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SYMMETRIES AND STABILITY OF
MOTIONS IN THE NEWTONIAN

AND THE HOOKEAN POTENTIALS

Christian Carimalo

Abstract. A new way of looking at symmetries is proposed, especially re-
garding their role in the stability of two-body motions in the Newtonian and
the Hookean potentials, the two selected by Bertrand’s theorem. The role of
the number of spatial dimensions is also addressed.

1. Introduction

In this article, we focus on the symmetries of two well-known super-integrable
systems, namely those of a classical, non-relativistic point particle 𝑃 moving in an
inertial frame under the action of either Newtonian or Hookean (harmonic) forces
produced by a point source located at the origin 𝑂 of the frame. According to
Joseph Bertrand’s theorem [1], the two Newtonian and Hookean cases are the only
ones providing bound closed orbits at any distance 𝑟 from the source. In a recent
article, we have shown how dynamical symmetries are strongly involved in this
result [2]. Apart from its rather trivial symmetries, space rotationnal invariance and
time invariance, each of these systems has an extra symmetry, due to the existence
of a specific conserved 3-vector, currently called the eccentricity vector, which is
perpendicular to the angular momentum and clearly related to the symmetry of
orbits. The components of this vector are first integrals, which, added to the usual
ones, energy and angular momentum, yields a number of independent first integrals
greater than is necessary to solve the problem. This is why the two systems are said
to be super-integrable as reminded in [3]. Associating the eccentricity vector with
the angular momentum one can then define a group of transformations under which
the Hamiltonian of the system is invariant. This is called a dynamical symmetry,
hereafter called 𝑆1 symmetry. In the Newtonian case, the eccentricity vector is the
well-known Laplace–Runge–Lenz vector [4–6] (hereafter called LRL vector). The
corresponding dynamical group is currently identified as being 𝑆𝑂(4).

The transformations of the dynamical symmetry group associated with the 𝑆1

symmetry, hereafter called the 𝑆1 group, are acting on phase space just like canon-
ical transformations, transforming one solution into another by means of Poisson
brackets. Geometrically, this means that they transform a trajectory into another.
For the two cases under consideration, bound trajectories are ellipses or circles, the
latter being viewed as ellipses of zero eccentricity. We refer the reader to Ref. [7]
where, for the Kepler problem, the action of the 𝑆1 group on the space of trajec-
tories is well analyzed. Let us review the necessary parameters defining a given
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elliptic orbit. First, the plane where it lies, which is fixed by the direction of the
angular momentum 𝐿; then, its orientation in that plane and its axis, which are
defined, respectively, by the orientation of the eccentricity vector, and by both the
magnitude 𝐿 = ‖𝐿‖ of the angular momentum and the value 𝐸 of the energy.
With the said transformations, one is able to vary continuously the orientation of
the plane and the orientation and the dimensions of the ellipse in that plane. But,
since their generators are first integrals, they do not change the value of energy,
and consequently can only connect ellipses with the same value of energy. To be
specific, the respective eccentricities 𝑒𝑁 and 𝑒𝐻 of the ellipses for the Newtonian
potential 𝑉 (𝑟) = −𝐾

𝑟 and for the Hookean potential 𝑉 (𝑟) = 𝐾𝑟2

2 , both with 𝐾 > 0,
are given by

𝑒𝑁 =

√︂
1 +

2𝐸𝐿2

𝑚𝐾2
, with 𝐸 < 0, |𝐸| < 𝑚𝐾2

2𝐿2
, and(1.1)

𝑒𝐻 =
𝐿

𝐸 +
√︁
𝐸2 − 𝐿2𝐾

𝑚

√︂
𝐾

𝑚
, with 𝐸 > 𝐿

√︂
𝐾

𝑚
,

𝑚 being the mass of the particle. From these formulas, it is clear that, the energy
being given, ellipses with the same eccentricities cannot be connected by these trans-
formations. Hence, the 𝑆1 group alone fails to connect all possible orbits. Hope-
fully, it appears that in addition to the 𝑆1 symmetries, both the Newtonian and the
Hookean motions possess another kind of symmetry that can remedy this problem.

2. Another symmetry: the mechanical similarity

Canonical transformations are generally viewed as transformations in phase
space which preserve the form of the canonical equations, time being furthermore
fixed. As there is an infinity of such transformations, one may say that any Hamil-
tonian system has an infinite number of symmetries. But, only a few of them could
also preserve the very form of the Hamitonian and as such could be considered as
generating an underlying dynamical symmetry. In this case, their infinitesimal gen-
erators are found to be first integrals. However, searching for new first integrals is
of no help for our problem, as their Poisson brackets with the Hamiltonian are zero.
At this point, it should be remembered that, as already pointed out in Ref. [8], a
symmetry of a physical system means, fundamentally, invariance of its equation of
motion which is currently a differential equation.

From Sophus Lie’s pioneering works on the subject at the end of the 19th

century [9], we know how searching for possible symmetries of a differential equation
may prove efficient in solving it. For that purpose, one applies to the equation
the so-called Lie’s transformations of all the variables involved (dependent and
independent ones). A very pedagogical presentation of the method can be found in
Ref. [10].

In this spirit, it is natural to ask whether the 𝑆1 symmetries of the two sys-
tems under consideration could be found applying Lie’s method to their respective
equations of motion. This is possible in principle, but proves uneasy in practice.
We sketch the method by considering the second-order differential equations

(2.1) �̈�𝑖 = 𝐹𝑖(𝑥1, 𝑥2, 𝑥3, �̇�1, �̇�2, 𝑥3, 𝑡)

where the 𝑥𝑖’s are the Cartesian coordinates at time 𝑡 of a moving point 𝑃 , the dot
denoting time-derivative. The coordinates, their time-derivatives (velocities) 𝑣𝑖 =
𝑥𝑖 and time being considered as 7 independent variables, apply to these equations
the general Lie infinitesimal transformation

(2.2) 𝑡 → 𝑡′ = 𝑡+ 𝜖𝜉, 𝑥𝑖 → 𝑥′
𝑖 = 𝑥𝑖 + 𝜖𝜂𝑖, 𝑣𝑖 → 𝑣′𝑖 = 𝑣𝑖 + 𝜖𝛽𝑖
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where 𝜉, 𝜂𝑖 and 𝛽𝑖 are functions of the coordinates, the velocities and time, and
where 𝜖 is a dimensionless infinitesimal quantity. Then, Eqs. (2.1) become

𝑥′
𝑖 = 𝐹 ′

𝑖 (𝑥
′
1, 𝑥

′
2, 𝑥

′
3, 𝑣

′
1, 𝑣

′
2, 𝑣

′
3, 𝑡

′)

and the transformation is said to be a symmetry of the system if and only if 𝐹 ′
𝑖 = 𝐹𝑖.

Note that the transformation Eq. (2.2) includes also a transformation of time and
thus differs notably from a usual canonical transformation corresponding to 𝜉 = 0.
It appears that taking 𝜉 = 0, the method leads to nothing in the case of the
Newtonian motion and that we are thus forced to consider 𝜉 ̸= 0. Unfortunately,
even in this case, the result is disapointing because, as explained in [10, §11.4],
applying the general Lie’s transformation Eq. (2.2) (contact transformation) to the
second-order equation Eq. (2.1) leads to intractable equations, whose solutions,
although they certainly exist, are generally impossible to derive. Finally, only the
case of a so-called Lie point transformation, for which 𝜉 and 𝜂𝑖 depend only on the
coordinates and time, prove efficient in revealing a special symmetry: whenever the
potential in action is an homogeneous function of degree 𝜈 relative to coordinates,
the equations of motion are invariant under the (finite) substitution

(2.3) 𝑥𝑖 → 𝑥′
𝑖 = 𝑎 𝑥𝑖, 𝑡 → 𝑡′ = 𝑏𝑡, with 𝑏 = 𝑎1−𝜈/2

see Ref. [11,12]. This is actually a well-known fact sometimes called “mechanical
similarity” [13]. For such potentials, here 𝑉 (𝑟) ∝ 𝑟𝜈 , it allows one to connect the
motion on a given admissible trajectory where the coordinates of the moving point
𝑃 are 𝑥𝑖(𝑡) at time 𝑡 to that on another admissible trajectory where the coordinates
of the corresponding moving point 𝑃 ′ are 𝑥′

𝑖(𝑡
′) at a different time 𝑡′, making the

two trajectories somewhat similar geometrically speaking. If ℓ and ℓ′ are some
linear dimensions of the corresponding trajectories, the relation

(2.4)
𝑡′

𝑡
=

(︁ℓ′
ℓ

)︁1−𝜈/2

gives the ratio of the corresponding travel times. In the case of the Newtonian
potential, 𝜈 = −1 and Eq. (2.4) leads to the Kepler’s third law. For the Hookean
potential, 𝜈 = 2 and thus 𝑡 = 𝑡′. But in this special case the equation of motion is
linear and the above result simply means that at any time, the equation is invariant
when multiplying the solution by any constant. Under the transformation Eq. (2.3),
the Hamiltonian and the Lagrangian are not invariant but are both multiplied by
the factor 𝑎𝜈 . Of course, this operation, which may also be called “Lagrangian
rescaling” [14], leaves invariant the canonical equations. The angular momentum
𝐿 is also changed into 𝐿′ = 𝐿𝑎1+𝜈/2, and we have

(2.5) 𝐸𝐿2 → 𝑎2(1+𝜈)𝐸𝐿2, 𝐸/𝐿 → 𝑎𝜈/2−1𝐸/𝐿

From Eq. (1.1) and Eq. (2.5), we see that the transformation Eq. (2.3) connects
ellipses of the same eccentricities in both cases, Newtonian (𝜈 = −1) and Hookean
(𝜈 = 2), and thus provides us the way to complete the 𝑆1 symmetries.

3. A complete mapping of trajectories

To our knowledge, the first attempt to define a complete symmetry group for
the classical Kepler problem has been made by J. Krause [15], who called it the
Kepler group. Fundamentally, his aim was to define a specific symmetry group of
the Kepler equation providing a full mapping of its solutions, which is the topic we
are interested in. For this purpose, Krause also used the mechanical similarity, as
is done below but in a different way.

The first step is to define the space on which a global symmetry group will
be acting. This may be problematic as time is also involved in the transformation
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Eq. (2.3). The choice of J. Krause has been the four-dimensional Newtonian space-
time. However, there are reasons to consider it as the six-dimensional space of
canonical coordinates 𝑟 and 𝑝 (phase space). One is that the 𝑆1 group acts already
on this space and on functions defined on it. Another one is that the mechanical
similarity is also a symmetry of canonical equations. Finally, a global symmetry
group is supposed to provide a mapping of trajectories, which amounts to a trans-
formation of their geometrical parameters. But, the latter which are first integrals
are generally expressed only in terms of canonical variables as they are independent
of time. Hence, all we have to do is reexpress the transformation Eq. (2.3) as a
transformation of the canonical variables 𝑟 and 𝑝. Obviously, this is achieved as
follows:

(3.1) 𝑥𝑖 → 𝑎𝑥𝑖, 𝑝𝑖 →
𝑎

𝑏
𝑝𝑖 = 𝑎𝜈/2𝑝𝑖

The infinitesimal generator of this operation is

(3.2) ℳ = 𝑥𝑘
𝜕

𝜕𝑥𝑘
+

𝜈

2
𝑝𝑘

𝜕

𝜕𝑝𝑘

where summation on repeated indices is assumed, as will be done hereafter. The
actions of this generator on the Hamiltonian 𝐻 = 𝑝2

2𝑚 + 𝑉 (𝑟), with 𝑉 (𝑟) ∝ 𝑟𝜈 , on
the components of the angular momentum 𝐿𝑖 = 𝜖𝑖𝑗𝑘𝑥𝑗𝑝𝑘 and on the magnitude 𝐿
of the latter are easily found to be

(3.3) ℳ(𝐻) = 𝜈𝐻, ℳ(𝐿𝑖) =
(︁
1 +

𝜈

2

)︁
𝐿𝑖, ℳ(𝐿) =

(︁
1 +

𝜈

2

)︁
𝐿

According to Eq. (2.5), we also have

ℳ(𝐻𝐿2) = 2(1 + 𝜈)𝐻𝐿2, ℳ(𝐻/𝐿) =
(︁𝜈
2
− 1

)︁
𝐻/𝐿

From these formulas we deduce again the invariance of the eccentricity 𝑒 of ellipses
under the action of ℳ, in the Newtonian case, taking 𝜈 = −1 in the first formula,
and in the Hookean case, taking 𝜈 = 2 in the second formula.

The action of the generators of the 𝑆1 group on functions of canonical coordi-
nates is defined through Poisson brackets. For example, that of the components of
the angular momentum on any function 𝑓(𝑟,𝑝) is

ℒ𝑖(𝑓) = {𝐿𝑖, 𝑓} =
𝜕𝐿𝑖

𝜕𝑥𝑘

𝜕𝑓

𝜕𝑝𝑘
− 𝜕𝐿𝑖

𝜕𝑝𝑘

𝜕𝑓

𝜕𝑥𝑘
= ℒ𝑥𝑖(𝑓) + ℒ𝑝𝑖(𝑓), where

ℒ𝑥𝑖 = −𝜖𝑖ℓ𝑘𝑥ℓ
𝜕

𝜕𝑥𝑘
, ℒ𝑝𝑖 = −𝜖𝑖ℓ𝑘𝑝ℓ

𝜕

𝜕𝑝𝑘
,

are the infinitesimal generators of rotations acting separately on 𝑟-space and 𝑝-
space, respectively. Let 𝐴 and 𝐵 be two functions of canonical variables. A short
calculation leads to

(3.4) ℳ({𝐴,𝐵}) = {ℳ(𝐴), 𝐵}+ {𝐴,ℳ(𝐵)} −
(︁
1 +

𝜈

2

)︁
{𝐴,𝐵}

Hence, defining the operator 𝒜 by 𝒜(𝐵) = {𝐴,𝐵}, Eq. (3.4) is written as

(3.5)
ℳ(𝒜(𝐵)) = {ℳ(𝐴), 𝐵}+𝒜(ℳ(𝐵))−

(︁
1 +

𝜈

2

)︁
{𝐴,𝐵}, or

[ℳ,𝒜](𝐵) = {ℳ(𝐴), 𝐵} −
(︁
1 +

𝜈

2

)︁
{𝐴,𝐵}

Taking 𝐴 = 𝐿𝑖 and using Eq. (3.3), we find [ℳ,ℒ𝑖](𝐵) = 0. This result being true
for any 𝐵, we infer that

[ℳ,ℒ𝑖] = 0
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i.e. the “similarity” operator ℳ and the operator angular momentum ℒ𝑖 are com-
muting. Let us then apply the operator ℳ to the LRL vector

𝐴 =
1

𝑚
𝑝 ∧𝐿−𝐾

𝑟

𝑟

The vector 𝑟/𝑟 being unitary and so dimensionless, it is clear that ℳ(𝑟/𝑟) = 0.
Using Eqs. (3.2) and (3.3), we get ℳ(𝑝 ∧𝐿) = (1 + 𝜈)𝑝 ∧𝐿. It thus follows that

ℳ(𝐴) =
(1 + 𝜈)

𝑚
𝑝 ∧𝐿

But, in the Newtonian case we have 𝜈 = −1 and hence

(3.6) ℳ(𝐴) = 0

From Eqs. (3.5) and (3.6) we obtain in this case the commutation property

[ℳ,𝒜𝑖] = −1

2
𝒜𝑖

𝒜𝑖 being the operator associated with the component 𝐴𝑖 of the LRL vector. In the
same case and for 𝐸 < 0, the vector

(3.7) 𝑅 =
𝐴√

−2𝑚𝐻

is usually used in order to identify the 𝑆1 group as 𝑆𝑂(4). From Eqs. (3.3), (3.5)
and (3.6) we find (𝜈 = −1)

ℳ(𝑅) = 1
2𝑅, and [ℳ,ℛ𝑖] = 0

ℛ𝑖 being the operator associated with the component 𝑅𝑖 of the vector Eq. (3.7),
which is thus found to commute with ℳ. For 𝐸 > 0 one uses instead the vector

(3.8) 𝑅′ =
𝐴√
2𝑚𝐻

to identify the 𝑆1 group as 𝑆𝑂(3, 1). In this case, we get the analogous result

ℳ(𝑅′) = 1
2𝑅

′, and [ℳ,ℛ′
𝑖] = 0

We thus arrive at the conclusion that, in both cases 𝐸 < 0 and 𝐸 > 0, the oper-
ator ℳ is commuting with the corresponding 𝑆1 group, both viewed as acting on
functions of canonical variables.

In the Hookean case (𝜈 = 2), we obtain a similar simple result. In Ref. [2] we
have defined a vector similar to the LRL vector:

(3.9) 𝑅𝐻 = 𝐿 𝑡−

where 𝑡− is the unitary vector defining the short axes of ellipses. Associated with
the angular momentum, this vector allows one to identify the 𝑆1 group as 𝑆𝑂(3, 1).
Here again we have obviously ℳ(𝑡−) = 0 and, from Eq. (3.3) with 𝜈 = 2, ℳ(𝐿) =
2𝐿. Hence,

ℳ(𝑅𝐻) = 2𝑅𝐻 , and [ℳ,ℛ𝐻𝑖] = 0

i.e. in the Hookean case too, the corresponding operator ℳ and 𝑆1 group are
commuting.

The interesting conclusion is that, according to their definitions given above,
the one-parameter mechanical similarity group generated by the operator Eq. (3.2)
(with adapted values of 𝜈) and the 𝑆1 group are commuting, in both the Newtonian
and the Hookean cases. In either case, their association yields the complete sym-
metry group we are looking for, with a 𝑆1 group being either 𝑆𝑂(4) or 𝑆𝑂(3, 1).
The commutation rules of its generators are thus the following:

(3.10)
[ℳ,ℒ𝑖] = [ℳ,ℛ𝑖] = 0, [ℒ𝑖,ℒ𝑗 ] = 𝜖𝑖𝑗𝑘ℒ𝑘,

[ℒ𝑖,ℛ𝑗 ] = 𝜖𝑖𝑗𝑘ℛ𝑘, [ℛ𝑖,ℛ𝑗 ] = ±𝜖𝑖𝑗𝑘ℒ𝑘
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with a plus sign for the 𝑆𝑂(4) group, a minus sign for the 𝑆𝑂(3, 1) group, and with
a suitable eccentricity vector 𝑅.

In any case, let 𝑢 be the unit vector defining one or the only one symmetry
axis of a trajectory. In the Newtonian case for example, we know that the LRL
vector can be written as

𝐴 = 𝐾𝑒𝑢

where 𝑢 is the unit vector along the long axis of an ellipse for 𝑒 < 1, or along
the single axis of symmetry of a hyperbola or a parabola when 𝑒 ≥ 1. In the
Hookean case, the eccentricity vector Eq. (3.9) is also written in this form. Thus,
we could choose this unit vector as our “eccentricity” vector. This would unify
all possible cases in a way even more economical than that leading to Eq. (3.10),
including obviously the Hookean case but also the Newtonian case whatever the
value of the eccentricity, in particular the apparently critical case 𝐻 = 𝐸 = 0 (that
of parabolas) in formulas Eqs. (3.7) and (3.8). This is so because, as shown in
the Appendix of Ref. [2], the components of any unit vector perpendicular to the
angular momentum have zero Poisson brackets between them. Thus, taking 𝑅 = 𝑢
leads to the simpler commutation relations

[ℳ,ℒ𝑖] = 0, [ℳ,ℛ𝑖] = 0, [ℒ𝑖,ℒ𝑗 ] = 𝜖𝑖𝑗𝑘ℒ𝑘, [ℒ𝑖,ℛ𝑗 ] = 𝜖𝑖𝑗𝑘ℛ𝑘, [ℛ𝑖,ℛ𝑗 ] = 0

Of course, for circular orbits, we must take 𝑅 = 0 and subsequently ℛ𝑖 = 0.
In the above static representation of transformations in phase space, time is

useless but can be reintroduced as a simple parameter homogeneous to the ratio
𝑚𝑟/𝑝: under the transformation Eq. (3.1), a point 𝑃 with coordinates (𝑟,𝑝) and
parameter 𝑡 is transformed into a point 𝑃 ′ with coordinates (𝑎𝑟, 𝑎𝜈/2𝑝) having the
parameter 𝑡𝑎1−𝜈/2. Of course, this parameter “time” can be computed using well-
known formulas. In the configuration space, a point 𝑃1(𝑟1,𝑝1) is on a trajectory
which lies in the plane perpendicular to 𝐿 = 𝑟1 × 𝑝1, has its symmetry axis along
𝑢(𝑟1,𝑝1) and corresponds to energy 𝐸 =

𝑝2
1

2𝑚 + 𝑉 (𝑟1). The time of evolution from
point 𝑃1 to another point 𝑃 (𝑟,𝑝) of the same trajectory is then given by the formula

𝑡 =

∫︁ 𝑟

𝑟1

𝑑𝑅√︁
2
𝑚 (𝐸 − 𝑈(𝑅))

, where 𝑈(𝑅) =
𝐿2

2𝑚𝑅2
+ 𝑉 (𝑅)

For an elliptic orbit in the Newtonian field, we obtain the known result

𝑡 =
𝑇

2𝜋
(𝜒− 𝑒 sin𝜒) + cst

where 𝑇 is the period of revolution on the ellipse, 𝑒 the eccentricity of the ellipse
and 𝜒 the eccentric anomaly at point 𝑃 [16].

4. Stabilities of trajectories

We now address the question: ultimately, what is the exact role of symmetries?
More specifically, what about those described by continuous groups? In the cases
under consideration, they allow one to connect continuously any admissible solution
into another, in a one-to-one correspondance. They can do that here because the set
of solutions is infinite. The said groups act on all the parameters defining a solution
in an unique way. Suppose now that some parameters are changed by any external
cause and that the system can then evolve freely. Of course, it is assumed that this
perturbation does not destroy the fundamental structure of the system but only
changes the parameter of a trajectory. Then, system will obviously evolve according
to the admissible solution defined by the new set of parameters, which new solution
can be connected to the preceding one by a continuous transformation. In this way,
the existence of the group ensures the integrity of the whole set of solutions. Hence,
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due to the existence of the symmetry and its associated group, the set of solutions
is stable: the motion resulting from an infinitesimal perturbation of a given motion
stays in the vicinity of the latter, and, moreover, the perturbed motion remains in
the same category, for example, that of closed orbits. In particular, it is easy to see
that perturbing infinitesimaly a circular orbit while remaining in its plane leads to
an ellipse of eccentricity close to zero. This is a structural stability, in line with its
definition given by the mathematical theory of stability [17,18].

Let us add the following. In our cases, the circular orbits are special solutions
because they are stable in the ordinary sense: for a given value of the angular
momentum, each corresponds to a minimum of the effective potential 𝑈(𝑟) = 𝐿2

2𝑚𝑟2+
𝑉 (𝑟), 𝑉 (𝑟) being either the Newtonian potential or the Hookean one. For the
potential 𝑉 (𝑟) = −𝐾/𝑟𝛼 the conditions to obtain such orbit at a distance 𝑟 are

𝑑𝑈

𝑑𝑟
=

𝐾𝛼

𝑟𝛼+1
− 𝐿2

𝑚𝑟3
= 0, and

𝑑2𝑈

𝑑𝑟2
= −3

𝑟

𝑑𝑈

𝑑𝑟
+

1

𝑟3
𝑑

𝑑𝑟

(︁
𝑟3

𝑑𝑉

𝑑𝑟

)︁
=

𝐾𝛼(2− 𝛼)

𝑟𝛼+2
> 0

and they can be satisfied only if 𝐾𝛼 > 0 and 𝛼 < 2. It can be shown that this
applies as well to a 𝑛-dimentional space, where the equivalent of the Newtonian
potential is 𝑉 (𝑟) = −𝐾/𝑟𝑛−2, i.e. 𝛼 = 𝑛 − 2. The above conditions then give
𝐾(𝑛 − 2) > 0 and 𝑛 < 4. This is an important result: as far as the Newtonian
potential produced by a point source is concerned, a circular orbit cannot be stable
in a space of dimension 𝑛 higher than 3. This could be generalized to extended
Newtonian sources as is strongly suggested by the results obtained in Ref. [19].
Note here that far away from the source, the latter can often be considered as a
monopole at first order (this is always the case for Gravitation), giving a potential
proportional to 1/𝑟𝑛−2 which, as said above, does not provide stable circular orbits.
In contrast, the Hookean potential 𝐾𝑟2/2 still produces stable circular orbits at any
distance, whatever the dimension. This short discussion reveals the crucial role of
space dimension regarding the stability of circular orbits provided by the generalized
Newtonian potential. Note that in a space with 𝑛 > 3 dimensions, the potential
−𝐾/𝑟 with 𝐾 > 0 provides stable circular orbits but in this case would not have a
clear physical meaning.

5. Conclusion

Three main points have been addressed in this article. First, a new scheme to
describe the complete symmetries of the Newtonian and Hookean two-body motions
has been proposed, taking into account their well-known “dynamical symmetries”
and “mechanical similarity”. We have shown that these symmetries are most natu-
rally expressed as transformations in phase space, forming a global Lie symmetry
group having a very simple and economical structure. This global structure is nec-
essary to provide a way to connect all possible trajectories, a task that cannot be
accomplished by the dynamical symmetries alone. Second, we have suggested a
new look at this overall symmetry group, arguing that its existence is necessary
to ensure the structural stability of the whole set of trajectories, with the func-
tion of providing a continuous connection of all trajectories of a same species. The
third point is certainly the most intriguing, as it concerns the role of the number
of spatial dimensions in the stability of circular orbits in the Newtonian motion, an
important topic for all of us. Using a very familiar method, we have shown that this
stability can be realized only in a three-dimensional space. This result seems very
satisfactory to us, because it links the number of dimensions to a stability problem.
The understanding of the physical nature of a spatial dimension is out of reach in
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the present state of our knowledge, but at least we should try to explain why 3
would be the best number of spatial dimensions for our Universe. In our opinion,
there must exit a yet unknown overall principle of stability, which in particular is
at work to produce the above-mentioned result. This principle would also have an
economic aspect: for example, it is well-known that physical quantities character-
ized by 2-rank skew-symmetric tensors can be represented by field (pseudo)vectors
in the basic configuration space if and only if the dimension of the latter is three.
This is the case for the angular momentum and the magnetic field. Many future
studies need to be carried out on this topic.
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СИМЕТРИJЕ И СТАБИЛНОСТ КРЕТАЊА У
ЊУТНОВОМ И ХУКОВОМ ПОТЕНЦИJАЛУ

Резиме. Предлаже се нови начин посматрања симетриjа, посебно у погледу
њихове улоге у стабилности кретања два тела у Њутновом и Хуковом потенци-
jалу, два потенциjала издвоjена Бертрандовом теоремом. Такође се разматра
и улога броjа просторних димензиjа.
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