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MODELLING AND STABILITY ANALYSIS
OF THE NONLINEAR SYSTEM

Mitra Vesović and Radoslav Radulović

Abstract. The production industries have repeatedly combated the prob-
lem of system modelling. Successful control of a system depends mainly on
the exactness of the mathematical model that predicts its dynamic. Different
types of studies are very common in the complicated challenges involving the
estimations and approximations in describing nonlinear machines are based on
a variety of studies. This article examines the behaviour and stability of holo-
nomic mechanical system in the the arbitrary parameter sets and functional
configuration of forces. Differential equations of the behaviour are obtained
for the proposed system on the ground of general mechanical theorems, ki-
netic and potential energies of the system. Lagrange’s equations of the first
and second kind are introduced, as well as the representation of the system in
the generalized coordinates and in Hamilton’s equations. In addition to the
numerical calculations applied the system, the theoretical structures and clar-
ifications on which all of the methods rely on are also presented. Furthermore,
static equilibriums are found via two different approaches: graphical and nu-
merical. Above all, stability of motion of undisturbed system and, later, the
system that works under the action of an external disturbance was inspected.
Finally, the stability of motion is reviewed through Lagrange–Dirichlet theo-
rem, and Routh and Hurwitz criteria. Linearized equations are obtained from
the nonlinear ones, and previous conclusions for the stability were proved.

1. Introduction

Systems of nonlinear differential equations play an important part in diverse
subjects. Understanding nonlinear behaviour is essential, because these dynamical
systems are rarely amenable to obtain the exact analytical solution, and numerical
modelling is frequently required to supplement experimental research [1]. Literature
related to the issue of explicit analysis of analytical mechanics and system motion,
controllability and stability can be found in [2–7]. A significant overview of papers
related to 𝑛-dimensional rigid body dynamics is provided in [8] while the papers in
the field of the system stability problems can also be found in [9] and [10].
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This article suggests a different approaches for the modelling predefined multi-
body system with the theoretically-based review. The example of a holonomic
mechanical system in a plane, with limited reactions of constraints, concerning its
energy during motion is considered. Initial positions are predefined. For modelling
this precise multi-body system, the codes for simulation and graphical representa-
tion are obtained using Wolfram Mathematica program.

1.1. Description of a particular mechanical system. From a dynamical
point of view, any material system can be regarded as a collection of material
particles [11]. The specific mechanical system is shown in Figure 1. It is made
up of material points 𝑀1 and 𝑀2 and of the slider 𝑀3. They have been mutually
articulated with light rigid rods. The fixed plane 𝑂𝑥𝑦 coincides with the vertical
plane of motion. The vertical 𝑂𝑦 axis is directed upwards. In the configuration
space, the position of the mechanical system in relation to the fixed coordinate
system 𝑂𝑥𝑦 is defined by the set of Lagrangian coordinates (𝑞1, 𝑞2) where 𝑞1 = 𝜙
and 𝑞2 = 𝜃 are absolute angles. The rods 𝑂𝑀1 and 𝑀1𝑀2 are of equal length 𝑙.
The third rod 𝑀1𝑀3 is of double length 2𝑙. The spring with stiffness 𝑐1, whose
length is in the unstressed state, 𝑙01 = 𝑂1𝑂, is tied between the material point 𝑀2

and left fixed wall. Spring with stiffness 𝑐2, whose length in the unstressed state
𝑙02 = 𝑂2𝐴, has one end tied to material point 𝑀1, while at the other end it is also
connected to the same fixed wall, but in the point 𝑂2, with 𝐴(0, 𝑙). Slider 𝑀3,
which moves horizontally in 𝑂𝑥 axis, is connected with a damper, with a coefficient
of proportionality 𝛽. The second end of damper is attached to a right fixed wall.
On material point 𝑀2 acts force 𝐹 = 𝐹0𝑒

−𝛼𝑡. All necessary numerical data are
given in the Appendix.
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Figure 1. Mechanical system with stationary holonomic con-
strains

1.2. Constraints and Lagrange equations of the first kind. The me-
chanical system of 𝑁 material points 𝑀𝜈 (𝜈 = 1, 2, . . . 𝑁) has a certain state which
is determined in each moment 𝑡 by the position and velocities of all its points in the
inertial reference system (IRS). When a fixed Cartesian system is introduced into an
IRS, the state of the system is determined by variable scalar quantities: coordinates:
𝑥𝜈 , 𝑦𝜈 , 𝑧𝜈 and velocity projections 𝑥̇𝜈 , 𝑦̇𝜈 , 𝑧̇𝜈 , which must satisfy the relations:



MODELLING AND STABILITY ANALYSIS OF THE NONLINEAR SYSTEM 31

(1.1) 𝑓𝜇(𝑥1, 𝑦1, 𝑧1, . . . , 𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 , 𝑥̇1, 𝑦̇1, 𝑧̇1, . . . , 𝑥̇𝑁 , 𝑦̇𝑁 , 𝑧̇𝑁 ; 𝑡) = 0,

𝜇 = 1, 2, . . . ,𝑚 < 3𝑁

According to the task setting, two material points and a slider could be noticed.
The movement of the slider is limited by three sticks of negligible mass that allows
the point 𝑀3 to slide along 𝑂𝑥 axis. The first rigid rod 𝑂𝑀1 is connected to a fixed
support 𝑂, so the movement of the point 𝑀1 is on a circle of radius 𝑙. The second
rigid rod contains points 𝑀1𝑀2, while the third rigid rod contains points 𝑀1𝑀3,
so from this connection the first, second and third equations of the connection can
be obtained in the form of (1.1):

𝑓1 = 𝑥2
1 + 𝑦21 − 𝑙2 = 0,(1.2)

𝑓2 = (𝑥2 − 𝑥1)
2
+ (𝑦2 − 𝑦1)

2 − 𝑙2 = 0,(1.3)

𝑓3 = (𝑥3 − 𝑥1)
2 + (𝑦3 − 𝑦1)

2 − 4𝑙2 = 0,(1.4)

Also, as the movement of the slider is disabled in the vertical direction due
to the guides, the slider 𝑀3 moves only in the horizontal direction, so the fourth
connection equation has the form:

(1.5) 𝑓4 = 𝑦3 = 0.

According to the (1.2)–(1.5), it could be noticed that the connections of the
material system neither depend on the speed of the material points, nor on the time,
so it could be concluded, that system is holonomic and stationary. The number of
geometric constrains is 𝑝 = 4, while the number of material points is 𝑁 = 3. The
total number of unknown parameters is 2𝑁 = 6, so the number degrees freedom
movement of the system can be calculated according to: 𝑛 = 2𝑁 − 𝑝. To describe
the motion of the system, two generalized coordinates are needed, which are also
given in the task setting: 𝑞1 = 𝜙 and 𝑞2 = 𝜃.

(1.6) J =

⎡⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑦1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑦2

𝜕𝑓1
𝜕𝑥3

𝜕𝑓1
𝜕𝑦3

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑦1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑦2

𝜕𝑓2
𝜕𝑥3

𝜕𝑓2
𝜕𝑦3

𝜕𝑓3
𝜕𝑥1

𝜕𝑓3
𝜕𝑦1

𝜕𝑓3
𝜕𝑥2

𝜕𝑓3
𝜕𝑦2

𝜕𝑓3
𝜕𝑥3

𝜕𝑓3
𝜕𝑦3

𝜕𝑓4
𝜕𝑥1

𝜕𝑓4
𝜕𝑦1

𝜕𝑓4
𝜕𝑥2

𝜕𝑓4
𝜕𝑦2

𝜕𝑓4
𝜕𝑥3

𝜕𝑓4
𝜕𝑦3

⎤⎥⎥⎥⎦
The values of the elements in Jacobian matrix (1.6) are given in the Appendix.
Due to the fact that all trajectories of the points are parallel to the vertical fixed
𝑂𝑥𝑦 plane matrix J is full rank, rankJ = 𝑝 = 4, so all the active constraints are
independent. The system of differential equations, which represents Lagrange’s
equations of the first kind, in general case, is:

(1.7)

𝑚𝜈 𝑥̈𝜈 = 𝑋𝜈 +

𝑝∑︁
𝛼=1

𝜆𝛼
𝜕𝑓𝛼
𝜕𝑥𝜈

, 𝑚𝜈𝑦𝜈 = 𝑌𝜈 +

𝑝∑︁
𝛼=1

𝜆𝛼
𝜕𝑓𝛼
𝜕𝑦𝜈

,

𝑚𝜈𝑧𝜈 = 𝑍𝜈 +

𝑝∑︁
𝛼=1

𝜆𝛼
𝜕𝑓𝛼
𝜕𝑧𝜈
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where 𝜆𝑖 are Lagrange multipliers. For the given system, based on Figure 1 and
(1.7), Lagrange’s equations of the first kind can be obtained as (1.8):

(1.8)

𝑚1𝑥̈1 = −𝑐2𝑥1 + 2𝜆1𝑥1 + 2𝜆2(𝑥1 − 𝑥2) + 2𝜆3(𝑥1 − 𝑥3)

𝑚1𝑦1 = −𝑚𝑔 + 𝑐2(𝑙 − 𝑦1) + 2𝜆1𝑦1 + 2𝜆2(𝑦1 − 𝑦2) + 2𝜆3(𝑦1 − 𝑦3)

𝑚2𝑥̈2 = 𝐹 − 𝑐1𝑥2 + 2𝜆2(𝑥2 − 𝑥1); 𝑚2𝑦2 = −𝑚𝑔 − 𝑐1𝑦2 + 2𝜆2(𝑦2 − 𝑦1)

𝑚3𝑥̈3 = −𝛽𝑥̇3 + 2𝜆3(𝑥3 − 𝑥1) + 𝐹(𝑓𝑟)𝑥; 𝑚3𝑦3 = −𝑚𝑔 + 2𝜆3(𝑦3 − 𝑦1) + 𝜆4

Projection of the sliding friction force 𝐹(𝑓𝑟)𝑥 can be calculated using the dynamic
coefficient 𝜇𝑑 as: 𝐹(𝑓𝑟)𝑥 = −𝜇𝑑|𝑁3| sign(𝑥̇3) and 𝑁3 = 𝜆4 can be determined in
advance by applying the D’Alembert principle defined by the force of inertia. As it
can be seen from Figure 1, friction was not taken into account in this paper. The
slider 𝑀3 is considered to move along smooth horizontal guides and the term 𝐹(𝑓𝑟)𝑥

in (1.8) was neglected. A more detailed description and friction modelling has been
shown by authors in [12], where a mechanical model with a specific challenge was
presented in order to provide insight into the functioning of the machine prior
to production. Analytical description, as well as insight into Coulumb friction
force, are supplied for the suggested system. The static equilibrium conditions are
calculated. Finally, the disturbed and undisturbed systems’ motion stability was
studied. Here we applied similar analysis but for the system which is specified with
more springs and less dampers. In addition, we included Lagrange multipliers as
four new unknowns and, by calculating the second derivative of the (1.2)–(1.5), ten
equations with ten variables are obtained. Solving these equations, the expressions
for Lagrange multipliers and equations of motion, i.e. explicit expressions for: 𝑥1,
𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝜆1, 𝜆2, 𝜆3 and 𝜆4, are acquired. Constraints (1.2)–(1.4) are
checked in Figure 2 and coordinates over time are depicted in Figure 3. Also,
the necessary and sufficient condition for a stationary force field to be potential
is verified. In contrast to the previous work, here the system under the affection
of two different forces is considered. The necessary and sufficient condition for
a stationary force field to be potential is verified. System under the affection of
two different forces is considered. In the first case, force is constantly decreasing
over time. In the second case, force is constant over time. Above all that, another
stability criteria (Routh) is checked. Hurwitz and Routh processes are similar, with
the Routh test being a but the Routh test avoids direct calculation of determinants.
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Figure 2. Constraints (1.2)–(1.4) check
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Figure 3. Graph of coordinates 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2 and 𝑦3 over time

As the masses 𝑚1, 𝑚2 and 𝑚3 of all three points are equal (see Appendix),
from now on, the same notation 𝑚 will be used for them.

1.3. Generalized coordinates and Jacobi transformation. So far, the
differential equations of motion and the equations of relations, expressed as a func-
tion of position coordinates in relation to the adopted coordinate system, have
been shown. Generalized Cartesian coordinates, constrains and Lagrangian equa-
tions of the first kind are introduced, so the advantages and disadvantages in terms
of reaching a solution are shown. Based on the presentation so far, it could be
clearly noticed that the procedure of describing the motion of the considered me-
chanical system with the help of independent Cartesian coordinates is not the
most appropriate one. For this reason, instead of independent Cartesian coordi-
nates, independent generalized coordinates are introduced, which also unambigu-
ously determine the position of the mechanical system. Independent generalized
coordinates represent the minimum number of geometric parameters that can un-
ambiguously describe the movement of the considered mechanical system in the
configuration space. The selected geometric parameters will be denoted by (𝑞1, 𝑞2),
where 𝑞1 = 𝜙 and 𝑞2 = 𝜃 are the absolute angles shown in Figure 1. By introduc-
ing generalized coordinates, all independent Cartesian coordinates can be expressed
as: 𝜉𝑝+𝑗 = 𝜉𝑝+𝑗(𝑞

1, 𝑞2, . . . , 𝑞𝑛; 𝑡); 𝑗 = 1, 2, . . . 𝑛, where 𝑛 is the number of degrees
of freedom, 𝑛 = 3𝑁 − 𝑝 and 𝑞𝑗 , 𝑗 = 1, 2, . . . 𝑛 generalized coordinates. If inde-
pendent Cartesian coordinates are 𝑦1 and 𝑥2, it can be written: 𝑦1 = 𝑙 sin 𝑞1 and
𝑥2 = 𝑙 cos 𝑞1−𝑙 sin 𝑞2. The coordinates of all points can be expressed via generalized
coordinates: 𝜉𝑖 = 𝜉𝑖(𝑞

1, 𝑞2, . . . , 𝑞𝑛; 𝑡) 𝑖 = 1, 2, . . . 3𝑁 , but only under the condition
that the determinant of the Jacobian matrix 𝐽1, of the Jacobian matrix 𝐽1 is not



34 VESOVIĆ AND RADULOVIĆ

equal to 0:

(1.9) J1 =

[︃
𝜕𝑦1

𝜕𝑞1
𝜕𝑦1

𝜕𝑞2
𝜕𝑥3

𝜕𝑞1
𝜕𝑥3

𝜕𝑞2

]︃
; |J1| =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝜕𝜉𝑝+1

𝜕𝑞1
𝜕𝜉𝑝+1

𝜕𝑞2 . . .
𝜕𝜉𝑝+1

𝜕𝑞𝑛
𝜕𝜉𝑝+2

𝜕𝑞1
𝜕𝜉𝑝+2

𝜕𝑞2 . . .
𝜕𝜉𝑝+2

𝜕𝑞1

...
...

. . .
...

𝜕𝜉3𝑁
𝜕𝑞1

𝜕𝜉3𝑁
𝜕𝑞2 . . . 𝜕𝜉3𝑁

𝜕𝑞𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ ̸= 0

The Jacobian matrix of transformation (1.9) and determinant is given in the Ap-
pendix. Dependent Cartesian coordinates are expressed through generalized coordi-
nates and by differentiating those expressions velocities over generalized coordinates
are easily obtained:

(1.10)

𝑥1 = 𝑙 cos 𝑞1 𝑥̇1 = −𝑙 sin 𝑞1𝑞1

𝑦1 = 𝑙 sin 𝑞1 𝑦̇1 = 𝑙 cos 𝑞1𝑞1

𝑥2 = 𝑙 cos 𝑞1 − 𝑙 sin 𝑞2 𝑥̇2 = −𝑙 sin 𝑞1𝑞1 − 𝑙 cos 𝑞2𝑞2

𝑦2 = 𝑙 sin 𝑞1 − 𝑙 cos 𝑞2 𝑦̇2 = 𝑙 cos 𝑞1𝑞1 + 𝑙 sin 𝑞2𝑞2

𝑥3 = 𝑙 cos 𝑞1 + 𝑙
√︀

3 + cos2 𝑞1 𝑥̇3 = −𝑙 sin 𝑞1
(︂
1 +

cos 𝑞1√︀
3 + cos2 𝑞1

)︂
𝑞1

𝑦3 = 0 𝑦̇3 = 0

The velocities intensities of the material points 𝑀1,𝑀2 and 𝑀3 are calculated
according to the 1.10 and following formulas:

(1.11)

𝑉1 =
√︁
𝑥̇2
1 + 𝑦̇21 =

√︁
𝑙2𝑞12

𝑉2 =
√︁
𝑥̇2
2 + 𝑦̇22 =

√︁
𝑙2𝑞12 + 2𝑙2 sin(𝑞1 + 𝑞2)𝑞1𝑞2 + 𝑙2𝑞22

𝑉3 =
√︁

𝑥̇2
3 + 𝑦̇23 =

√︃
𝑙2 sin2 𝑞1

(︂
1 +

cos 𝑞1√︀
3 + cos2 𝑞1

)︂2

𝑞12

Based on expressions in (1.11), the kinetic energy of the system can be calculated:

(1.12)

𝑇 =
𝑁∑︁

𝜈=1

𝑇𝜈 =
1

2

𝑁∑︁
𝜈=1

𝑚𝜈𝑣
2
𝜈

𝑇 =
1

2
𝑚𝑙2

(︂
𝑞12 + sin2 𝑞1

(︂
1 +

cos 𝑞1√︀
3 + cos2 𝑞1

)︂2

𝑞1
2

+ (𝑞12 + 2𝑞1𝑞2 sin
(︀
𝑞1 + 𝑞2

)︀
+ 𝑞2

2
)

)︂
1.4. Generalized forces. Virtual work 𝛿𝐴 on virtual displacement can be

written in the developed form: 𝛿𝐴 = 𝑄1𝛿𝑞
1+𝑄2𝛿𝑞

2+ · · ·+𝑄𝑛𝛿𝑞
𝑛 =

∑︀𝑛
𝛼=1 𝑄𝛼𝛿𝑞

𝛼,
where 𝑄𝛼 represents generalized force corresponding to a generalized coordinate 𝑞𝛼.

(1.13) 𝑄𝛼 = 𝑄𝑐𝑠
𝛼 +𝑄𝑤

𝛼 +𝑄𝑛𝑐𝑠
𝛼 𝛼 = 1, . . . , 𝑛
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Generalized force 𝑄𝛼 per the generalized coordinate 𝑞𝛼 represents the sum of gen-
eralized conservative forces 𝑄𝑐𝑠

𝛼 , generalized damping forces 𝑄𝑤
𝛼 and generalized

non–conservative forces 𝑄𝑛𝑐𝑠
𝛼 per the same generalized coordinate. Generalized

conservative forces 𝑄𝑐𝑠
𝛼 are calculated according to: 𝑄𝑐𝑠

𝛼 = − 𝜕Π
𝜕𝑞𝛼 .

The function Π represents the potential energy of the system and for our task is:

(1.14)
Π = 𝑚𝑔(𝑦1 + 𝑦2 + 𝑦3) +

𝑐1
2
(𝑥2

2 + 𝑦22) +
𝑐2
2
(𝑥2

1 + (𝑙 − 𝑦1)
2)

Π = 2𝑚𝑔𝑙 sin 𝑞1 −𝑚𝑔𝑙 cos 𝑞2 + 𝑐2𝑙
2(1− sin 𝑞1) + 𝑐1𝑙

2(1− sin
(︀
𝑞1 + 𝑞2

)︀
)

Based on (1.14), generalized conservative forces can be determined for a specific
case: 𝑄𝑐𝑠

𝑞1 = − 𝜕Π
𝜕𝑞1 and 𝑄𝑐𝑠

𝑞2 = − 𝜕Π
𝜕𝑞2 .

The term for generalized damping forces is: 𝑄𝑤
𝛼 = − 𝜕Φ

𝜕𝑞𝛼 , where Φ can be
expressed as a linear function of the square of the relative velocity and the damping
coefficient of proportionality. Non-conservative forces are calculated as:

𝑄𝑛𝑐𝑠
𝑞1 = −𝐹𝑙 sin 𝑞1 and 𝑄𝑛𝑐𝑠

𝑞2 = −𝐹𝑙 cos 𝑞2.

Finally, according to the (1.13), the total generalized force per generalized coor-
dinate 𝑞1 is: 𝑄𝑞1 = 𝑄𝑐𝑠

𝑞1 + 𝑄𝑤
𝑞1 + 𝑄𝑛𝑐𝑠

𝑞1 and per generalized coordinate 𝑞2: 𝑄𝑞2 =
𝑄𝑐𝑠

𝑞2 +𝑄𝑤
𝑞2 +𝑄𝑛𝑐𝑠

𝑞2 .

(1.15)

𝑄𝑞1 =− 2𝑚𝑔𝑙 cos 𝑞1 + 𝑐2𝑙
2 cos 𝑞1 + 𝑐1𝑙

2 cos
(︀
𝑞1 + 𝑞2

)︀
− 𝛽𝑙2𝑞1 sin2 𝑞1

(︂
1 +

cos 𝑞1√︀
3 + cos2 𝑞1

)︂2

− 𝐹𝑙 sin 𝑞1;

𝑄𝑞2 = −𝑚𝑔𝑙 sin 𝑞2 + 𝑐1𝑙
2 cos

(︀
𝑞1 + 𝑞2

)︀
− 𝐹𝑙 cos 𝑞2

1.5. Form Lagrangian equations of the second kind in covariant and
contravariant formulation. Kinetic energy of the system can be expressed via
the inertial coefficients of metric tensors 𝑎(𝜈)𝛼𝛽 , 𝛼, 𝛽 = 1, 2, . . . 𝑛

𝑇 =
1

2
𝑞𝛼𝑞𝛽

𝑁∑︁
𝑣=1

𝑎(𝜈)𝛼𝛽 =
1

2
𝑎𝛼𝛽𝑞

𝛼𝑞𝛽 ,

and how is the symmetry property of a covariant metric tensor valid, ie. 𝑎12 = 𝑎21
for this task it follows:

(1.16) 𝑇 =
1

2
𝑎11𝑞

12 + 𝑎12𝑞
1𝑞2 +

1

2
𝑎22𝑞

22.

By comparing the equations (1.12) and (1.16), the coefficients are obtained (see
Appendix). Further, Christoffel symbols of the first kind are acquired as:

(1.17)
Γ11,1 =

1

2

𝜕𝑎11
𝜕𝑞1

; Γ12,1 = Γ21,1 =
1

2

𝜕𝑎11
𝜕𝑞2

;

Γ22,1 =
𝜕𝑎21
𝜕𝑞2

− 1

2

𝜕𝑎22
𝜕𝑞1

; Γ11,2 =
𝜕𝑎21
𝜕𝑞1

− 1

2

𝜕𝑎11
𝜕𝑞2

; Γ22,2 =
1

2

𝜕𝑎22
𝜕𝑞2

= 0
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Finally, Lagrange’s equations of the second kind in covariant formulation are:

𝑎11𝑞
1 + 𝑎12𝑞

2 + Γ11,1𝑞
12 + Γ22,1𝑞

22 = 𝑄𝑞1 ;

𝑎21𝑞
1 + 𝑎22𝑞

2 + Γ11,2𝑞
12 = 𝑄𝑞2 .

With the substitution (4.1), (1.17) and (1.15) they become:(︁
2𝑚𝑙2 +𝑚𝑙2 sin2(𝑞1) +

2𝑚𝑙2 sin2(𝑞1) cos
(︀
𝑞1
)︀√︀

3 + cos2(𝑞1)
+

𝑚𝑙2 sin2(𝑞1) cos2(𝑞1)

3 + cos(𝑞1)

)︁
𝑞1

+ (𝑚𝑙2 sin
(︀
𝑞1 + 𝑞2

)︀
)𝑞2 +𝑚𝑙2sin

(︀
2𝑞1

)︀
𝑞1

2

+ 2𝑚𝑙2
(sin

(︀
2𝑞1

)︀
cos

(︀
𝑞1
)︀
− sin

(︀
𝑞1
)︀3
)(3 + cos

(︀
𝑞1
)︀2
)√︀

3 + cos2(𝑞1)
𝑞12

+𝑚𝑙2
sin

(︀
2𝑞1

)︀
cos

(︀
2𝑞1

)︀
(3 + cos

(︀
𝑞1
)︀
) + sin

(︀
𝑞1
)︀3

cos
(︀
𝑞1
)︀2

(3 + cos(𝑞1))2
𝑞12

+ 2𝑚𝑙2
sin

(︀
𝑞1
)︀3

cos
(︀
𝑞1
)︀2√︀

3 + cos2(𝑞1)
𝑞12

+𝑚𝑙2cos
(︀
𝑞1 + 𝑞2

)︀
𝑞2

2
= 2𝑚𝑔𝑙 cos

(︀
𝑞1
)︀
+ 𝑐2𝑙

2 cos
(︀
𝑞1
)︀
+ 𝑐1𝑙

2 cos
(︀
𝑞1 + 𝑞2

)︀
−𝐹𝑙 sin

(︀
𝑞1
)︀

− 𝛽𝑙2 sin2(𝑞1)𝑞1
(︂
1 +

cos
(︀
𝑞1
)︀√︀

3 + cos2(𝑞1)

)︂2

;

𝑚𝑙2 sin
(︀
𝑞1 + 𝑞2

)︀
𝑞1 +𝑚𝑙2𝑞2 +𝑚𝑙2 cos

(︀
𝑞1 + 𝑞2

)︀
𝑞12 = −mgl sin

(︀
𝑞2
)︀
+

+ 𝑐1𝑙
2 cos

(︀
𝑞1 + 𝑞2

)︀
− 𝐹𝑙 cos

(︀
𝑞2
)︀

Similarly, (*) represents Lagrange’s equations of the second kind in contravariant
form. The product of Kristofel’s symbol of the first kind and the contravariant
metric tensor represents Kristofel’s symbol of the second kind.

(*)
𝑞1 + Γ1

11𝑞
12 + 2Γ1

12𝑞
1𝑞2 + Γ1

22𝑞
22 = 𝑄𝑞1

𝑞2 + Γ2
11𝑞

12 + 2Γ2
12𝑞

1𝑞2 + Γ2
22𝑞

22 = 𝑄𝑞2

where 𝑄𝑞1 and 𝑄𝑞2 are generalized forces in contravariant form (see Appendix).
The obtained results from both covariant and contravariant formulations are

mutually and simultaneously the same as Lagrange equations of the first kind -
Figure 3, so they wont be shown again. Also, two additional Figures representing
𝑞1 and 𝑞2 are given in Figure 4. On the whole, the positions of the points obtained
using three different approaches are confirmed.

1.6. Lagrange function, generalized impulses and Hamiltonian me-
chanics. Instead of Lagrange variables, Hamilton proposed the variables 𝑡, 𝑞𝛼, 𝑝𝛼,
𝛼 = 1, 2, . . . , 𝑛, where 𝑝𝛼 are generalized impulses, defined as 𝑝𝛼 = 𝜕𝐿

𝜕 ˙𝑞𝛼
with La-

grange function or Lagrange kinetic potential, introduced as the difference between
kinetic and potential energy 𝐿 = 𝑇 −Π. For the scleronomic system, which kinetic
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Figure 4. Generalized coordinates over time

energy does not explicitly depend on time, with two degrees of freedom and taking
into account the components of the covariant metric tensor Hamilonian function 𝐻
has the form (1.18):

(1.18) 𝐻 =
1

𝑎

(︁1
2
𝑎22𝑝

2
𝑞1 − 𝑎12𝑝𝑞1𝑝𝑞2 +

1

2
𝑎11𝑝

2
𝑞2

)︁
+Π,

where 𝑎 = 𝑎11𝑎22 − 𝑎12𝑎21. Generalized impulses are:

𝑝1 =
𝜕𝑇

𝜕𝑞1
= 𝑝𝑞1 =

𝜕𝑇

𝜕𝑞1
= 𝑎11𝑞

1+𝑎12𝑞
2 and 𝑝2 =

𝜕𝑇

𝜕𝑞2
= 𝑝𝑞2 =

𝜕𝑇

𝜕𝑞2
= 𝑎12𝑞

1+𝑎22𝑞
2

In this way, state of the system is completely described. By introducing Hamilton’s
variables, Lagrange equations of the second kind, which make system of 𝑛 second
order differential equations for determining 𝑛 functions 𝑞𝛼 = 𝑞𝛼(𝑡), can be replaced
by equivalent system of 2𝑛 first order differential equations for determining 2𝑛
functions of 𝑞𝛼 = 𝑞𝛼(𝑡), 𝑝𝛼 = 𝑝𝛼(𝑡).

Graphs in generalized coordinates, as well as the positions of material points
were calculated. Summarising the Hamiltonian equations also obtained the same
solutions as by applying Lagrange equations of the first and second kind in the
covariant and contravariant form. For the proposed system, result is given in the
Appendix. After numerical calculation, graph of Cartesian and generalized coordi-
nates over time obtained. It can be concluded that the Hamiltonian equations also
obtained the same solutions as by applying all of the previous methods in Figures
3 and 4. Generalized momenta are presented in Figure 5.

2. Static equilibrium conditions and stability of the system

In the position of static equilibrium, the generalized forces and the generalized
velocities of the points equal zero. Determining the position of static equilibrium
comes down to determining the values of the generalized coordinates in which the
system is at rest. The condition of static equilibrium is that the sum of all potential
and non-potential forces is equal to zero:

(2.1) − 𝜕Π

𝜕𝑞𝛼
+ 𝑄̃𝛼 = 0, 𝛼 = 1, . . . , 𝑛
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Figure 5. Generalized impulses over time

The conservative mechanical system is scleronomic and exposed exclusively to the
action of conservative forces (potential forces whose potential energy does not de-
pend explicitly on time). In this case, the required equilibrium conditions (2.1),
due to the absence of nonconservative forces, take the form:

𝜕Π

𝜕𝑞𝛼
= 0, 𝛼 = 1, . . . , 𝑛,

so the examination of equilibrium stability comes down to considering the poten-
tial energy of a mechanical system. If the coordinates of the equilibrium position
are known, they satisfy equations (2.1). Otherwise, if the equilibrium position is
not known, solving algebraic equations (2.1), the obtained solutions determine the
coordinates of possible equilibrium positions, the stability of which should be ex-
amined. According to the Lagrange–Dirichlet theorem, the equilibrium position
of a conservative system, in which the potential energy has an isolated minimum,
represents the position of the stable equilibrium of the system. This theorem gives
only a sufficient condition for the stability of the equilibrium because it does not
give the possibility to judge whether the equilibrium is stable or unstable if the
potential energy has no minimum in the equilibrium position. For the application
of the Lagrange–Dirichlet theorem, it is important that the potential energy is rep-
resented as an analytical function and that depends on all generalized coordinates
of the system.

(2.2) Π ≈ 1

2
𝑐𝛼𝛽𝑞

𝛼𝑞𝛽 , where: 𝑐𝛼𝛽 =
(︁ 𝜕2Π

𝜕𝑞𝛼𝜕𝑞𝛽

)︁
0
, 𝛼, 𝛽 = 1, . . . , 𝑛

The behaviour of the potential energy in the vicinity of the equilibrium position
corresponds to the behaviour of a homogeneous square form with constant coeffi-
cients 𝑐𝛼𝛽 . If the potential energy has a minimum in the equilibrium position and
its approximation (2.2) has a minimum in the same position. The definiteness of
the matrix is examined using the Sylvester criterion. If the material point 𝑀2 is
acted upon by a force of constant intensity 𝐹𝑠𝑡 = 100N, the condition of static
equilibrium (2.1) are obtained as (2.3):

(2.3)
𝑙(𝑐2𝑙 − 2𝑚𝑔) cos 𝑞1 + 𝑐1𝑙 cos

(︀
𝑞1 + 𝑞2

)︀
− 𝐹𝑠𝑡 sin 𝑞

1) = 0

𝑙(−𝐹𝑠𝑡 cos 𝑞
2 + 𝑐1𝑙 cos

(︀
𝑞1 + 𝑞2

)︀
−𝑚𝑔 sin 𝑞2) = 0
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Force meets the condition: rot𝐹𝑠𝑡 =

⃒⃒⃒⃒
⃒⃒ 𝑖 𝑗 𝑘

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝐹𝑠𝑡 0 0

⃒⃒⃒⃒
⃒⃒ = 𝜕𝐹𝑠𝑡

𝜕𝑧 𝑗 − 𝜕𝐹𝑠𝑡

𝜕𝑦 𝑘 = 0, which is

a necessary and sufficient condition for a stationary force field 𝐹𝑠𝑡 to be potential.
The results are given in Table 2, numerically, and graphical comparison is presented
in Figure 6, which shows positions of equilibrium points in space and the change of
the potential energy with change of angles for both cases. As it can be seen, from
both cases, there are four equilibrium positions in Table 1. As previous examination
was done in the case when 𝐹 = 𝐹0𝑒

−𝛼𝑡, here an additional Figure is provided:
𝐹𝑠𝑡 = 0N. Because the first and second case give the same results, only the second
approach is depicted. Equations which describe this system are nonlinear and there
is no point in checking system’s stability, only the stability of the equilibriums [13].
There are many ways to examine the stability of the undisturbed motion of the
specific system. For holonomic system from this task solutions were relatively
easily obtained. An example of the non-holonomic system can be found in [14]
and [15]. For example, previously mentioned Lagrange–Dirichlet theorem could
be used. Also, in control theory, one of the most popular are Routh and Hurwitz
criteria, i.e. via the basic principal minors of the Hurwitz matrix and with analysis
of the characteristic polynomial.

a)
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Figure 6. a) First approach: Spatial arrangement of equilibrium
positions, Curves intersection, Static equilibriums; b) Second ap-
proach: Potential energy, Curves intersection, Static equilibriums
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Figure 7. Second approach: Potential energy, Curves intersec-
tion, Static equilibriums when 𝐹𝑠𝑡 = 0N

Table 1. Static equilibrium positions

Case 𝑞1 𝑞2

𝑒𝑞1 0.779777 -2.95918

𝑒𝑞2 1.46544 -0.256309

𝑒𝑞3 -1.42176 -2.54488

𝑒𝑞4 -2.35647 1.3861

Table 2. The judgment on the stability of the position of static
equilibrium is based on the Lagrange–Dirichlet theorem

Case C𝛼,𝛽 Δ1 Δ2 Stability

𝑒𝑞1

(︂
111.015 −208.317
−208.317 −306.19

)︂
111.015 -77387.7 unstable

𝑒𝑞2

(︂
576.559 237.481
237.481 387.748

)︂
576.559 167163 stable

𝑒𝑞3

(︂
−119.042 186.514
186.514 155.356

)︂
-119.042 -53281.4 unstable

𝑒𝑞4

(︂
−529.601 −209.497
−209.497 −309.859

)︂
-529.601 120212 unstable

2.0.1. Lagrange–Dirichlet theorem. If the quadratic form (2.2) can take nega-
tive values, then instability follows. This can be verified using Silvester’s criterion.
It is necessary and sufficient for all leading principal minors of the Hermit matrix
to be positive in order to obtain positively definite quadratic form. As only the sec-
ond condition fulfills the criterion, it is concluded that only the second equilibrium
is stable.
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Table 3. Characteristic polynomials

Case Characteristic polynomial

𝑒𝑞1 𝜆4 + 1.5464𝜆3 − 65.7945𝜆2 − 30.6665𝜆+ 325.543

𝑒𝑞2 𝜆4 + 6.01551𝜆3 + 38.3023𝜆2 + 149.28𝜆+ 305.992

𝑒𝑞3 𝜆4 + 5.33619𝜆3 + 2.36749𝜆2 + 53.0565𝜆− 83.5357

𝑒𝑞4 𝜆4 + 1.5464𝜆3 − 65.7945𝜆2 − 30.6665𝜆+ 325.543

Table 4. The judgment on the stability of the position of static
equilibrium is based on the Routh criteria

Case Routh table
Number of
right hand
side poles

Stability

𝑒𝑞1

⎛⎜⎜⎜⎜⎝
1.0 −65.7945 325.543

1.5464 −30.6665 0
−45.9636 325.543 0
−19.7139 0 0
325.543 0 0

⎞⎟⎟⎟⎟⎠ 2 unstable

𝑒𝑞2

⎛⎜⎜⎜⎜⎝
1.0 38.3023 305.992

6.0155 149.28 0
13.4864 305.992 0
12.7950 0 0
305.992 0 0

⎞⎟⎟⎟⎟⎠ 0 stable

𝑒𝑞3

⎛⎜⎜⎜⎜⎝
1.0 2.3675 −83.5357

5.3362 53.0565 0
−7.5753 −83.5357 0
−5.7879 0 0
−83.5357 0 0

⎞⎟⎟⎟⎟⎠ 1 unstable

𝑒𝑞4

⎛⎜⎜⎜⎜⎝
1.0 −65.7945 325.543

1.5464 −30.6665 0
−45.9636 325.543 0
−19.7139 0 0
325.543 0 0

⎞⎟⎟⎟⎟⎠ 2 unstable

2.0.2. Routh criterion. The Rauth–Hurvitz criterion gives the conditions for
asymptotic stability in the linear approximation. A necessary and sufficient condi-
tion for the system to be stable is that all the coefficients of the first Roth column
are of the same sign. The system is unstable if there is a character change in the
first Routh column. The number of sign changes corresponds to the number of
unstable poles of the system.
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Table 5. The judgment on the stability of the position of static
equilibrium is based on the Hurwitz criteria

Case Hurwitz matrix
Roots of
characteristic
polinomial

Stability

𝑒𝑞1

⎛⎜⎜⎝
30.6665 −325.543 0 0
−1.5464 65.7945 30.6665 0

0 −1 −1.564 0
0 0 0 −1

⎞⎟⎟⎠
𝜆1 = −8.3971
𝜆2 = −2.5222
𝜆3 = 2.1190
𝜆4 = 7.2538

unstable

𝑒𝑞2

⎛⎜⎜⎝
−149.28 −305.992 0 0
−6.01551 −38.3023 −149.28 0

0 −1 −6.1551 0
0 0 0 −1

⎞⎟⎟⎠
𝜆1 = −2.92464 + 1.89756𝑖
𝜆2 = −2.9246− 1.8976𝑖
𝜆3 = −0.0831 + 5.0169𝑖
𝜆4 = −0.0831− 5.0169𝑖

stable

𝑒𝑞3

⎛⎜⎜⎝
−53.0565 83.5357 0 0
−5.3362 −2.36749 −53.0565 0

0 −1 −5.33619 0
0 0 0 −1

⎞⎟⎟⎠
𝜆1 = −6.5217

𝜆2 = −0.035769− 3.19186𝑖
𝜆3 = −0.035769 + 3.19186𝑖

𝜆4 = 1.25709

unstable

𝑒𝑞4

⎛⎜⎜⎝
30.6665 −325.543 0 0
−1.5464 65.7945 30.6665 0

0 −1 −1.564 0
0 0 0 −1

⎞⎟⎟⎠
𝜆1 = −8.3971
𝜆2 = −2.5222
𝜆3 = 2.1190
𝜆4 = 7.2538

unstable

2.0.3. Hurwitz criteria. Hurwitz method is based on testsing well-known Hur-
witz matrix. Stability is checked by three different criteria. All of them gave the
same results-out of 4 equilibrium states, only the second is stable. Further, it can be
seen from Table 3 that Case 1 and Case 4 have the same characteristic polynomial,
so their Rauth tables (Table 4) and Hurwitz matrix (Table 5) are same.

2.1. Disturbed motion with non-linear and with linearized equations.
Final solutions of differential equations do not provide a direct answer to the ques-
tion of whether the state of the system is stable or unstable. Therefore, for stability
testing, a disturbed state is considered. Stability of the equilibrium position is ex-
aminated in the sense of Lyapunov’s definition. The disturbances 𝜉𝛼 and 𝜂𝛼 are
differences between disturbed and non-disturbed motion. Initial disturbances are
taken to be: 𝜉1 = 0.2, 𝜉2 = 0, 𝜂1 = 0.3, 𝜂2 = 0 and force of constant inten-
sity 𝐹0 = 100N acts on the material point 𝑀2. The check was performed for
all other equilibrium points and earlier conclusions were confirmed. If the system
is brought to the position of the first static equilibrium, according to the previ-
ous results (Tables 2, 4 and 5), the undisturbed motion is determined. Based on
the exact nonlinear differential equations of disturbed motion, the disturbed mo-
tion of the system in the vicinity of the static equilibrium position is determined.
Linearized equations were calculated based on the linearization in the vicinity of
the static equilibrium points and they differ greatly from the nonlinearized ones,
Figures 8–10.
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Figure 8. Second case with 𝐹 = 100N: Graphical confirmation
of the position of static equilibrium, disturbed motion of equilib-
rium point with nonlinearized and linearized equations (they are
the same)
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Figure 9. Third case with 𝐹 = 100N: Graphical confirmation of
the position of static equilibrium, disturbed motion of equilibrium
point with a) nonlinearized and b) linearized equations
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Figure 10. Stable case with 𝐹 = 0N from Figre 7: Graphical
confirmation of the position of static equilibrium, disturbed motion
of equilibrium point with (non)linearized and linearized equations.

3. Conclusion

This paper provides mechanical construction which can be modelled as holo-
nomic mechanical system with constrained motion. Particular initial conditions
are given and the system has been analyzed with many different approaches: us-
ing Lagrange equations of the first and second kind and also with Hamiltonian
mechanics. The system of the ten equations with ten variables was acquired by
applying Lagrange’s equations of the first kind. Further, it is determined that the
analysis of the system in this way is complicated and redundant. More elegant
approach for analyzing system is by applying Lagrange equations of the second
kind. In order to obtain a less complicated system, generalized coordinates, as well
as the Hamiltonians momenta were obtained; system’s motion has been confirmed.
Second order differential equations were replaced with Hamilton’s equations, so
solving the problem was simplified. At the minimum of the potential energy all of
the equilibrium points are found. Their stability equilibriums was checked using
three methods: Lagrange–Dirichlet, Routh and Hurwitz; system motion in dis-
turbed and undisturbed case was investigated. Disturbed motion with nonlinear
and linearized equations was presented for some cases. If the system is brought to
the position of the second static equilibrium, according to the previous results the
norm of disturbed motion strives to zero during time (since all of the earlier criteria
have shown stability of this equilibrium). In exactly the same way as for the stable
static equilibrium, it has been verified that positions of other static equilibriums
are correctly determined and unstable. Same judgements were verified for differ-
ent techniques. It can be concluded that linearized equations will not predict the
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behaviour of the system in the same way as nonlinear ones, so this system requires
modelling with nonlinear equations with one of the presented methods.

4. Appendix

Parameters Value Name

𝑚1(𝑚) 10 kg Mass of material point 𝑀1

𝑚2(𝑚) 10 kg Mass of material point 𝑀2

𝑚3(𝑚) 10 kg Mass of slider-crank 𝑀3

l 1.25 m length
𝑐1 162.5 N/m Spring stiffness
𝑐2 366.67 N/m Spring stiffness
𝛽 121 Ns/m Coefficient of proportionality
𝐹0 100 N Static force
𝜙0 4𝜋/13 Initial angle
𝜃0 𝜋/7 Initial angle
𝜙̇0 0 Initial velocity
𝜃0 0 Initial velocity
𝛼 0.7 Coefficient

Jacobian matrix:

J =

⎡⎢⎢⎣
2𝑥1 2𝑦1 0 0 0 0

2𝑥1 − 2𝑥2 2𝑦1 − 2𝑦2 2𝑥2 − 2𝑥1 2𝑦2 − 2𝑦1 0 0
2𝑥1 − 2𝑥3 2𝑦1 − 2𝑦3 0 0 2𝑥3 − 2𝑥1 2𝑦3 − 2𝑦1

0 0 0 0 0 1

⎤⎥⎥⎦ ,

The Jacobian matrix of transformation and the determinant has value:

J1 =

[︂
𝑙 cos 𝑞1 0
−𝑙 sin 𝑞1 −𝑙 cos 𝑞2

]︂
; |J1| = −𝑙2 cos 𝑞1 cos 𝑞2

Generalized conservative forces:

𝑄𝑐𝑠
𝑞1 = −2𝑚𝑔𝑙 cos 𝑞1 + 𝑐2𝑙

2 cos 𝑞1 + 𝑐1𝑙
2 cos

(︀
𝑞1 + 𝑞2

)︀
𝑄𝑐𝑠

𝑞2 = −𝑚𝑔𝑙 sin 𝑞2 + 𝑐1𝑙
2 cos

(︀
𝑞1 + 𝑞2

)︀
Generalized damping forces:

𝑄𝑤
𝑞1 = −𝛽𝑙2𝑞1 sin2 𝑞1

(︂
1 +

cos 𝑞1√︀
3 + cos2 𝑞1

)︂2

; 𝑄𝑤
𝑞2 = 0

Coefficients of metric tensors:

(4.1)
𝑎11 = 2𝑚𝑙2 +𝑚𝑙2 sin2 𝑞1

(︂
1 +

cos 𝑞1√︀
3 + cos2 𝑞1

)︂2

;

𝑎12 = 𝑚𝑙2 sin(𝜙+ 𝜃); 𝑎22 = 𝑚𝑙2

Christoffel symbols of the first kind:
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Γ11,1 = 𝑚𝑙2 sin
(︀
2𝑞1

)︀
+ 2𝑚𝑙2

(sin
(︀
2𝑞1

)︀
cos

(︀
𝑞1
)︀
− sin3(𝑞1))(3 + cos2(𝑞1))√︀
3 + cos2(𝑞1)

+

+ 2𝑚𝑙2
sin3(𝑞1) cos2(𝑞1)√︀

3 + cos2(𝑞1)
+𝑚𝑙2

sin
(︀
2𝑞1

)︀
cos

(︀
2𝑞1

)︀
(3 + cos

(︀
𝑞1
)︀
) + sin3(𝑞1) cos2(𝑞1)

(3 + cos(𝑞1))2

Γ12,1 = 0; Γ22,1 = 𝑚𝑙2 cos
(︀
𝑞1 + 𝑞2

)︀
; Γ11,2 = 𝑚𝑙2 cos

(︀
𝑞1 + 𝑞2

)︀
; Γ22,2 = 0

Kristofel’s symbols of the second kind are determined by:

Γ1
11 =

𝑎22Γ11,1 − 𝑎12Γ11,2

𝑎
; Γ1

12 =
𝑎22Γ12,1 − 𝑎12Γ12,2

𝑎
= 0 = Γ1

21; Γ1
22 =

𝑎22Γ22,1

𝑎
;

Γ2
11 =

−𝑎21Γ11,1 + 𝑎11Γ11,2

𝑎
; Γ2

12 = 0 = Γ2
21; Γ2

22 =
−𝑎21Γ22,1

𝑎
; 𝑎 = 𝑎11𝑎22 − 𝑎12𝑎21

Generalized forces in contravariant form are:

𝑄𝑞1 =
𝑎22𝑄𝑞1 − 𝑎12𝑄𝑞2

𝑎
; 𝑄𝑞2 =

−𝑎21𝑄𝑞1 + 𝑎11𝑄𝑞2

𝑎
.

Hamiltonian function:

𝐻 = (𝑙(−𝑔𝑚 cos 𝑞2 + (−1𝑐2𝑙 + 2𝑔𝑚) sin 𝑞1 + 𝑙(1𝑐1 + 1𝑐2 − 1𝑐1 sin
(︀
𝑞1 + 𝑞2

)︀
)) +

𝐴

𝐵
,

where 𝐴 = (𝑙2𝑚(−49 + 1 cos 4𝑞1 − 16 cos
(︀
2(𝑞1 + 𝑞2)

)︀
+ sin2 𝑞1(−16 + 8 sin2 𝑞1 −

16 cos 𝑞1
√︀
4− sin2 𝑞1−8 sin2(𝑞1+𝑞2)))), and 𝐵 = (𝑝𝑞1

2(−16+4 sin2 𝑞1)+𝑝𝑞2
2(−35+

2 cos 2𝑞1+1 cos 4𝑞1−8 cos 𝑞1 sin2 𝑞1
√︀
4− sin2 𝑞1)+𝑝𝑞2𝑝𝑞1(32−8 sin2 𝑞1) sin

(︀
𝑞1+ 𝑞2

)︀
).
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МОДЕЛОВАЊЕ И АНАЛИЗА СТАБИЛНОСТИ
ДАТОГ НЕЛИНЕАРНОГ СИСТЕМА

Резиме. У производноj индустриjи инжењери се константно сусрећу са
проблемом моделовања система. Успешно управљање система у великоj мери
зависи од тачности математичког модела коjи предвиђа његову динамику. У
компликованим изазовима описивања нелинеарних машина користе се разли-
чите методе. У овом раду jе приказано понашање и стабилност холономног
механички система у произвољном пољу сила. За предложени систем су, на
основу општих механичких теорема, добиjене диференциjалне jедначине пона-
шања, кинетичка и потенциjална енергиjа система. Лагранжове jедначине прве
и друге врсте су поређене са генерализованим координатама и Хамилтоновим
jедначинама. Поред нумеричких поступака у раду, на одређеним местима дата
су поjашњења као и преглед теориjских основа на коjима почиваjу дате методе.
У наставку, положаjи статичке равнотеже се проналазе коришћењем графич-
ког и нумеричког приступа. Коначно, разматрана jе стабилност равнотежних
положаjа коришћењем Лагранж-Дирихеове теореме и Рут-Хурвицовог крите-
риjума. На краjу jе дато поређење линеаризованих и нелинеарних jедначина и
раниjи закључци о стабилности равнотежних положаjа су верификовани.
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