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A MIXED BOUNDARY VALUE PROBLEM OF A
CRACKED ELASTIC MEDIUM UNDER TORSION

Belkacem Kebli and Fateh Madani

Abstract. The present work aims to investigate a penny-shaped crack prob-
lem in the interior of a homogeneous elastic material under axisymmetric tor-
sion by a circular rigid inclusion embedded in the elastic medium. With the use
of the Hankel integral transformation method, the mixed boundary value prob-
lem is reduced to a system of dual integral equations. The latter is converted
into a regular system of Fredholm integral equations of the second kind which
is then solved by quadrature rule. Numerical results for the displacement,
stress and stress intensity factor are presented graphically in some particular
cases of the problem.

1. Introduction

The category of problems which concerns the state of stresses and displace-
ments in an elastic layer medium, due to the torsion of a circular inclusion in
bonded contact, has been a subject of much interest in geotechnical engineering,
civil engineering and applied mechanics. It may give a better understanding of
the behavior of foundations under external loads. In structure-medium interaction
problems arising in foundation engineering, the foundation is usually modeled using
a rigid or flexible inclusion having a circular, strip, rectangular or arbitrary shape.
Generally, an inclusion in contact with an elastic medium can be excited by nor-
mal translation, lateral translation, rocking rotation and torsional rotation. From
a practical viewpoint, in geomechanical applications, the inclusion may represent
the resinous or cementing material, which is used to transfer the anchoring loads
to the geological medium [1]. In this category of problems the penny-shaped crack
can be caused by thermally induced stresses in the dilatation of the inclusion or
the hydraulic fracture.

It has been shown that for foundations in which the depth of embedment ex-
ceeds the dimension of the foundation by ten times, the medium can be considered
as infinite elastic space [2]. For the case of infinite embedment of the rigid disc in an
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infinite elastic solid (deeply embedded), Selvadurai [3,4] investigated the asymmet-
ric contact problems related to a rigid circular inclusion disc embedded in bonded
contact with an isotropic elastic medium. Their results depend on the rotational
or translational stiffnesses for the embedded rigid circular disc. The problem of
the torsion of an elastic half space was first considered by Reissner and Sagoci [5].
They studied the static interaction of a rigid disc and an elastic isotropic half-
space for which they obtained the solution by means of the spheroidal coordinates.
Sneddon [6, 7] re-studied the classical Reissner–Sagoci problem using the Hankel
transforms method for reduction of the problem to a pair of dual integral equations.
Ufliand [8] set up the dual integral equations for the Reissner–Sagoci problem for
a circular disc on an elastic layer and reduced them to the solution of a Fredholm
integral equation of the second kind. Collins [9] treated the torsional problem of an
elastic half-space by supposing the displacement at any point in the half-space to
be due to a distribution of wave sources over the part of the free surface in contact
with the disc. The solution for the forced vibration problem of an elastic layer of
finite thickness when the lower face is either stress free or rigidly clamped was given
by Gladwell [10], who reduced the mixed boundary value problem to a Fredholm
integral equation by Noble’s method [11]. Singh and Dhaliwal [12] investigated the
Reissner–Sagoci problem for an elastic layer under torsion by a pair of circular discs
on opposite faces. The Reissner–Sagoci problem with a rigid circular punch bound
to the surface of a transversely isotropic elastic half-space was solved by Selvadu-
rai [13]. Pak and Saphores [14] provided an analytical formulation for the general
colortorsional problem of a rigid disc embedded in an isotropic half-space. The
quadrature numerical was used for solving the obtained Fredholm integral equa-
tion. Besides, Bacci and Bennati [15] employed the Hankel transforms method and
the power series method with the truncation of the second term to consider the
torsion of a circular rigid disc adhered to the upper surface of an elastic layer fixed
to an undeformable support. More recently, Singh et al. [16] studied the static
torsional loading of a non-homogeneous, isotropic, half-space by rotating a circular
part of its boundary surface. The solution for the corresponding triple integral
equations was reduced to the solution for two simultaneous integral equations. Cai
and Zue [17] discussed the torsional vibration of a rigid disc bonded to a poro-elastic
multilayered medium. They used the Hankel transforms and transferring matrix
method. Rahimian [18] et al. studied the problem of torsion in a transversely
isotropic half-space by a rigid circular disc. Using a cylindrical co-ordinate system
and applying the Hankel integral transform in the radial direction, the problem
may be changed to a system of dual integral equations. Yu [19] studied the forced
torsional oscillations inside the multilayered solid. Elastodynamic Green’s function
of the center of rotation and a point load method were used to solve the problem.
Pal and Mandal [20] considered the forced torsional oscillations of a transversely
isotropic elastic half-space under the action of an inside rigid disc. The studied
problem was transformed to a dual integral equations system which was reduced
to a Fredholm integral equation. A similar problem with the rocking rotation was
solved later on by Ahmadi and Eskandari [21]. They used appropriate Green’s func-
tion to write the mixed boundary-value problem posed as a dual integral equation.
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The torsional problem of elastic layers with a penny shaped crack was considered
by some researchers. Sih and Chen [22] studied the problem of a penny-shaped
crack in a layered composite under a uniform torsional stress. The displacement
and stress fields throughout the composite were obtained by solving a standard
Fredholm integral equation of the second kind. Low [23] investigated a problem of
the effects of embedded flaws in the form of an inclusion or a crack in an elastic
half-space subjected to torsional deformations. The corresponding Fredholm inte-
gral equations were solved numerically by quadrature approach. The same method
was used by Dhawan [24] for solving the problem of a rigid disc attached to an
elastic half-space with an internal crack. By using Hankel and Laplace transforms
and taking numerical inversion of the Laplace transform, Basu and Mandal [25]
treated the torsional load on a penny-shaped crack in an elastic layer sandwiched
between two elastic half-spaces. With the aid of the Hankel integral transformation
method, in this paper we investigate the problem of a penny-shaped crack in the
interior of a homogeneous elastic medium under axisymmetric torsion applied to a
rigid disc glued inside. The mixed boundary-value problem is written as a system of
dual integral equations. The corresponding system of Fredholm integral equations
was approached by sets of linear equations. After getting the unknown coefficients
of this system we obtain numerical results and display curves according to certain
pertinent parameters.

2. Formulation of the problem

We consider the axisymmetric torsion of a circular rigid inclusion of a radius 𝑏
situated on a plane 𝑧 = ℎ in an infinite, isotropic and homogeneous elastic medium,
containing a penny-shaped crack in the region 0 < 𝑟 < 𝑎, 𝑧 = 0. The faces of the
crack are supposed to be stress free while the rigid circular disc inclusion rotates
with an angle 𝜔 about the 𝑧 axis passing through their centers as shown in Figure 1.

As the studied configuration is axisymmetric and the loading (radially symmet-
ric) where the angular displacement 𝑢𝜃 depends only on 𝑟 and 𝑧, then the radial
and axial displacement components are zero, that is, 𝑢𝑟 = 𝑢𝑧 = 0.

Then the only non-zero components stresses are related to the displacement
component by

(2.1) 𝜏𝜃𝑧 = 𝐺
𝜕𝑢𝜃
𝜕𝑧

, 𝜏𝜃𝑟 = 𝐺𝑟
𝜕

𝜕𝑟

(︁𝑢𝜃
𝑟

)︁
,

where 𝐺 is the shear modulus of the material.
For the static axisymmetric torsion of a homogeneous isotropic material and

linear elastic behavior, the displacement satisfies the following differential equation

(2.2)
𝜕2𝑢𝜃
𝜕𝑟2

+
𝜕𝑢𝜃
𝑟𝜕𝑟

− 𝑢𝜃
𝑟2

+
𝜕2𝑢𝜃
𝜕𝑧2

= 0.

By applying the Hankel integral transform from [26] to (2.2)

(2.3) 𝐹 (𝜆, 𝑧) =

∫︁ ∞

0

𝑓(𝑟, 𝑧)𝑟𝐽1(𝜆𝑟)𝑑𝑟,



240 KEBLI AND MADANI

Figure 1. Geometry and coordinate system

and the Hankel inversion transform

(2.4) 𝑓(𝑟, 𝑧) =

∫︁ ∞

0

𝐹 (𝜆, 𝑧)𝜆𝐽1(𝜆𝑟)𝑑𝜆,

where 𝐽1 is the Bessel function of the first kind of order one, we find the general
solution for Eq. (2.2) for the regions I (𝑧 ⩽ 0), II (0 ⩽ 𝑧 ⩽ ℎ) and III (𝑧 ⩾ ℎ) as
shown in Figure 1 as

(2.5) 𝑢
(𝑖)
𝜃 (𝑟, 𝑧) =

∫︁ ∞

0

[𝐴𝑖(𝜆)𝑒
−𝜆𝑧 +𝐵𝑖(𝜆)𝑒

𝜆𝑧]𝐽1(𝜆𝑟)𝑑𝜆, 𝑖 = 1, 2, 3,

where 𝐴𝑖 and 𝐵𝑖 are unknown functions.

3. Boundary and continuity conditions

Let us assume the contact between the rigid circular inclusion and the elastic
layer is perfectly bonded all along their common interface. We consider the regu-
larity conditions at infinity, the boundary and continuity conditions at 𝑧 = ℎ, as
shown below.

At infinity, the regularity conditions are given by

(3.1) lim
|𝑧|→∞

𝑢𝜃(𝑟, 𝑧) = 0, lim
|𝑧|→∞

𝜏𝜃𝑧(𝑟, 𝑧) = 0.

The boundary conditions of the problem are

𝜏
(2)
𝜃𝑧 (𝑟, 0+) = 𝜏

(1)
𝜃𝑧 (𝑟, 0−) = 0, 𝑟 < 𝑎,(3.2a)

𝑢
(3)
𝜃 (𝑟, ℎ) = 𝑢

(2)
𝜃 (𝑟, ℎ) = 𝜔𝑟, 𝑟 ⩽ 𝑏.(3.2b)
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The continuity conditions of the problem in the planes 𝑧 = 0 and 𝑧 = ℎ can be
written as

𝑢
(2)
𝜃 (𝑟, 0+)− 𝑢

(1)
𝜃 (𝑟, 0−) = 0, 𝑟 ⩾ 𝑎,(3.3a)

𝜏
(2)
𝜃𝑧 (𝑟, 0+)− 𝜏

(1)
𝜃𝑧 (𝑟, 0−) = 0, 𝑟 ⩾ 𝑎,(3.3b)

𝑢
(3)
𝜃 (𝑟, ℎ+)− 𝑢

(2)
𝜃 (𝑟, ℎ−) = 0, 𝑟 > 𝑏,(3.3c)

𝜏
(3)
𝜃𝑧 (𝑟, ℎ+)− 𝜏

(2)
𝜃𝑧 (𝑟, ℎ−) = 0, 𝑟 > 𝑏.(3.3d)

By utilizing the condition expressed by Eq. (3.1), the expressions of displace-
ments and stresses in the three regions take the following forms

𝑢
(1)
𝜃 (𝑟, 𝑧) =

∫︁ ∞

0

𝐵1(𝜆)𝑒
𝜆𝑧𝐽1(𝜆𝑟)𝑑𝜆,(3.4a)

𝜏
(1)
𝜃𝑧 (𝑟, 𝑧) = 𝐺

∫︁ ∞

0

𝜆𝐵1(𝜆)𝑒
𝜆𝑧𝐽1(𝜆𝑟)𝑑𝜆,(3.4b)

𝑢
(2)
𝜃 (𝑟, 𝑧) =

∫︁ ∞

0

[𝐴2(𝜆)𝑒
−𝜆𝑧 +𝐵2(𝜆)𝑒

𝜆𝑧]𝐽1(𝜆𝑟)𝑑𝜆,(3.4c)

𝜏
(2)
𝜃𝑧 (𝑟, 𝑧) = 𝐺

∫︁ ∞

0

𝜆[−𝐴2(𝜆)𝑒
−𝜆𝑧 +𝐵2(𝜆)𝑒

𝜆𝑧]𝐽1(𝜆𝑟)𝑑𝜆,(3.4d)

𝑢
(3)
𝜃 (𝑟, 𝑧) =

∫︁ ∞

0

𝐴3(𝜆)𝑒
−𝜆𝑧𝐽1(𝜆𝑟)𝑑𝜆,(3.4e)

𝜏
(3)
𝜃𝑧 (𝑟, 𝑧) = −𝐺

∫︁ ∞

0

𝜆𝐴3(𝜆)𝑒
−𝜆𝑧𝐽1(𝜆𝑟)𝑑𝜆.(3.4f)

The unknown functions 𝐵1(𝜆), 𝐴2(𝜆), 𝐵2(𝜆) and 𝐴3(𝜆) can be determined
from the boundary and continuity conditions.

The boundary and continuity conditions expressed by Eqs. (3.2a), (3.3b), (3.2b)
and (3.3c) show that

𝜏
(2)
𝜃𝑧 (𝑟, 0+)− 𝜏

(1)
𝜃𝑧 (𝑟, 0−) = 0, 𝑟 ⩾ 0,(3.5a)

𝑢
(3)
𝜃 (𝑟, ℎ+)− 𝑢

(2)
𝜃 (𝑟, ℎ−) = 0, 𝑟 ⩾ 0.(3.5b)

The continuity conditions expressed by Eqs. (3.3b) and (3.3c) lead to

𝐵1(𝜆) = 𝐵2(𝜆)−𝐴2(𝜆),(3.6a)

𝐴3(𝜆) = 𝐵2(𝜆)𝑒
2𝜆ℎ +𝐴2(𝜆).(3.6b)

From the mixed boundary conditions expressed by Eqs. (3.2a), (3.3a), (3.2b)
and (3.3d), we find the system of dual integral equations for obtaining the unknown
functions 𝐴2 and 𝐵2∫︁ ∞

0

𝜆[𝐵2(𝜆)−𝐴2(𝜆)]𝐽1(𝜆𝑟)𝑑𝜆 = 0, 𝑟 < 𝑎,(3.7a)
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0

𝐴2(𝜆)𝐽1(𝜆𝑟)𝑑𝜆 = 0, 𝑟 ⩾ 𝑎,(3.7b) ∫︁ ∞

0

[𝐴2(𝜆)𝑒
−𝜆ℎ +𝐵2(𝜆)𝑒

𝜆ℎ]𝐽1(𝜆𝑟)𝑑𝜆 = 𝜔𝑟, 𝑟 ⩽ 𝑏,(3.7c) ∫︁ ∞

0

𝜆𝐵2(𝜆)𝑒
𝜆ℎ𝐽1(𝜆𝑟)𝑑𝜆 = 0, 𝑟 > 𝑏.(3.7d)

3.1. Limiting cases. By taking the limit 𝑎→ ∞, the problem is simplified to
the torsional rotation of a rigid cirular inclusion in a homogeneous elastic half-space,
and the dual integral equations become:∫︁ ∞

0

[𝐴2(𝜆)𝑒
−𝜆ℎ +𝐵2(𝜆)𝑒

𝜆ℎ]𝐽1(𝜆𝑟)𝑑𝜆 = 𝜔𝑟, 𝑟 ⩽ 𝑏,(3.8a) ∫︁ ∞

0

𝜆𝐵2(𝜆)𝑒
𝜆ℎ𝐽1(𝜆𝑟)𝑑𝜆 = 0, 𝑟 > 𝑏.(3.8b)

This pair of dual integral equations has the same meaning as (18a) and (18b)
in Pak’s paper [14].

Let us take the limit 𝑎 → 0. Then one can obtain the closed-form solution
pertinent to the torsional rotation of a rigid disc embedded in a homogeneous
elastic full-space. Due to the symmetry of the full-space case with respect to the
plane of the disc, it can be deduced that 𝜏𝜃𝑧 is zero for 𝑟 > 𝑎 at the disc plane. This
situation corresponds exactly to the torsion of a homogeneous elastic half-space by
a circular rigid disc (0 < 𝑟 < 𝑎, 𝑧 = 0) bonded to the surface. This is adapted to the
problem concerning the isotropic half-space considered by Reissner and Sagoci [5].

4. Reduction of the problem to a system of
Fredholm integral equations

The system of dual equations can be reduced to a system of Fredholm integral
equations of the second kind by introducing the auxiliary functions 𝜑(𝑡) and 𝜓(𝑡)
such that

𝐴2(𝜆) =
√
𝜆

∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝐽 3

2
(𝜆𝑡)𝑑𝑡,(4.1a)

𝐵2(𝜆) = 𝑒−𝜆ℎ
√
𝜆

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝐽 1

2
(𝜆𝑡)𝑑𝑡.(4.1b)

With this choice of the new unknown functions, we find that the homogeneous
Equations (3.7b) and (3.7d) are identically satisfied while Equations (3.7a) and
(3.7c) lead to Fredholm’s integral equations.

By inserting 𝐴2(𝜆) and 𝐵2(𝜆) in the Equations (3.7a) and Eq. (3.7c), we get

(4.2)
∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝑑𝑡

∫︁ ∞

0

𝜆
3
2 𝐽 3

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆

−
∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝑑𝑡

∫︁ ∞

0

𝜆
3
2 𝑒−𝜆ℎ𝐽 1

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆 = 0, 𝑟 < 𝑎,
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(4.3)
∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝑑𝑡

∫︁ ∞

0

√
𝜆𝑒−𝜆ℎ𝐽 3

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆

+

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝑑𝑡

∫︁ ∞

0

√
𝜆𝐽 1

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆 = 𝜔𝑟, 𝑟 < 𝑏.

To find the first Fredholm integral equation, we use 𝜆𝐽1(𝜆𝑟) = 1
𝑟2

𝑑
𝑑𝑟 [𝑟

2𝐽2(𝜆𝑟)]
and taking into account the integral formula

(4.4)
∫︁ ∞

0

√
𝜆𝐽 3

2
(𝜆𝑡)𝐽2(𝜆𝑟)𝑑𝜆 =

{︃√︁
2
𝜋

𝑡
3
2

𝑟2
√
𝑟2−𝑡2

𝑡 < 𝑟

0 𝑡 > 𝑟
,

we obtain the Abel equation corresponding to Eq. (4.2)

(4.5)
√︂

2

𝜋

∫︁ 𝑟

0

𝑡2𝜑(𝑡)√
𝑟2 − 𝑡2

𝑑t − 𝑟2
∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝑑t∫︁ ∞

0

√
𝜆𝑒−𝜆ℎ𝐽 1

2
(𝜆𝑡)𝐽2(𝜆𝑟)𝑑𝜆 = 0, 𝑟 < 𝑎.

By applying Abel’s transform formula

(4.6)
∫︁ 𝑟

0

𝑓(𝑡)√
𝑟2 − 𝑡2

𝑑t = 𝑔(𝑟) then 𝑓(𝑡) =
2

𝜋

𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑟𝑔(𝑟)√
𝑡2 − 𝑟2

𝑑𝑟,

we find from Eq. (4.5) that

(4.7) 𝑡2𝜑(𝑡) =

√︂
2

𝜋

𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑟3√
𝑡2 − 𝑟2

[︂ ∫︁ 𝑏

0

√
𝛿𝜓(𝛿)𝑑𝛿∫︁ ∞

0

√
𝜆𝑒−𝜆ℎ𝐽 1

2
(𝜆𝛿)𝐽2(𝜆𝑟)𝑑𝜆

]︂
𝑑𝑟, 𝑟 < 𝑎.

For the right hand side of the above equation, the integral is further simplified
by using the following relationship

(4.8)
√︂

2

𝜋

𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑟3√
𝑡2 − 𝑟2

𝐽2(𝜆𝑟)𝑑𝑟 =
√
𝜆𝑡

5
2 𝐽 3

2
(𝜆𝑡),

and we obtain the first Fredholm integral equation of the second kind

(4.9) 𝜑(𝑡) +
√
𝑡

∫︁ 𝑏

0

√
𝛿𝜓(𝛿)𝐾(𝑡, 𝛿)𝑑𝛿 = 0, 𝑟 < 𝑎,

where
𝐾(𝑡, 𝛿) = −

∫︁ ∞

0

𝜆𝑒−𝜆ℎ𝐽 3
2
(𝜆𝑡)𝐽 1

2
(𝜆𝛿)𝑑𝜆.

Similarly, Eq. (4.3) can be reduced to the second Fredholm integral equation
by using the formula

(4.10)
∫︁ ∞

0

√
𝜆𝐽 1

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆 =

{︃√︁
2𝑡
𝜋

1
𝑟
√
𝑟2−𝑡2

, 𝑡 < 𝑟

0, 𝑡 > 𝑟
,

and we obtain the following Abel equation
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(4.11)
1

𝑟

√︂
2

𝜋

∫︁ 𝑟

0

𝑡𝜓(𝑡)√
𝑟2 − 𝑡2

𝑑t +
∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝑑t∫︁ ∞

0

√
𝜆𝑒−𝜆ℎ𝐽 3

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆 = 𝜔𝑟, 𝑟 < 𝑏.

By applying the Abel’s transform formula to the last equation, we obtain

(4.12) 𝑡𝜓(𝑡) =

√︂
2

𝜋

𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑟2√
𝑡2 − 𝑟2

[︂
𝜔𝑟 −

∫︁ 𝑎

0

√
𝛿𝜑(𝛿)𝑑𝛿∫︁ ∞

0

√
𝜆𝑒−𝜆ℎ𝐽 3

2
(𝜆𝛿)𝐽1(𝜆𝑟)𝑑𝜆

]︂
𝑑𝑟, 𝑟 < 𝑏.

Using the following relationship

(4.13)
𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑟3√
𝑡2 − 𝑟2

𝑑𝑟 = 2𝑡2,

(4.14)
√︂

2

𝜋

𝑑

𝑑𝑡

∫︁ 𝑡

0

𝑟2𝐽1(𝜆𝑟)√
𝑡2 − 𝑟2

𝑑𝑟 = 𝑡
√
𝜆𝑡𝐽 1

2
(𝜆𝑡),

we finally get the second Fredholm integral equation of the second kind

(4.15) 𝜓(𝑡) +
√
𝑡

∫︁ 𝑎

0

√
𝛿𝜑(𝛿)𝐿(𝑡, 𝛿)𝑑𝛿 =

4𝜔√
2𝜋
𝑡, 𝑡 < 𝑏,

with the kernel
𝐿(𝑡, 𝛿) =

∫︁ ∞

0

𝜆𝑒−𝜆ℎ𝐽 1
2
(𝜆𝑡)𝐽 3

2
(𝜆𝛿)𝑑𝜆.

The system given by Eq. (4.9) and Eq. (4.15) can be written in the dimension-
less form as follows.

We put

(4.16)

{︃
𝛿 = 𝑎𝜂, 0 < 𝛿 < 𝑎; 𝑡 = 𝑎𝜉 0 < 𝑡 < 𝑎

𝛿 = 𝑏𝜂, 0 < 𝛿 < 𝑏; 𝑡 = 𝑏𝜉 0 < 𝑡 < 𝑏
.

Next, we multiply the above two equations of the system, respectively by√
2𝜋

4𝑎𝜔 𝜑(𝑎𝑢) and
√
2𝜋

4𝑏𝜔 𝜓(𝑏𝑢) and using the following substitutions

(4.17)

{︃
Φ(𝑢) =

√
2𝜋

4𝑎𝜔 𝜑(𝑎𝑢) Ψ(𝑢) =
√
2𝜋

4𝑏𝜔 𝜓(𝑏𝑢)

𝑐 = 𝑏
𝑎 𝜆 = 𝑥

𝑎 𝐻 = ℎ
𝑎 𝜌 = 𝑟

𝑎 𝜁 = 𝑧
𝑎

,

we obtain

Φ(𝜉) + 𝑐2
√
𝑐
√︀
𝜉

∫︁ 1

0

√
𝜂Ψ(𝑠)𝐾(𝜉, 𝜂)𝑑𝜂 = 0, 𝜉 < 1,(4.18)

Ψ(𝜉) +
1√
𝑐

√︀
𝜉

∫︁ 1

0

√
𝜂Φ(𝜂)𝐿(𝜉, 𝜂)𝑑𝜂 = 𝜉, 𝜉 < 1,(4.19)

where

𝐾(𝜉, 𝜂) = −
∫︁ ∞

0

𝑥𝑒−𝑥𝐻𝐽 3
2
(𝑥𝜉)𝐽 1

2
(𝑥𝑐𝜂)𝑑𝑥(4.20)
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= − 2

𝜋

1√
𝑐𝜉𝜂

∫︁ ∞

0

𝑒−𝑥𝐻 sin(𝑥𝑐𝜂)
[︁ sin(𝑥𝜉)

𝑥𝜉
− cos(𝑥𝜉)

]︁
𝑑𝑥,

𝐿(𝜉, 𝜂) =

∫︁ ∞

0

𝑥𝑒−𝑥𝐻𝐽 1
2
(𝑥𝑐𝜉)𝐽 3

2
(𝑥𝜂)𝑑𝑥(4.21)

=
2

𝜋

1√
𝑐𝜉𝜂

∫︁ ∞

0

𝑒−𝑥𝐻 sin(𝑥𝑐𝜉)
[︁ sin(𝑥𝜂)

𝑥𝜂
− cos(𝑥𝜂)

]︁
𝑑𝑥.

The indefinite integrals 𝐾 and 𝐿 can be evaluated in closed form given in
(3:947:1-2), (3:948:2) and (3:893:1-2) from [27], and we obtain

(4.22a) 𝐾(𝜉, 𝜂) = − 1

𝜋
√
𝜉𝑐𝜂

[︁ 1

2𝜉
log

𝐻2 + (𝑐𝜂 + 𝜉)2

𝐻2 + (𝑐𝜂 − 𝜉)2

−
(︁ 𝑐𝜂 + 𝜉

𝐻2 + (𝑐𝜂 + 𝜉)2
+

𝑐𝜂 − 𝜉

𝐻2 + (𝑐𝜂 + 𝜉)2

)︁]︁
,

(4.22b) 𝐿(𝜉, 𝜂) =
1

𝜋
√
𝜂𝑐𝜉

[︁ 1

2𝜂
log

𝐻2 + (𝑐𝜉 + 𝜂)2

𝐻2 + (𝑐𝜉 − 𝜂)2

−
(︁ 𝑐𝜉 + 𝜂

𝐻2 + (𝑐𝜉 + 𝜂)2
+

𝑐𝜉 − 𝜂

𝐻2 + (𝑐𝜉 + 𝜂)2

)︁]︁
.

5. Numerical results and discussion

As the kernels 𝐾 and 𝐿 are continuous on the interval [0, 1], the system of
Fredholm integral equations can be solved by direct or iterative techniques [28].
The midpoint quadrature [29] is used to find the numerical solution for the system
given by Eq. (4.18) and Eq. (4.19). We divide the interval [0, 1] into 𝑁 equal sub-
intervals so the midpoints are 𝑢 = 𝑢𝑚 = 2𝑚−1

2𝑁 , 𝑠 = 𝑢𝑛 = 2𝑛−1
2𝑁 𝑚,𝑛 = 1, 2 . . . , 𝑁

and introduce the following notations

Φ(𝑢𝑚) = Φ𝑚, Ψ(𝑢𝑚) = Ψ𝑚,(5.1a)
𝐾(𝑢𝑚, 𝑢𝑛) = 𝐾𝑚𝑛, 𝐿(𝑢𝑚, 𝑢𝑛) = 𝐿𝑚𝑛.(5.1b)

Then considering the following transformations 𝜑(𝑎)= 4𝑎𝜔√
2𝜋

Φ𝑁 , 𝜓(𝑎) = 4𝑏𝜔√
2𝜋

Ψ𝑁 ,
we obtain the following systems of finite algebraic equations in Φ𝑚 and Ψ𝑚

Φ𝑚 +
𝑐2
√
𝑐

𝑁

√
𝑢𝑚

𝑁∑︁
𝑛=1

√
𝑢𝑛Ψ𝑛𝐾𝑚𝑛 = 0, 𝑚 = 1, 2, . . . , 𝑁,(5.2)

Ψ𝑚 +
1

𝑁
√
𝑐

√
𝑢𝑚

𝑁∑︁
𝑛=1

√
𝑢𝑛Φ𝑛𝐿𝑚𝑛 = 𝑢𝑚, 𝑚 = 1, 2, . . . , 𝑁.(5.3)

After solving the above system, the unknown coefficients Φ𝑚 and Ψ𝑚 can be
obtained and then we get the numerical approximation of the unknown functions
𝐵1, 𝐴2, 𝐵2 and 𝐴3 given by Eq. (3.6a), Eq. (4.1a), Eq. (4.1b) and Eq. (3.6b)

𝐵1(𝑥) =
4𝑎2𝜔

𝑁
√
2𝜋

√
𝑥

𝑁∑︁
𝑚=1

√
𝑢𝑚[𝑒−𝑥𝐻𝑐2

√
𝑐Ψ𝑚𝐽 1

2
(𝑥𝑐𝑢𝑚)− Φ𝑚𝐽 3

2
(𝑥𝑢𝑚)],(5.4a)
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𝐴2(𝑥) =
4𝑎2𝜔

𝑁
√
2𝜋

√
𝑥

𝑁∑︁
𝑚=1

√
𝑢𝑚Φ𝑚𝐽 3

2
(𝑥𝑢𝑚),(5.4b)

𝐵2(𝑥) = 𝑒−𝑥𝐻 4𝑏2
√
𝑐𝜔

𝑁
√
2𝜋

√
𝑥

𝑁∑︁
𝑚=1

√
𝑢𝑚Ψ𝑚𝐽 1

2
(𝑥𝑐𝑢𝑚),(5.4c)

𝐴3(𝑥) =
4𝑎2𝜔

𝑁
√
2𝜋

√
𝑥

𝑁∑︁
𝑚=1

√
𝑢𝑚[𝑒𝑥𝐻𝑐2

√
𝑐Ψ𝑚𝐽 1

2
(𝑥𝑐𝑢𝑚) + Φ𝑚𝐽 3

2
(𝑥𝑢𝑚)].(5.4d)

5.1. Stress intensity factor. The stress intensity factors at the edge of the
crack and at the rim of the disc are defined respectively by

𝐾𝑎
III = lim

𝑟→𝑎+

√︀
2𝜋(𝑟 − 𝑎)𝜏

(2)
𝜃𝑧 (𝑟, 𝑧)|𝑧=0,(5.5)

𝐾𝑏
III = lim

𝑟→𝑏−

√︀
2𝜋(𝑏− 𝑟)𝜏

(2)
𝜃𝑧 (𝑟, 𝑧)|𝑧=ℎ.(5.6)

On the plane 𝑧 = 0 for 𝑟 ⩾ 𝑎, the expression of stress is given by

(5.7) 𝜏
(2)
𝜃𝑧 (𝑟, 0) = 𝐺

∫︁ ∞

0

[︂
− 𝜆

3
2

∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝐽 3

2
(𝜆𝑡)𝑑𝑡

+ 𝑒−𝜆ℎ𝜆
3
2

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝐽 1

2
(𝜆𝑡)𝑑𝑡

]︂
𝐽1(𝜆𝑟)𝑑𝜆.

On the plane 𝑧 = ℎ, the expression of stress is given by

(5.8) 𝜏
(2)
𝜃𝑧 (𝑟, ℎ) = 𝐺

∫︁ ∞

0

[︂
− 𝑒−𝜆ℎ𝜆

3
2

∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝐽 3

2
(𝜆𝑡)𝑑𝑡

+ 𝜆
3
2

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝐽 1

2
(𝜆𝑡)𝑑𝑡

]︂
𝐽1(𝜆𝑟)𝑑𝜆.

The second and the first parts of the integrals (5.7) and (5.8) respectively
converge quickly, their limits as 𝑟 → 𝑎 and 𝑟 → 𝑏 automatically vanish, whereas
the limits of the other two integrals are analyzed asymptotically as follows.

Using the relation

(5.9) 𝐽1(𝜆𝑟) = − 1

𝜆

𝑑

𝑑𝑟
𝐽0(𝜆𝑟),

we obtain

(5.10) 𝜏
(2)
𝜃𝑧 (𝑟, 0) = 𝐺

∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝑑𝑡

∫︁ ∞

0

𝐹 (𝜆, 𝑟)𝑑𝜆

+𝐺

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝑑𝑡

∫︁ ∞

0

𝑒−𝜆ℎ𝜆
3
2 𝐽 1

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆,

and

(5.11) 𝜏
(2)
𝜃𝑧 (𝑟, ℎ) = −𝐺

∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝑑𝑡

∫︁ ∞

0

𝑒−𝜆ℎ𝜆
3
2 𝐽 3

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆
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−𝐺

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝑑𝑡

∫︁ ∞

0

𝐺(𝜆)𝑑𝜆,

where

(5.12) 𝐹 (𝜆, 𝑟) = 𝜆
1
2 𝐽 3

2
(𝜆𝑡)𝐽0(𝜆𝑟),

(5.13) 𝐺(𝜆, 𝑟) = 𝜆
1
2 𝐽 1

2
(𝜆𝑡)𝐽0(𝜆𝑟).

To calculate the limit of the integrals discussed above, we have to separate the
terms obtained by numerical integration and those by application of asymptotic
expansions of Bessel functions [30].

Once the value of 𝜆 becomes very large, we use the following asymptotic be-
havior of the Bessel function of the first kind

(5.14) 𝐽𝜈(𝜆) ≃
√︂

2

𝜆𝜋
cos

(︁
𝜆− 𝜋

2
𝜈 − 𝜋

4

)︁
,

and then we get

𝐽3/2(𝜆𝑡) ≃
√︂

2

𝜆𝑡𝜋
cos(𝜆𝑡− 𝜋) = −

√︂
2

𝜆𝑡𝜋
cos(𝜆𝑡),(5.15)

𝐽1/2(𝜆𝑡) ≃
√︂

2

𝜆𝑡𝜋
cos(𝜆𝑡− 𝜋

2
) =

√︂
2

𝜆𝑡𝜋
sin(𝜆𝑡).(5.16)

.
Then 𝐹 (𝜆, 𝑟) and 𝐺(𝜆, 𝑟) are replaced, respectively, by 𝐹 ′(𝜆, 𝑟) and 𝐺′(𝜆, 𝑟)

for large values of 𝜆. This allows us to write

(5.17)
∫︁ ∞

0

𝐹 (𝜆, 𝑟) =

∫︁ ∞

0

[𝐹 (𝜆, 𝑟)− 𝐹 ′(𝜆, 𝑟)]𝑑𝜆+

∫︁ ∞

0

𝐹 ′(𝜆, 𝑟)𝑑𝜆,

(5.18)
∫︁ ∞

0

𝐺(𝜆, 𝑟) =

∫︁ ∞

0

[𝐺(𝜆, 𝑟)−𝐺′(𝜆, 𝑟)]𝑑𝜆+

∫︁ ∞

0

𝐺′(𝜆, 𝑟)𝑑𝜆.

Since the first integrals in the above relations converge quickly, their limits as
𝑟 −→ 𝑎+ and 𝑟 −→ 𝑏− vanish, whereas the limit of the second integrals gives the
expression stress intensity factors.

We use the following integral formulas to replace the first infinite integrals
respectively in the right part of Eq. (5.10) and Eq. (5.11)

(5.19)
∫︁ ∞

0

cos(𝜆𝑡)𝐽0(𝜆𝑟)𝑑𝜆 =

{︃
1√

𝑟2−𝑡2
, 𝑟 > 𝑡

0, 𝑟 < 𝑡
,

(5.20)
∫︁ ∞

0

sin(𝜆𝑡)𝐽0(𝜆𝑟)𝑑𝜆 =

{︃
0, 𝑟 > 𝑡

1√
𝑡2−𝑟2

, 𝑟 < 𝑡
,

and we obtain

(5.21) 𝜏
(2)
𝜃𝑧 (𝑟, 0) = −

√︂
2

𝜋
𝐺
𝑑

𝑑𝑟

∫︁ 𝑎

0

𝜑(𝑡)√
𝑟2 − 𝑡2

𝑑𝑡+𝑅1(𝑟),
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(5.22) 𝜏
(2)
𝜃𝑧 (𝑟, ℎ) = −

√︂
2

𝜋
𝐺
𝑑

𝑑𝑟

∫︁ 𝑏

0

𝜓(𝑡)√
𝑡2 − 𝑟2

𝑑𝑡+𝑅2(𝑟),

where

(5.23) 𝑅1(𝑟) = 𝐺

∫︁ 𝑏

0

√
𝑡𝜓(𝑡)𝑑𝑡

∫︁ ∞

0

𝑒−𝜆ℎ𝜆
3
2 𝐽 1

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆,

(5.24) 𝑅2(𝑟) = −𝐺
∫︁ 𝑎

0

√
𝑡𝜑(𝑡)𝑑𝑡

∫︁ ∞

0

𝑒−𝜆ℎ𝜆
3
2 𝐽 3

2
(𝜆𝑡)𝐽1(𝜆𝑟)𝑑𝜆.

Now integrating by parts, we get

(5.25) 𝜏
(2)
𝜃𝑧 (𝑟, 0) = 𝐺

√︂
2

𝜋

[︂
𝑎𝜑(𝑎)

𝑟
√
𝑟2 − 𝑎2

−
∫︁ 𝑎

0

𝑡𝜑′(𝑡)

𝑟
√
𝑟2 − 𝑡2

𝑑𝑡

]︂
+𝑅1(𝑟).

We note that the infinite integrals in the preceding expressions are convergent
throughout the medium except at the singular points 𝑟 → 𝑎+ which occupy the
crack boundary.

(5.26) 𝜏
(2)
𝜃𝑧 (𝑟, ℎ) = 𝐺

√︂
2

𝜋

[︂
𝑏𝜓(𝑏)

𝑟
√
𝑏2 − 𝑟2

−
∫︁ 𝑏

𝑟

1

𝑟

𝑡𝜓′(𝑡)√
𝑡2 − 𝑟2

𝑑𝑡

]︂
+𝑅2(𝑟).

In this case, the Equation (5.26) shows that 𝜏 (2)𝜃𝑧 (𝑟, ℎ) is 0(𝑟) as 𝑟 → 0 and the
integral is bonded as 𝑟 → 𝑏−. As a result we obtain a square root singularity at
𝑟 = 𝑏 and the constant 𝜓(𝑏) is the measure of the strength of singularity in the
vicinity of the rigid inclusion.

The stress intensity factor at the edge of the rigid inclusion may be calculated as

(5.27) 𝐾𝑏
III = lim

𝑟→𝑏−

√︀
2𝜋(𝑏− 𝑟)

𝐺
√
2√
𝜋

𝑏𝜓(𝑏)

𝑟
√
𝑏2 − 𝑟2

.

By using the following transformations: 𝜑(𝑎) = 4𝑎𝜔√
2𝜋

Φ𝑁 , 𝜓(𝑎) = 4𝑏𝜔√
2𝜋

Ψ𝑁 , we
obtain

𝐾𝑎
III =

4𝐺𝜔
√
𝑎√

𝜋
Φ𝑁 ,(5.28)

𝐾𝑏
III =

4𝐺𝜔
√
𝑏√

𝜋
Ψ𝑁 .(5.29)

The effect of the distance between the crack and the rigid inclusion 𝐻 on the
stress intensity factor is also shown in Figure 2. The increase in the height 𝐻
induces the decrease in the stress intensity factor for all values of 𝑎/𝑏.

Figure 3 illustrates the variation of the normalized stress intensity factor 𝐾𝑏
III

at the edge of the rigid inclusion defined by Eq. (5.29) versus 𝑎/𝑏 for 𝐻 = 1, 0.75, 0.5
and 0.25. It can be seen that the stress intensity factor starts with the value 4/

√
𝜋,

which is the stress intensity factor in the vinicity of the rigid inclusion (𝑎 −→ 0)
for a rigid disc alone in the infinite medium (not cracked). Furthermore, it first
increases and then decreases to a minimum value and finally increases to 4/

√
𝜋. In

addition, the interaction between the inclusion and the crack is small for smaller
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values of 𝑎/𝑏 and the values of the stress intensity factor are greater when the crack
is closer to the disc.

5.2. Displacement and stress fields. By substituting Eqs. (5.4a)–(5.4d)
into the expressions of the displacements and stresses Eqs. (3.4a)–(3.4f), we get the
numerical results of displacements and stresses for the three regions.

The results for the variation of the normalized displacements 𝑢(𝑖)𝜃 (𝜌, 𝜁)/𝜔𝑎 and
the normalized stresses 𝜏 (𝑖)(𝜌, 𝜁)/ 𝐺𝜔𝑎 versus the normalized radius 𝜌 are shown
graphically in Figures 4 to 9 for the different values of the dimensionless axial
distances 𝜁 = 𝑧/𝑎. For each region, five different axial distances are selected as
I (𝜁 = −𝐻; −3𝐻/4; −𝐻/2; −𝐻/4; 0), II (𝜁 = 0; 𝐻/4; 𝐻/2; 3𝐻/4;𝐻), III (𝜁 = 𝐻;
5𝐻/4; 3𝐻/2 7𝐻/4;2𝐻), with the particular values of the height 𝐻 = 1 and the
dimensionless disc sizes 𝑐 = 1 and 𝑐 = 0.5.

The variation of the normalized displacements is shown in Figures 4 to 6. We
notice that the displacements in the three regions increase at first, reach maximum
values at 𝜌 = 𝑐 in regions 2 and 3 and then decrease out of the disc band with
increasing 𝜌.

The distribution of the shear stresses in the elastic medium is also discussed
and shown in Figures 7 to 9. It is concluded that the magnitude of the stress in the
first region is lower than in the other three and that the stress are initially rises,
attains its maximum values and with the increase in the value of 𝜌 the stress goes
on to decrease.

5.3. The moment required to produce rotation of the rigid inclusion.
The torque required to sustain the rotation of the disc can be computed by

(5.30) 𝑇 = 2𝜋

∫︁ 𝑏

0

𝑟2𝜏𝜃𝑧(𝑟, ℎ)𝑑𝑟.
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Figure 4. Tangential displacement 𝑢1𝜃 versus 𝜌 for various 𝜁, 𝑧 ⩽ 0
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Figure 5. Tangential displacement 𝑢2𝜃 versus 𝜌 for various 𝜁, 0 ⩽ 𝑧 ⩽ ℎ

Using the relation

(5.31)
∫︁ 𝑏

0

𝑟2𝐽1(𝜆𝑟) =
𝑏2

𝜆
𝐽2(𝜆𝑏),

we get

(5.32) 𝑇 = 2𝜋𝑏2𝐺

∫︁ ∞

0

[−𝐴2(𝜆)𝑒
−𝜆𝑧 +𝐵2(𝜆)𝑒

𝜆𝑧]𝐽2(𝜆𝑏)𝑑𝜆.

Since here the moment is applied only to the rigid inclusion, the integrand
is expressed in terms of 𝜓(𝑡). Substituting the values of 𝐴2(𝜆) and 𝐵2(𝜆) from
Equations (4.1a) and (4.1b) into Equation (5.32) and using the asymptotic behavior
of the Bessel function of the first kind 𝐽 1

2
we find that

(5.33) 𝑇 = 2
√
2𝜋𝑏2𝐺

∫︁ 𝑏

0

𝜓(𝑡)𝑑𝑡

∫︁ ∞

0

sin(𝜆𝑡)𝐽2(𝜆𝑏)𝑑𝜆.
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Figure 6. Tangential displacement 𝑢3𝜃 versus 𝜌 for various 𝜁, 𝑧 ⩾ ℎ
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Figure 7. Shear stress 𝜏1𝜃𝑧 versus 𝜌 for various 𝜁, 𝑧 ⩽ 0

Taking into account the relation

(5.34)
∫︁ ∞

0

𝐽2(𝜆𝑏) sin(𝜆𝑡)𝑑𝑡 =
2𝑡

𝑏2
,

we obtain the moment applied to the inclusion

(5.35) 𝑇 = 4
√
2𝜋𝐺

∫︁ 𝑏

0

𝑡𝜓(𝑡)𝑑𝑡.

By using the following transformations 𝑡 = 𝑏𝑢 and 𝜓(𝑏𝑢) = 4𝑏𝜔√
2𝜋

Ψ𝑢, we get

(5.36) 𝑇 = 16𝜔𝑏3𝐺

∫︁ 1

0

𝑢Ψ(𝑢)𝑑𝑢.
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Figure 8. Shear stress 𝜏2𝜃𝑧 versus 𝜌 for various 𝜁, 0 ⩽ 𝑧 ⩽ ℎ
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Figure 9. Shear stress 𝜏3𝜃𝑧 versus 𝜌 for various 𝜁, 𝑧 ⩾ ℎ

The moment required to perform the rotation 𝜔, when the medium contains
no cracks and no inclusions can be formulated as [5–7,24]

𝑇0 =
16𝐺𝜔𝑏3

3
.

Using the last relation, we find the dimensionless torque on the rigid disc

(5.37)
𝑇

𝑇0
= 3

∫︁ 1

0

𝑢Ψ(𝑢)𝑑𝑢.

Equation (5.37) can be evaluated numerically. The moment is shown in Fig-
ure 10 as a function of the crack size. For this problem of pure shear, the moment
increases with 𝑎/𝑏, reaches its maximum and then decreases to a stable value.
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Figure 10. Variation of 𝑇/𝑇0 versus 𝑎/𝑏 for different 𝐻

6. Conclusion

In this study, the axisymmetric torsion problem of a circular rigid inclusion
embedded in the interior of a homogeneous elastic material is analytically addressed.
The medium is weakened by a penny-shaped crack located parallel to the plane of
the inclusion. Using the Hankel integral transformation method, the doubly mixed
boundary value problem is reduced to a system of dual integral equations, which
are transformed to a Fredholm integral equations system of the second kind. The
presented graphs show the variation of the displacements, the stresses in the three
regions and the stress intensity factor at the edge of the crack and at the rim
of the inclusion for some dimensionless parameters. The numerical results show
that the discontinuities around the crack and the inclusion cause a large increase
in the stresses which decay with distance from the loaded disc. Furthermore, we
can observe the dependence of the stress intensity factor on the disc size and the
distance between the crack and the rigid inclusion.
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МЕШОВИТИ ГРАНИЧНИ ПРОБЛЕМ ЕЛАСТИЧНЕ
СРЕДИНЕ СА ЛОМОМ ПОД ТОРЗИJОМ

Резиме. Оваj рад има за циљ да истражи проблем пукотине у облику нов-
чића у унутрашњости хомогеног еластичног материjала под осносиметричном
торзиjом кружном крутом инклузиjом уграђеном у еластичну средину. Кори-
шћењем Ханкеловог метода интегралне трансформациjе, мешовити гранични
проблем се своди на систем дуалних интегралних jедначина. Оне се своде на
регуларан систем Фредхолмових интегралних jедначина друге врсте коjе се за-
тим решаваjу првилом квадратура. Нумерички резултати фактора померања,
напрезања и интензитета напрезања су приказани графички у неким партику-
ларним случаjевима разматраног проблема.
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