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MODELLING AND STABILITY ANALYSIS
OF THE NONLINEAR SYSTEM

Mitra Vesovi¢ and Radoslav Radulovié

ABsTRACT. The production industries have repeatedly combated the prob-
lem of system modelling. Successful control of a system depends mainly on
the exactness of the mathematical model that predicts its dynamic. Different
types of studies are very common in the complicated challenges involving the
estimations and approximations in describing nonlinear machines are based on
a variety of studies. This article examines the behaviour and stability of holo-
nomic mechanical system in the the arbitrary parameter sets and functional
configuration of forces. Differential equations of the behaviour are obtained
for the proposed system on the ground of general mechanical theorems, ki-
netic and potential energies of the system. Lagrange’s equations of the first
and second kind are introduced, as well as the representation of the system in
the generalized coordinates and in Hamilton’s equations. In addition to the
numerical calculations applied the system, the theoretical structures and clar-
ifications on which all of the methods rely on are also presented. Furthermore,
static equilibriums are found via two different approaches: graphical and nu-
merical. Above all, stability of motion of undisturbed system and, later, the
system that works under the action of an external disturbance was inspected.
Finally, the stability of motion is reviewed through Lagrange—Dirichlet theo-
rem, and Routh and Hurwitz criteria. Linearized equations are obtained from
the nonlinear ones, and previous conclusions for the stability were proved.

1. Introduction

Systems of nonlinear differential equations play an important part in diverse
subjects. Understanding nonlinear behaviour is essential, because these dynamical
systems are rarely amenable to obtain the exact analytical solution, and numerical
modelling is frequently required to supplement experimental research [1]. Literature
related to the issue of explicit analysis of analytical mechanics and system motion,
controllability and stability can be found in [2-7]. A significant overview of papers
related to n-dimensional rigid body dynamics is provided in [8] while the papers in
the field of the system stability problems can also be found in [9] and [10].
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This article suggests a different approaches for the modelling predefined multi-
body system with the theoretically-based review. The example of a holonomic
mechanical system in a plane, with limited reactions of constraints, concerning its
energy during motion is considered. Initial positions are predefined. For modelling
this precise multi-body system, the codes for simulation and graphical representa-
tion are obtained using Wolfram Mathematica program.

1.1. Description of a particular mechanical system. From a dynamical
point of view, any material system can be regarded as a collection of material
particles [11]. The specific mechanical system is shown in Figure 1. It is made
up of material points M; and M5 and of the slider M3. They have been mutually
articulated with light rigid rods. The fixed plane O, coincides with the vertical
plane of motion. The vertical O, axis is directed upwards. In the configuration
space, the position of the mechanical system in relation to the fixed coordinate
system O, is defined by the set of Lagrangian coordinates (¢', ¢%) where ¢* = ¢
and ¢?> = 6 are absolute angles. The rods OM; and M; M, are of equal length I.
The third rod M;Ms is of double length 2I. The spring with stiffness ¢;, whose
length is in the unstressed state, lo; = 010, is tied between the material point My
and left fixed wall. Spring with stiffness co, whose length in the unstressed state

lpo = O2 A, has one end tied to material point M;, while at the other end it is also
connected to the same fixed wall, but in the point O, with A(0,[). Slider Ms,
which moves horizontally in O, axis, is connected with a damper, with a coefficient
of proportionality 5. The second end of damper is attached to a right fixed wall.

—at

On material point M, acts force F' = Fye All necessary numerical data are

given in the Appendix.

FIGURE 1. Mechanical system with stationary holonomic con-
strains

1.2. Constraints and Lagrange equations of the first kind. The me-
chanical system of N material points M, (v =1,2,...N) has a certain state which
is determined in each moment ¢ by the position and velocities of all its points in the
inertial reference system (IRS). When a fixed Cartesian system is introduced into an
IRS, the state of the system is determined by variable scalar quantities: coordinates:
Ty, Yu, z, and velocity projections &, 9,, Z,, which must satisfy the relations:
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According to the task setting, two material points and a slider could be noticed.
The movement of the slider is limited by three sticks of negligible mass that allows
the point M3 to slide along O, axis. The first rigid rod OM; is connected to a fixed
support O, so the movement of the point M is on a circle of radius I. The second
rigid rod contains points M; M5, while the third rigid rod contains points M; M3,
so from this connection the first, second and third equations of the connection can
be obtained in the form of (1.1):

(1.2) fr=ai+yi-1*=0,
(1.3) fP=(r—a1)? + (g2 —p)? 12 =0,
(1.4) f3 = (l‘g — .131)2 + (y3 — y1)2 — 4l2 = 07

Also, as the movement of the slider is disabled in the vertical direction due
to the guides, the slider M3 moves only in the horizontal direction, so the fourth
connection equation has the form:

(15) -

According to the (1.2)—(1.5), it could be noticed that the connections of the
material system neither depend on the speed of the material points, nor on the time,
so it could be concluded, that system is holonomic and stationary. The number of
geometric constrains is p = 4, while the number of material points is N = 3. The
total number of unknown parameters is 2N = 6, so the number degrees freedom
movement of the system can be calculated according to: n = 2N — p. To describe
the motion of the system, two generalized coordinates are needed, which are also
given in the task setting: ¢* = ¢ and ¢% = 6.

ofr Of 8K OHh  Ofi Of1
(1.6) IJ=|6n ok on ok on ok
dxy Oyi Oxa Oy» Oxz Oys
Ofs Ofs Ofs Ofs Ofs Ofs
Oxy  Oy1 Oz Oy Oxzz  Oys

The values of the elements in Jacobian matrix (1.6) are given in the Appendix.
Due to the fact that all trajectories of the points are parallel to the vertical fixed
Ogzy plane matrix J is full rank, rankJ = p = 4, so all the active constraints are
independent. The system of differential equations, which represents Lagrange’s
equations of the first kind, in general case, is:

Ofa
oy’

p
L dfa
myTy, = Xl/ + (; )\aaixyv
(1.7) )
dfa

myi, = Z, + Z Ao Br

a=1

p
muiju = Yu + Z )\a
a=1
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where \; are Lagrange multipliers. For the given system, based on Figure 1 and
(1.7), Lagrange’s equations of the first kind can be obtained as (1.8):

My = —coxy + 2A1x1 + 2X2(x1 — @) + 2A3(x1 — x3)
mifiy = —mg + ca(l — y1) + 2M1y1 + 2X2(y1 — y2) + 2A3(y1 — v3)
mais = F — 129 + 2Xo(w2 — 21);  male = —mg — c1y2 + 2XA2(y2 — y1)
maiz = —Bi3 +2X3(x3 — 1) + Fiprye;  maliz = —mg +2X3(yz — y1) + M

(1.8)

Projection of the sliding friction force F{;,), can be calculated using the dynamic
coefficient pg as: F(yp), = —palNs|sign(ds) and N3 = Ay can be determined in
advance by applying the D’Alembert principle defined by the force of inertia. As it
can be seen from Figure 1, friction was not taken into account in this paper. The
slider M3 is considered to move along smooth horizontal guides and the term F ¢,y
in (1.8) was neglected. A more detailed description and friction modelling has been
shown by authors in [12], where a mechanical model with a specific challenge was
presented in order to provide insight into the functioning of the machine prior
to production. Analytical description, as well as insight into Coulumb friction
force, are supplied for the suggested system. The static equilibrium conditions are
calculated. Finally, the disturbed and undisturbed systems’ motion stability was
studied. Here we applied similar analysis but for the system which is specified with
more springs and less dampers. In addition, we included Lagrange multipliers as
four new unknowns and, by calculating the second derivative of the (1.2)—(1.5), ten
equations with ten variables are obtained. Solving these equations, the expressions
for Lagrange multipliers and equations of motion, i.e. explicit expressions for: 1,
Za, X3, Y1, Y2, Y3, A1, A2, A3 and A4, are acquired. Constraints (1.2)—(1.4) are
checked in Figure 2 and coordinates over time are depicted in Figure 3. Also,
the necessary and sufficient condition for a stationary force field to be potential
is verified. In contrast to the previous work, here the system under the affection
of two different forces is considered. The necessary and sufficient condition for
a stationary force field to be potential is verified. System under the affection of
two different forces is considered. In the first case, force is constantly decreasing
over time. In the second case, force is constant over time. Above all that, another
stability criteria (Routh) is checked. Hurwitz and Routh processes are similar, with
the Routh test being a but the Routh test avoids direct calculation of determinants.
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FIGURE 2. Constraints (1.2)—(1.4) check
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FIGURE 3. Graph of coordinates x1, 2, x3, Y1, y2 and y3 over time

As the masses my, mg and mg of all three points are equal (see Appendix),
from now on, the same notation m will be used for them.

1.3. Generalized coordinates and Jacobi transformation. So far, the
differential equations of motion and the equations of relations, expressed as a func-
tion of position coordinates in relation to the adopted coordinate system, have
been shown. Generalized Cartesian coordinates, constrains and Lagrangian equa-
tions of the first kind are introduced, so the advantages and disadvantages in terms
of reaching a solution are shown. Based on the presentation so far, it could be
clearly noticed that the procedure of describing the motion of the considered me-
chanical system with the help of independent Cartesian coordinates is not the
most appropriate one. For this reason, instead of independent Cartesian coordi-
nates, independent generalized coordinates are introduced, which also unambigu-
ously determine the position of the mechanical system. Independent generalized
coordinates represent the minimum number of geometric parameters that can un-
ambiguously describe the movement of the considered mechanical system in the
configuration space. The selected geometric parameters will be denoted by (¢!, ¢°),
where ¢' = ¢ and ¢% = 0 are the absolute angles shown in Figure 1. By introduc-
ing generalized coordinates, all independent Cartesian coordinates can be expressed
as: &pij = &prilat d?, .. q™t); 5 = 1,2,...n, where n is the number of degrees
of freedom, n = 3N — p and ¢/,j = 1,2,...n generalized coordinates. If inde-
pendent Cartesian coordinates are y; and zs, it can be written: y; = Ising! and
x9 = lcos¢' —Isin¢?. The coordinates of all points can be expressed via generalized
coordinates: & = &(q,¢%, ...,¢"t) i = 1,2,...3N, but only under the condition
that the determinant of the Jacobian matrix J1, of the Jacobian matrix J; is not
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equal to 0:

Opi1 Opia 9pt1

g™ 9q? Dq"

oy1 Oy Opyz  Obpya Op2

| 3gT 342 dq 3q o TBg
e T e A A E

9q%  9q* : : . :

9N O Oésn

aql aqz .« e aq"

The Jacobian matrix of transformation (1.9) and determinant is given in the Ap-
pendix. Dependent Cartesian coordinates are expressed through generalized coordi-
nates and by differentiating those expressions velocities over generalized coordinates
are easily obtained:

z1 = lcosq? i = —Ising'qt

Y1 = lsing! 71 = lcosqtgt

zy = lcosq' — Ising? iy = —Ising'¢' — lcosg?¢?
(1.10) Yo = lsing! — I cos ¢* 1o = lcos gt + Isin ¢*¢>

1
s=lcosq' +1y/3+cosPql iy = ~Ising! <1+ Cosq)ql
3+ o gt

ys =0 Y3 =0
The velocities intensities of the material points My, My and M3 are calculated
according to the 1.10 and following formulas:

Vi = /i3 + 93 = /12"

a1y V= \/a':% 38 = 124 + 202 sin(q + ¢2)g'¢? + 122

2
=\/#3 + 93 = /12sin’ ¢! 1+ cosq! > qt?
/3 + cos? ¢!
Based on expressions in (1.11), the kinetic energy of the system can be calculated:
N 1
Py T =ty
v=1 v=1

1 Y
(1.12) T — le2(412+sin2 7 (1+ cos q > q.12

V3 +cos? gl

. 1.9 . .92
+ (4" + 24" ¢ sm(q1 + q2) +¢? ))

1.4. Generalized forces. Virtual work dA on virtual displacement can be
written in the developed form: 64 = Q16¢* + Q26¢> + - - - + Qn6¢™ = o1 Qadg®,
where @), represents generalized force corresponding to a generalized coordinate ¢“.

(1.13) Qa=Q= +QY+Q"™ a=1,...,n
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Generalized force @, per the generalized coordinate ¢® represents the sum of gen-
eralized conservative forces QS°, generalized damping forces Q% and generalized
non-conservative forces Q7°° per the same generalized coordinate. Generalized
conservative forces )¢’ are calculated according to: Q& = 76‘?—1}!.

The function IT represents the potential energy of the system and for our task is:

C1 C2
(1.14) II = mg(yx +y2+y3)+5($§+y§)+5($%+(l—y1)2)
I = 2mgl sin ¢* — mgl cos ¢* + col?(1 —sing") + c113(1 — sin(q1 + q2))

Based on (1.14), generalized conservative forces can be determined for a specific

. _ _on _ _onu
case: ng = =5 and Q;g ==
The term for generalized damping forces is: Q& = —ng{;, where ® can be

expressed as a linear function of the square of the relative velocity and the damping
coeflicient of proportionality. Non-conservative forces are calculated as:

ngs = —Flsing! and QZQCS = —Flcosq>.

Finally, according to the (1.13), the total generalized force per generalized coor-
dinate ¢! is: Qp = Q%% + Qi + Qf* and per generalized coordinate @ Qp =
Qg + Qg + Q.

Qg =—2mglcosq' + cal® cosq' + e11* cos(q' + ¢°)

1 2
(1.15) — BI%¢! sin? ¢ (1 + cosq> — Flsing!;

/3 + cos? ¢!

Qe = —mglsin @+ al? cos(q1 + q2) — Flcos¢?

1.5. Form Lagrangian equations of the second kind in covariant and
contravariant formulation. Kinetic energy of the system can be expressed via
the inertial coefficients of metric tensors a(,)ag,, 8 =1,2,...n

1.0 5 1
T =54 ;a@)ag = S0apg"¢’,

and how is the symmetry property of a covariant metric tensor valid, ie. a2 = a2
for this task it follows:

1 1
(1.16) T = §a11d12 +a12g' ¢ + §a22(122-
By comparing the equations (1.12) and (1.16), the coefficients are obtained (see
Appendix). Further, Christoffel symbols of the first kind are acquired as:

10a 10a
T = 5%; Pig1=T211 = 5%;
T o 8(121 1 8a22 . - (’)agl 1 8a11 . - 1 8(122
22,1 — 8(]2 2 (9(]1 ) 11,2 — 6(]1 2 an 3 22,2 — 2 3(]2

(1.17)
=0
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Finally, Lagrange’s equations of the second kind in covariant formulation are:
i .. .12 .92
a1t + a12§* + T11,1¢" +Ta01d* = Qg;

. . 12
a21G' + az2d® + T11,2¢"" = Qge.
With the substitution (4.1), (1.17) and (1.15) they become:

2mi?sin®(q') cos(q') ~ mi2?sin?(q") cosz(q1)> 1
3 + cos?(ql) 3+ cos(q") K
+ (ml? sin(q1 + qg))q'2 + leSin(2q1>ql2
) (sin(?ql) cos(ql) - Sin(ql)g)(3 + COS(QI)Q) .12
q
3 + cos?(q!)

lem(Qq )cos(2q )(3+cos( ))Jrsm( )3(305(111)2412
(3 + cos(¢!))?

»sin(g ) S(ql) 2
/3 + cos?(qh)
—|—ml2005(q1 + q2)q'22 = 2mgl cos(ql) +eol? cos(ql) +el? cos(q1 + q2) —Fl sin(ql)
1 2
— Bi%sin2(¢")g" (1 i cos(q') ) :
(¢")

3 4 cos?

<2ml2 +mi?sin®(¢) +

+ 2ml

+ 2ml

ml? sin(q1 + q2)éj1 + mil?§® + ml? cos(q1 + q2)(112 = —mgl sin(q2)+
+l? Cos(q1 + q2) — Fi cos(qz)

Similarly, (x) represents Lagrange’s equations of the second kind in contravariant
form. The product of Kristofel’s symbol of the first kind and the contravariant
metric tensor represents Kristofel’s symbol of the second kind.

. . . 1

ql + thl? + 2F%2q + F22‘1 = Q1
(*) ) 2 .12 2 . q>
@ +THa'"? +2Thq'¢ + F22q =Q

where qu and Qq2 are generalized forces in contravariant form (see Appendix).

The obtained results from both covariant and contravariant formulations are
mutually and simultaneously the same as Lagrange equations of the first kind -
Figure 3, so they wont be shown again. Also, two additional Figures representing
q" and ¢? are given in Figure 4. On the whole, the positions of the points obtained
using three different approaches are confirmed.

1.6. Lagrange function, generalized impulses and Hamiltonian me-
chanics. Instead of Lagrange variables, Hamilton proposed the variableb t, q%, Pa,
a=1,2,...,n, where p, are generalized impulses, defined as p, = ? with La-

grange function or Lagrange kinetic potential, introduced as the difference between
kinetic and potential energy L = T — II. For the scleronomic system, which kinetic
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FIGURE 4. Generalized coordinates over time
energy does not explicitly depend on time, with two degrees of freedom and taking

into account the components of the covariant metric tensor Hamilonian function H
has the form (1.18):

1/1 1
(1.18) H = a(§a22p31 — a12p P2 + 5“111732) + 11,
where a = a11a99 — a12a21. Generalized impulses are:
oT oT oT oT

= a114" +ai2¢> and py = = a12¢" + a2’

Plzaiql—quzafql aT:{Q:pﬁ:aT:{Q
In this way, state of the system is completely described. By introducing Hamilton’s
variables, Lagrange equations of the second kind, which make system of n second
order differential equations for determining n functions ¢* = ¢*(t), can be replaced
by equivalent system of 2n first order differential equations for determining 2n
functions of ¢® = ¢*(t), pa = pa(t).

Graphs in generalized coordinates, as well as the positions of material points
were calculated. Summarising the Hamiltonian equations also obtained the same
solutions as by applying Lagrange equations of the first and second kind in the
covariant and contravariant form. For the proposed system, result is given in the
Appendix. After numerical calculation, graph of Cartesian and generalized coordi-
nates over time obtained. It can be concluded that the Hamiltonian equations also
obtained the same solutions as by applying all of the previous methods in Figures
3 and 4. Generalized momenta are presented in Figure 5.

2. Static equilibrium conditions and stability of the system

In the position of static equilibrium, the generalized forces and the generalized
velocities of the points equal zero. Determining the position of static equilibrium
comes down to determining the values of the generalized coordinates in which the
system is at rest. The condition of static equilibrium is that the sum of all potential
and non-potential forces is equal to zero:

ol ~

(21) —%—I—QQZO, a=1,...,n
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FIGURE 5. Generalized impulses over time

The conservative mechanical system is scleronomic and exposed exclusively to the
action of conservative forces (potential forces whose potential energy does not de-
pend explicitly on time). In this case, the required equilibrium conditions (2.1),
due to the absence of nonconservative forces, take the form:

oy

ol
so the examination of equilibrium stability comes down to considering the poten-
tial energy of a mechanical system. If the coordinates of the equilibrium position
are known, they satisfy equations (2.1). Otherwise, if the equilibrium position is
not known, solving algebraic equations (2.1), the obtained solutions determine the
coordinates of possible equilibrium positions, the stability of which should be ex-
amined. According to the Lagrange—Dirichlet theorem, the equilibrium position
of a conservative system, in which the potential energy has an isolated minimum,
represents the position of the stable equilibrium of the system. This theorem gives
only a sufficient condition for the stability of the equilibrium because it does not
give the possibility to judge whether the equilibrium is stable or unstable if the
potential energy has no minimum in the equilibrium position. For the application
of the Lagrange—Dirichlet theorem, it is important that the potential energy is rep-
resented as an analytical function and that depends on all generalized coordinates
of the system.

a=1,...,n,

o011
8q20qP
The behaviour of the potential energy in the vicinity of the equilibrium position
corresponds to the behaviour of a homogeneous square form with constant coeffi-
cients cop. If the potential energy has a minimum in the equilibrium position and
its approximation (2.2) has a minimum in the same position. The definiteness of
the matrix is examined using the Sylvester criterion. If the material point M, is
acted upon by a force of constant intensity Fgz = 100N, the condition of static
equilibrium (2.1) are obtained as (2.3):

1
(2.2) I~ §caﬁq°‘q’8, where: cop = ( )0’ a,B=1,...,n

23) I(cal — 2mg) cosq' + c1lcos(q' + ¢°) — Fyysing') =0
’ I(—Fy cosq® + cdcos(q1 +¢*) —mgsing®) =0
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2 j k
Force meets the condition: rot Fgp = % 8% % = %j - %Lys"k = 0, which is
Fye 0 0
a necessary and sufficient condition for a stationary force field Fs; to be potential.
The results are given in Table 2, numerically, and graphical comparison is presented
in Figure 6, which shows positions of equilibrium points in space and the change of
the potential energy with change of angles for both cases. As it can be seen, from
both cases, there are four equilibrium positions in Table 1. As previous examination
was done in the case when F' = Fye !, here an additional Figure is provided:
Fy; = ON. Because the first and second case give the same results, only the second
approach is depicted. Equations which describe this system are nonlinear and there
is no point in checking system’s stability, only the stability of the equilibriums [13].
There are many ways to examine the stability of the undisturbed motion of the
specific system. For holonomic system from this task solutions were relatively
easily obtained. An example of the non-holonomic system can be found in [14]
and [15]. For example, previously mentioned Lagrange-Dirichlet theorem could
be used. Also, in control theory, one of the most popular are Routh and Hurwitz
criteria, i.e. via the basic principal minors of the Hurwitz matrix and with analysis
of the characteristic polynomial.

 qlrad)

2 / >
graal® ;) R T ) -3 -2 -1 ) 1 2 3
a)

4 a'lad) q'lrad]

4
q’frad] 2~
0o

lrad]

-2

1 do
d'rad]

FIGURE 6. a) First approach: Spatial arrangement of equilibrium
positions, Curves intersection, Static equilibriums; b) Second ap-
proach: Potential energy, Curves intersection, Static equilibriums
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FIGURE 7. Second approach: Potential energy, Curves intersec-
tion, Static equilibriums when Fy; = 0N

TABLE 1. Static equilibrium positions

Case q* q°

eqp  0.779777 -2.95918
eqx 146544 -0.256309
eqs  -1.42176  -2.54488
eqi  -2.35647  1.3861

TABLE 2. The judgment on the stability of the position of static
equilibrium is based on the Lagrange—Dirichlet theorem

Case (O AN Ao Stability

111.015  —208.317
i\ _908.317 —306.19

(576.559 237.481)

111.015 -77387.7 unstable

eqs 576.559 167163 stable

237.481 387.748

~119.042 186.514
a3 186.514  155.356

(—529.601 —209.497)
€44

-119.042 -53281.4 unstable

909497 —309.859 -529.601 120212 unstable

2.0.1. Lagrange—Dirichlet theorem. If the quadratic form (2.2) can take nega-
tive values, then instability follows. This can be verified using Silvester’s criterion.
It is necessary and sufficient for all leading principal minors of the Hermit matrix
to be positive in order to obtain positively definite quadratic form. As only the sec-
ond condition fulfills the criterion, it is concluded that only the second equilibrium
is stable.
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TABLE 3. Characteristic polynomials

Case Characteristic polynomial

eqp A4 1.5464\3 — 65.7945)\% — 30.6665)\ + 325.543
eqa A +6.0155103 + 38.302302 + 149.28)\ + 305.992
eqs  A\* +5.33619\% + 2.36749\2 + 53.0565\ — 83.5357
eqs A+ 1.5464\3 — 65.7945)\% — 30.6665)\ + 325.543

TABLE 4. The judgment on the stability of the position of static
equilibrium is based on the Routh criteria

Number of
Case Routh table right hand Stability
side poles
1.0 —65.7945 325.543
1.5464  —30.6665 0
eq1 —45.9636  325.543 0 2 unstable
—19.7139 0 0
325.543 0 0
1.0 38.3023 305.992
6.0155  149.28 0
eqa 13.4864 305.992 0 0 stable
12.7950 0 0
305.992 0 0
1.0 2.3675  —83.5357
5.3362 53.0565 0
eqs3 —7.5753 —83.5357 0 1 unstable
—5.7879 0 0
—83.5357 0 0
1.0 —65.7945 325.543
1.5464  —30.6665 0
eqs —45.9636  325.543 0 2 unstable
—19.7139 0 0
325.543 0 0

2.0.2. Routh criterion. The Rauth—Hurvitz criterion gives the conditions for
asymptotic stability in the linear approximation. A necessary and sufficient condi-
tion for the system to be stable is that all the coefficients of the first Roth column
are of the same sign. The system is unstable if there is a character change in the
first Routh column. The number of sign changes corresponds to the number of
unstable poles of the system.
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TABLE 5. The judgment on the stability of the position of static
equilibrium is based on the Hurwitz criteria

Roots of
Case Hurwitz matrix characteristic Stability
polinomial
30.6665 —325.543 0 0 A\ = —8.3971
—1.5464 65.7945 30.6665 0 Ao = —2.5222
e 0 1 —1564 0 s = 2.1190 unstable
0 0 0 -1 M4 = 7.2538
~149.28  —305.992 0 0 AL = —2.92464 + 1.89756i
—6.01551 —38.3023 —149.28 0 Xo = —2.9246 — 1.8976i bl
€42 0 -1 ~6.1551 0 A3 = —0.0831 + 5.0169i stable
0 0 0 -1 Ay = —0.0831 — 5.0169i
—53.0565  83.5357 0 0 A\ = —6.5217
e ~5.3362 —2.36749 —53.0565 0 | A= -0.035769 — 3.19186;
3 0 ~1 ~5.33619 0 | A3 =—0.035769 + 3.19186i
0 0 0 -1 Ay = 1.25709
30.6665 —325.543 0 0 A\ = —8.3971
—1.5464 65.7945 30.6665 O Ao = —2.5222 bl
€44 0 -1 ~1.564 0 A3 = 2.1190 unstable
0 0 0 -1 Ay = 7.2538

2.0.3. Hurwitz criteria. Hurwitz method is based on testsing well-known Hur-
witz matrix. Stability is checked by three different criteria. All of them gave the
same results-out of 4 equilibrium states, only the second is stable. Further, it can be
seen from Table 3 that Case 1 and Case 4 have the same characteristic polynomial,
so their Rauth tables (Table 4) and Hurwitz matrix (Table 5) are same.

2.1. Disturbed motion with non-linear and with linearized equations.
Final solutions of differential equations do not provide a direct answer to the ques-
tion of whether the state of the system is stable or unstable. Therefore, for stability
testing, a disturbed state is considered. Stability of the equilibrium position is ex-
aminated in the sense of Lyapunov’s definition. The disturbances &, and 7, are
differences between disturbed and non-disturbed motion. Initial disturbances are
taken to be: & = 0.2, & = 0, n1 = 0.3, 72 = 0 and force of constant inten-
sity Fp = 100N acts on the material point Ms. The check was performed for
all other equilibrium points and earlier conclusions were confirmed. If the system
is brought to the position of the first static equilibrium, according to the previ-
ous results (Tables 2, 4 and 5), the undisturbed motion is determined. Based on
the exact nonlinear differential equations of disturbed motion, the disturbed mo-
tion of the system in the vicinity of the static equilibrium position is determined.
Linearized equations were calculated based on the linearization in the vicinity of
the static equilibrium points and they differ greatly from the nonlinearized ones,
Figures 8-10.
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FIGURE 10. Stable case with FF = ON from Figre 7: Graphical
confirmation of the position of static equilibrium, disturbed motion
of equilibrium point with (non)linearized and linearized equations.

3. Conclusion

This paper provides mechanical construction which can be modelled as holo-
nomic mechanical system with constrained motion. Particular initial conditions
are given and the system has been analyzed with many different approaches: us-
ing Lagrange equations of the first and second kind and also with Hamiltonian
mechanics. The system of the ten equations with ten variables was acquired by
applying Lagrange’s equations of the first kind. Further, it is determined that the
analysis of the system in this way is complicated and redundant. More elegant
approach for analyzing system is by applying Lagrange equations of the second
kind. In order to obtain a less complicated system, generalized coordinates, as well
as the Hamiltonians momenta were obtained; system’s motion has been confirmed.
Second order differential equations were replaced with Hamilton’s equations, so
solving the problem was simplified. At the minimum of the potential energy all of
the equilibrium points are found. Their stability equilibriums was checked using
three methods: Lagrange-Dirichlet, Routh and Hurwitz; system motion in dis-
turbed and undisturbed case was investigated. Disturbed motion with nonlinear
and linearized equations was presented for some cases. If the system is brought to
the position of the second static equilibrium, according to the previous results the
norm of disturbed motion strives to zero during time (since all of the earlier criteria
have shown stability of this equilibrium). In exactly the same way as for the stable
static equilibrium, it has been verified that positions of other static equilibriums
are correctly determined and unstable. Same judgements were verified for differ-
ent techniques. It can be concluded that linearized equations will not predict the
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behaviour of the system in the same way as nonlinear ones, so this system requires
modelling with nonlinear equations with one of the presented methods.

4. Appendix

Parameters Value Name
my(m) 10kg Mass of material point M
mao(m) 10kg Mass of material point My
ms(m) 10kg Mass of slider-crank Ms
1 1.25m length
c1 162.5N/m Spring stiffness
Co 366.67N/m Spring stiffness
15} 121 Ns/m  Coefficient of proportionality
Fy 100N Static force
©o 47 /13 Initial angle
6o /7 Initial angle
©o 0 Initial velocity
0o 0 Initial velocity
o 0.7 Coefficient

Jacobian matrix:

2.’£1 2y1 0 0 0 0
J= 2.’E1 — 2%2 2y1 - 2y2 2(E2 - 2.’E1 2y2 - 2y1 0 0
|2z — 223 2y1 — 2y3 0 0 2z3 — 2w1  2y3 — 211
0 0 0 0 0 1
The Jacobian matrix of transformation and the determinant has value:
| lcos q1 0 ) 212
Ji = [—lsinql —lcoqu]’ |J1] = =1 cosq” cosq

Generalized conservative forces:

g1 = —2mgl cos q" + cal? cosq' + c1l? cos(q' + ¢%)

CcS

2 = —mglsin q* + c11? cos (ql + q2)

Generalized damping forces:

1 2
1. cos
Qp = —B12¢* sin? ¢* (1 TR L B ) ; 2 =0

\/3 + cos? g1

Coefficients of metric tensors:

1 2
a1 = 2ml? 4+ mi?sin? ¢! (1 + cosq) ;
/3 + cos? ¢!

ajs = ml? sin(¢ + 0); ags = ml?
Christoffel symbols of the first kind:

(4.1)
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in(2 1 1) win3( 1 9/ 1
Ti1,1 = mi®sin(2¢") + 2mi? (sin(2¢") cos(g"') —sin’(¢"))(3 + cos®(q ))+

3+ cos?(qh)
Lo sin®(¢") cos?(¢") i sin(2¢") cos(2¢*) (3 + cos (qll)) 2—|— sin®(q') cos?(q!)
3 + cos?(qh) (3 + cos(q"))

Tio1=0; Doy =ml®cos(q' +¢*); Tii2=mi’cos(¢" +¢°); Ta22=0

Kristofel’s symbols of the second kind are determined by:

1 a22l'11,1 —a12l'11,2 1 a22l'12,1 — a12l'12,2 1 1 a220'22,1
= ;o = =0=T%; ="
a a a

2 —a21l'11,1 +a1il112 2 2 2 —a21l'22,1
= p i Ia=0=1TI%; TIn= T; G = a11022 — @12021
Generalized forces in contravariant form are:

qu _ a20Qq —a12Qgp2 Qq2 _ —a21Qp + a11Q g2
; .
a a

Hamiltonian function:

H = (I(—gmcos¢® + (—1lcol +2gm)sing" +I(Lley + Llep — Loy sin(g' + ¢%))) +

HU{‘;-

where 4 = (I*m(—49 + 1cos4q' — 16 cos(2(q" + ¢%)) + sin® ¢'(—16 + 8sin’ ¢! —
16 cos ¢' /4 — sin® ¢! —8sin®(¢* +¢?)))), and B = (p,12(—16-+4sin® ¢*)+p,2?(—35+
2 cos 2q*+1 cos dg' —8 cos ¢ sin® g /4 — sin® ¢1)+pyepy: (32—8sin® ¢*) sin (g + ¢?)).
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MOJEJIOBABE 1 AHAJIN3A CTABNJIHOCTN
JATOT' HEJIMHEAPHOT CUCTEMA

PE3UME. ¥V npom3BoaHO] MHIYCTPHUjU WHXKEHEPU ce KOHCTAHTHO cycpehy ca
IpobJIEMOM MO/IEJIOBaMba CUCTEMA. YCIIEITHO YIPABJbAKE CHCTEMA y BEJIMKO] MepH
3aBUCH OJI TAYHOCTH MATEMATHUIKOI MOJIEJIa KOju IpejBuha HeroBy JUHAMUKY. Y
KOMILIMKOBAHUM HM33a30BUMa ONMCHBAA HEJIMHEAPHUX MAIUHA KOPHUCTE Ce Pas3Jii-
qnTe MeToZle. Y OBOM PaJy je NMPUKA3aHO MOHAMIAE W CTADUIHOCT XOJOHOMHOT
MEXaHWYKN CHCTEMa y MPOU3BOJHHOM IOJbY CHJIA. 3a MPEJJIOXKEHH CUCTEM Cy, Ha
OCHOBY OIIITUX MEXaHUYIKUX TeopeMa, Jo0ujeHe JudepeHinjaate jeIHaYnHe [T0Ha-
[akha, KHNHETUYIKA U IOTEHIINja/IHa eHEPIHja cucTeMa. JlarpanKose jeJHAUMHE [TPBe
u apyre Bpcre cy nopeheHe ca reHepan30BaHUM KOODJIUHATAMA U XAMUJITOHOBAM
jennaannama. [lopen Hymepmyakux mocrymnaka y pasy, Ha ogpehennm mectuma rara
Cy TIOjalllibeha Kao U IIPEerJie]] TEOPUjCKUX OCHOBA HA KOjUMA TIOYUBAjy JIaTe METOJIE.
Y HacTaBKY, MOJIOXKAjH CTATUYIKE PABHOTEXKE Ce TpoHaJsia3e KopurrhemeM rpadud-
KOI' 1 HyMEPHUYKOI' npucrymna. KoHadHo, pasMarpaHa je CTaDUIHOCT PaBHOTEXKHUX
nojioxkaja kopuithemem Jlarpanxk-/lupuxeose Teopeme u Pyr-Xypsuropor kpure-
pujyma. Ha kpajy je maro nmopeherme nuaeapn30BaHnX U HEJUHEAPHUX jeJHAUNHA W
PaHUjU 3aKJbY4Id O CTADUIHOCTH PABHOTEKHUX IOJIOZKAja CYy BepU(DUKOBAHH.
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