0, 𝐿)× (0, 1).

Since |𝑒𝑖𝜔| = 1 for all 𝜔 ∈ R and the norm in the space 𝐿2(0, 1;𝐻1
0 ) only involves

derivatives with respect to the spatial variable 𝑥, it follows that

‖𝜂𝑛‖𝐿2(0,1;𝐻1
0 )

⩽ 𝐶(‖𝜙𝑛,𝑥‖+ ‖𝑓7𝑛‖𝐿2(0,1;𝐻1
0 )
) → 0 as 𝑛→ ∞

for some constant 𝐶 > 0. This completes the proof. □

We now move to verify the second condition.
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Proposition 4.2. The operator 𝒜 satisfies the following resolvent estimate

lim sup
|𝜆|→∞

‖(𝑖𝜆𝐼 −𝒜)−1‖ < +∞.

Proof. We again use a contradiction argument. If the above condition does
not hold, then there exist a couple of sequences (𝜆𝑛) ⊂ R, (𝑈𝑛) ⊂ 𝐷(𝒜) with

𝜆𝑛 → ∞, as 𝑛→ ∞
and

(4.13) 𝑈𝑛 := (𝑢𝑛, 𝜙𝑛, 𝑣𝑛, 𝜉𝑛, 𝑤𝑛, 𝑧𝑛, 𝜂𝑛)
𝑇 , ‖𝑈𝑛‖𝑋 = 1, ‖(𝑖𝜆𝑛𝐼 −𝒜)𝑈𝑛‖𝑋 → 0.

Let us set

(4.14) (𝑖𝜆𝑛𝐼 −𝒜)𝑈𝑛 = 𝐹𝑛, 𝐹𝑛 = (𝑓1𝑛, 𝑓
2
𝑛, . . . , 𝑓

6
𝑛, 𝑓

7
𝑛)

𝑇

By previous convergence in 𝑋, we deduce the same convergences as in (4.4). Taking
the inner product of (4.14) with 𝑈𝑛 in 𝑋, considering the real part and using again
the dissipativity property of 𝒜 given in Proposition 3.1, we obtain

(4.15) 𝜙𝑛,𝑥, 𝜉𝑛,𝑥, 𝑧𝑛,𝑥, 𝜂𝑛,𝑥(1) → 0 in 𝐿2(0, 𝐿) as 𝑛→ ∞,

and by Poincaré inequality, we also have

(4.16) 𝜙𝑛, 𝜉𝑛, 𝑧𝑛, 𝜂𝑛(1) → 0 in 𝐿2(0, 𝐿) as 𝑛→ ∞.

The idea of the proof is, as in Proposition 4.1, to prove that the sequence (𝑈𝑛)
goes to zero in 𝑋. However, the analysis of the convergences is more delicate
because of in this case the sequence of real numbers (𝜆𝑛) goes to infinity. As
𝐹𝑛 = (𝑓1𝑛, . . . , 𝑓

6
𝑛, 𝑓

7
𝑛), we can rewrite the spectral equation (4.13) in terms of its

components, and we will get the system (4.6)–(4.12) again. From (4.6), (4.8) and
(4.10), we easily get

𝑢𝑛 = − 𝑖

𝜆𝑛
(𝜙𝑛 + 𝑓1𝑛), 𝑣𝑛 = − 𝑖

𝜆𝑛
(𝜉𝑛 + 𝑓3𝑛), 𝑤𝑛 = − 𝑖

𝜆𝑛
(𝑧𝑛 + 𝑓5𝑛).

By (4.4), (4.15) and (4.16), all the sequences on the right-hand side are bounded
in 𝐻1

0 (0, 𝐿), and since 𝜆𝑛 → ∞, we deduce

𝑢𝑛, 𝑣𝑛, 𝑤𝑛 → 0 in 𝐻1
0 (0, 𝐿) as 𝑛→ ∞

and therefore

(4.17) −𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥 → 0 in 𝐿2(0, 𝐿), as 𝑛→ ∞.

Taking the inner product of (4.11) with 𝜌ℎ𝑤𝑛 in 𝐿2(0, 𝐿), and integrating by parts,
we get

𝐸𝐼‖𝑤𝑛,𝑥𝑥‖2 =− 𝜅𝛼⟨−𝑢𝑛 + 𝑣𝑛 + 𝛼𝑤𝑛,𝑥, 𝑤𝑛,𝑥⟩
− 𝑐⟨𝑧𝑛,𝑥, 𝑤𝑛,𝑥⟩ − 𝑖𝜆𝑛𝜌ℎ⟨𝑧𝑛, 𝑤𝑛⟩+ 𝜌ℎ⟨𝑓6𝑛, 𝑤𝑛⟩.

By previous convergences, namely (4.4) and (4.15)–(4.17), one can easily check that
the first three terms on the right-hand side go to zero in C when 𝑛→ ∞. The last
term can be written as

−𝑖𝜆𝑛𝜌ℎ⟨𝑧𝑛, 𝑤𝑛⟩ = 𝜌ℎ⟨𝑧𝑛, 𝑖𝜆𝑛𝑤𝑛⟩ = 𝜌ℎ⟨𝑧𝑛, 𝑧𝑛 + 𝑓5𝑛⟩.
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Then, the convergences (4.4) and (4.16) imply that 𝑖𝜆𝑛𝜌ℎ⟨𝑧𝑛, 𝑤𝑛⟩ → 0. Hence
𝑤𝑛,𝑥𝑥 → 0 in 𝐿2 when 𝑛 → ∞ as desired. On the other hand, once more as in
the Proposition 4.1, by recalling that 𝜂𝑛(𝑥, 0) = 𝜙𝑛, the variation of parameters
method allows us to obtain the explicit solution of (4.12)

𝜂𝑛(𝑥, 𝑦) = 𝑒−𝑖𝜏𝜆𝑛𝑦𝜙𝑛 + 𝜏

∫︁ 𝑦

0

𝑒𝑖𝜏𝜆𝑛(𝑠−𝑦)𝑓7𝑛(𝑥, 𝑠)𝑑𝑠, a.e. (𝑥, 𝑦) ∈ (0, 𝐿)× (0, 1).

Note that the norm in the space 𝐿2(0, 1;𝐻1
0 ) only involves derivatives with respect

to the spatial variable 𝑥, thus it follows that

‖𝜂𝑛‖𝐿2(0,1;𝐻1
0 )

⩽ 𝐶(‖𝜙𝑛,𝑥‖+ ‖𝑓7𝑛‖𝐿2(0,1;𝐻1
0 )
),

where the constant 𝐶 > 0 is independent of 𝜆𝑛 thanks to the fact |𝑒𝑖𝜔| = 1 for all
𝜔 ∈ R. Hence ‖𝜂𝑛‖𝐿2(0,1;𝐻1

0 )
→ 0 as 𝑛→ ∞. This completes the proof. □

Finally, we establish our main result.

Theorem 4.2. The semigroup 𝑆(𝑡) = 𝑒𝑡𝒜 generated by 𝒜 is exponentially
stable.

Proof. From Proposition 4.1 and Proposition 4.2, it follows that the condi-
tions of Theorem 4.1 are satisfied and then our semigroup 𝑆(𝑡) = 𝑒𝑡𝒜 generated by
𝒜 is exponentially stable. □
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СТАБИЛНОСТ РЕШЕЊА РАО-НАКРА МОДЕЛА
СЕНДВИЧ ГРЕДЕ СА КЕЛВИН-ВОИГТОВИМ

ПРИГУШЕЊЕМ И ВРЕМЕНСКИМ КАШЊЕЊЕМ

Резиме. Оваj рад се бави стабилношћу решења jеднодимензионалног Рао-
Накра модела вишеслоjне (сендвич) греде са Келвин-Воигтовим пригушењем
и временским кашњењем датим са

𝜌1ℎ1𝑢𝑡𝑡 − 𝐸1ℎ1𝑢𝑥𝑥 − 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑎𝑢𝑥𝑥𝑡 − 𝜇𝑢𝑥𝑥𝑡( · , 𝑡− 𝜏) = 0,

𝜌3ℎ3𝑣𝑡𝑡 − 𝐸3ℎ3𝑣𝑥𝑥 + 𝜅(−𝑢+ 𝑣 + 𝛼𝑤𝑥)− 𝑏𝑣𝑥𝑥𝑡 = 0,

𝜌ℎ𝑤𝑡𝑡 + 𝐸𝐼𝑤𝑥𝑥𝑥𝑥 − 𝜅𝛼(−𝑢+ 𝑣 + 𝛼𝑤𝑥)𝑥 − 𝑐𝑤𝑥𝑥𝑡 = 0.

Сендвич греда jе инжењерски модел коjи се састоjи од три слоjа: два твр-
да спољна слоjа, доње и горње стране, и више усклађеног унутрашњег слоjа –
jезгра. Рао-Накра систем се састоjи од три слоjа и претпоставка jе да нема кли-
зања на интерфеjсу између контаката. Горњи и доњи слоj су описани таласном
jедначином за уздужна померања према претпоставкама Оjлер-Берноулиjеве
греде. Слоj jезгра jе дат jедном jедначином коjа описуjе попречно померање
према претпоставкама Тимошенкове греде. Добра постављеност модела jе по-
казана применом теориjе полугрупа и Лумер-Филипсове теореме. Експонен-
циjална стабилност jе доказана коришћењем Геархарт-Хуанг-Прусове теореме.
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