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TULCZYJEW’S TRIPLET FOR LIE GROUPS III:
HIGHER ORDER DYNAMICS AND

REDUCTIONS FOR ITERATED BUNDLES

Oğul Esen, Hasan Gümral, and Serkan Sütlü

Abstract. Given a Lie group 𝐺, we elaborate the dynamics on 𝑇 *𝑇 *𝐺 and
𝑇 *𝑇𝐺, which is given by a Hamiltonian, as well as the dynamics on the Tul-
czyjew symplectic space 𝑇𝑇 *𝐺, which may be defined by a Lagrangian or a
Hamiltonian function. As the trivializations we adapted respect the group
structures of the iterated bundles, we exploit all possible subgroup reductions
(Poisson, symplectic or both) of higher order dynamics.

1. Introduction

The tangent and the cotangent bundles of a Lie group admit global trivial-
izations, as well as the Lie group structures, induced from the underlying Lie
group itself. These structures may further be carried over the iterated bundles
𝑇 *𝑇𝐺, 𝑇𝑇 *𝐺, and 𝑇 *𝑇 *𝐺. These iterated bundles constitute Tulczyjew’s triplet,
introduced for a geometric description of the Legendre transformation from the
Lagrangian description on 𝑇𝐺 to the Hamiltonian description on 𝑇 *𝐺 for a me-
chanical system having 𝐺 as the configuration space. Such a system admits 𝐺 as
kinematical symmetries, and the reduction of the Lagrangian dynamics results in
the Euler-Poincré equations on the Lie algebra g of 𝐺. Similarly, the reduction of
the Hamiltonian dynamics to g* is described by the Lie–Poisson equations.

The present note is intended as a sequel to [19, 20]. In the first part [19],
we gave a detailed description of the possible trivializations of the iterated bun-
dles 𝑇 *𝑇𝐺, 𝑇𝑇 *𝐺, and 𝑇 *𝑇 *𝐺, which are Lie group isomorphisms. Moreover, we
described the group structures up to the second iterated bundles, as well as the
canonical involutions on them. Having explicit descriptions of the cotangent and
the Tulczyjew symplectic structures, we performed the Marsden-Weinstein reduc-
tion by kinematical symmetries to obtain the reduced Tulczyjew triplet for the
Legendre transformation from Euler–Poincaré to Lie–Poisson equations. Then, in
the second part [20], we studied the Lagrangian and the Hamiltonian dynamical
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equations at each stage of the Tulczyjew construction under the trivializations re-
specting the Lie group structures. The dynamics we considered is defined either by
a Lagrangian on 𝑇𝐺, or by a Hamiltonian on 𝑇 *𝐺, which, in the framework of Tul-
czyjew construction, corresponds to Lagrangian submanifolds of 𝑇 *𝑇𝐺 or 𝑇 *𝑇 *𝐺,
respectively. In other words, first order dynamics considered in [20] restricts to the
fiber coordinates of the second iterated bundles.

In this work, we aim to give a complete description of the higher order dynamics
and its reductions by considering the Lagrangian and/or Hamiltonian functions
on the second iterated bundles, taking full advantage of the trivializations at our
disposal. Obviously, releasing the condition that the dynamics on iterated bundles
is described by Lagrangian submanifolds opens up the possibility to obtain higher
order forms of Euler–Poincaré and Lie–Poisson equations. The underlying structure
will, indeed, offer more than this generalization.

The geometric/algebraic constructions as well as dynamical equations we offer
in this study admit several applications in Hamiltonian dynamics. Let us list some
of these applications that particularly lie in our sphere of interest.

(1) Consider a Lagrangian theory determined by a second order Lagrangian
function on the second order tangent bundle 𝑇 2𝐺 [11,22,24]. This higher order ge-
ometry is proper for investigations of variational aspects of higher order dynamical
systems [14]. In this case, after considering the inclusion 𝑇 2𝐺 →˓ 𝑇𝑇𝐺, one defines
the Legendre transformation from 𝑇 2𝐺 to a subbundle of the iterated cotangent
bundle 𝑇 *𝑇𝐺. Due to the dimensional argument, independent of the degeneracy
level of the Lagrangian function, any mapping 𝑇 2𝐺 ↦→ 𝑇 *𝑇𝐺 fails to be an isomor-
phism. Consequently, not only the dynamics on 𝑇 *𝑇𝐺 but also all of its reductions
are particularly important for Hamiltonian analysis of such a Lagrangian system.
We deal with the geometric/algebraic analysis of this transformation in an upcom-
ing work.

(2) As another application, consider the motion of a single particle whose
momentum phase space is the cotangent group 𝑇 *𝐺. Its complete tangent (or
cotangent) lift is necessarily a Hamiltonian system on the tangent bundle 𝑇𝑇 *𝐺
(resp. 𝑇 *𝑇 *𝐺). Then taking the vertical (evolutionary) representative of the as-
sociated Hamiltonian vector field, one arrives at the kinetic theory governing the
collective motion of a bunch of such particles, each obeying individually dynamics
on the base level 𝑇 *𝐺. That is a geometric pathway from the individual motion of
particles to the kinetic equation of the medium consisting of such particles [16–18].
The relation between all possible reductions of the cotangent bundle 𝑇 *𝐺 and the
iterated bundles 𝑇𝑇 *𝐺 and 𝑇 *𝑇 *𝐺 are, therefore, particularly interesting from this
point of view.

(3) As a third comment, we may add that these geometries serve well to con-
crete realizations of Tulczyjew–Legendre transformations even for singular theo-
ries. The Lie group approach to Tulczyjew construction is particularly important
for fluid and plasma theories where the configuration spaces are diffeomorphism
groups [41, 44]. As a final comment, we would like to note that formalisms we
address in the present work contain very interesting geometric and algebraic fea-
tures even in their own right. Because of the beautiful geometry they have, we
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think these systems deserve detailed analysis, even if they don’t have any field of
application.

An immediate generalization of the results of the papers [19, 20], and the
present work is to apply them to fibered spaces admitting local trivializations, or
Ehresmann connections. In a recent work [21], we have addressed this issue in the
particular case of the principal 𝐺-bundles, and their associated vector bundles.

1.1. Trivializations. One observes that the form of equations governing dy-
namics on Lie groups depends on the kind of trivializations adapted on iterated
bundles [11,12,24,38]. Additional terms in these equations may or may not ap-
pear depending on whether trivialization preserves semidirect product and group
structures or not. If one preserves the group structures, canonical embeddings of
factors involving trivialization define subgroups of iterated bundles and reductions
of dynamics with these subgroups become possible.

Based on exhaustive investigation of trivializations in our previous work [19],
we shall present all reductions of dynamics on iterated bundles of a Lie group with
the convenient trivialization of the first kind. In trivialization of the first kind, we
identify tangent 𝑇𝐺 and cotangent 𝑇 *𝐺 bundles with their semidirect product triv-
ializations 𝐺Ⓢg and 𝐺Ⓢg*, respectively. Then, we trivialize the iterated bundles
𝑇 (𝐺Ⓢg), 𝑇 (𝐺Ⓢg*), 𝑇 *(𝐺Ⓢg) and 𝑇 *(𝐺Ⓢg*) by considering them as tangent and
cotangent groups again. As an example, we obtain

𝑇𝑇 *𝐺 ≃ 𝑇 (𝐺Ⓢg*) ≃ (𝐺Ⓢg*)ⓈLie(𝐺Ⓢg*) ≃ (𝐺Ⓢg*)Ⓢ(gⓈg*)

for which the trivialization maps preserve lifted group structures, thereby making
various reductions of dynamics possible. On the other hand, in trivialization of the
second kind, one distributes functors 𝑇 and 𝑇 * to𝐺Ⓢg and𝐺Ⓢg*, obtains products
of first order bundles and then trivializes each factor involving the products. This
results in, for example,

(1.1) 2𝑇𝑇 *𝐺 ≃ 𝑇 (𝐺Ⓢg*) → 𝑇𝐺Ⓢ𝑇g* ≃ (𝐺Ⓢg)Ⓢ(g* × g*)

for which distributions of functors mix up orders of fibrations, and do not preserve
group structures [19]. Throughout this work we shall use trivialization of the first
kind unless otherwise stated. A subscript of g and g* will show its position in the
original trivialization of an iterated bundle.

1.2. Content of the work. Here is a brief description of what we present in
each section.

Section 2. This section is intended as a reference section of the present work.
Notations and conventions are fixed. Trivializations of all spaces 𝑇𝐺, 𝑇 *𝐺, 𝑇 *𝑇𝐺,
𝑇𝑇 *𝐺, 𝑇 *𝑇 *𝐺 and their induced group structures are defined. Subgroups are
listed. Subgroups with symplectic actions are identified. The trivialized form of
the symplectic two-forms, as well as the associated one-forms and the invariant
vector fields on the cotangent bundles and Tulczyjew’s symplectic space 𝑇𝑇 *𝐺 are
given.

Section 3. The dynamics on the first order (both tangent and cotangent) bun-
dles are considered. The first order Lagrangian and Hamiltonian dynamics on 𝑇𝐺
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and 𝑇 *𝐺 are described by Euler-Lagrange and Hamilton’s equations

(1.2)
𝑑

𝑑𝑡

𝛿�̄�

𝛿𝜉
= 𝑇 *

𝑒𝑅𝑔
𝛿�̄�

𝛿𝑔
+ ad*𝜉

𝛿�̄�

𝛿𝜉
,

𝑑𝑔

𝑑𝑡
= 𝑇𝑒𝑅𝑔

(︁𝛿�̄�
𝛿𝜇

)︁
,

𝑑𝜇

𝑑𝑡
= ad*𝛿�̄�

𝛿𝜇

𝜇− 𝑇 *
𝑒𝑅𝑔

𝛿�̄�

𝛿𝑔
,

respectively. Reduction of (1.2) by 𝐺 gives the Euler–Poincaré equations. Poisson
and Marsden–Weinstein reductions on 𝑇 *𝐺 are performed to obtain the Lie–Poisson
equations.

Section 4. Hamiltonian dynamics on 𝑇 *𝑇𝐺 is given by the equations(︁ 𝑑
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equivalent to four-component Hamilton’s equations. There are remarkable differ-
ences arising from the use of different trivializations. Reductions by 𝐺, g and 𝐺Ⓢg
are performed. Structures of the reduced spaces are studied in detail.

Section 5. Hamiltonian dynamics on 𝑇 *𝑇 *𝐺 is generated by the vector fields
with components of the form
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.

Reductions by 𝐺, g* and 𝐺Ⓢg* are performed. Structures of the reduced spaces
are exhibited in detail. The correspondence between the dynamics on 𝑇 *𝑇 *𝐺 and
on 𝑇 *𝑇𝐺 is established by symplectic diffeomorphisms and Poisson maps.

Section 6. On 𝑇𝑇 *𝐺, there are both Lagrangian and Hamiltonian formalisms.
If a function 𝐸 on 𝑇𝑇 *𝐺 is regarded as a Hamiltonian, then Hamilton’s equations
with the Tulczyjew symplectic structure are
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.

Reduction by 𝐺 results in a reduced Tulczyjew triplet considered in [20] before.
Reductions of the Tulczyjew structure by g, by a symplectic action of g* that may
be connected with a symplectic diffeomorphism from 𝑇𝑇 *𝐺 to 𝑇 *𝑇 *𝐺, by 𝐺Ⓢg
and by 𝐺Ⓢg* are studied in detail.

If the function 𝐸 on 𝑇𝑇 *𝐺 is regarded as a Lagrangian function, it then gives
the Euler–Lagrange dynamics
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Reductions of these equations by 𝐺, g* and 𝐺Ⓢg* are described. The latter gives
the Euler–Poincaré equations on gⓈg*.
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2. Geometry of iterated bundles

Let 𝐺 be a Lie group, g = Lie(𝐺) ≃ 𝑇𝑒𝐺 be its Lie algebra, and g* = Lie*(𝐺)
be the dual of g. We shall adapt the letters

𝑔, ℎ ∈ 𝐺, 𝜉, 𝜂, 𝜁 ∈ g, 𝜇, 𝜈, 𝜆 ∈ g*

as elements of the spaces shown. For a tensor field which is either right or left
invariant, we shall use 𝑉𝑔 ∈ 𝑇𝑔𝐺, 𝛼𝑔 ∈ 𝑇 *

𝑔𝐺, etc... We shall denote left and right
multiplications on 𝐺 by 𝐿𝑔 and 𝑅𝑔, respectively. The right inner automorphism
𝐼𝑔 = 𝐿𝑔−1 ∘ 𝑅𝑔 is a right representation of 𝐺 on 𝐺 satisfying 𝐼𝑔 ∘ 𝐼ℎ = 𝐼ℎ𝑔. The
right adjoint action Ad𝑔 = 𝑇𝑒𝐼𝑔 of 𝐺 on g is defined as the tangent map of 𝐼𝑔 at
the identity 𝑒 ∈ 𝐺. The infinitesimal right adjoint representation ad𝜉 𝜂 is [𝜉, 𝜂] and
is defined as a derivative of Ad𝑔 over the identity. A right invariant vector field 𝑋𝐺

𝜉

generated by 𝜉 ∈ g is of the form 𝑋𝐺
𝜉 (𝑔) = 𝑇𝑒𝑅𝑔𝜉. The identity [𝜉, 𝜂] = [𝑋𝐺

𝜉 , 𝑋
𝐺
𝜂 ]𝐽𝐿

defines the isomorphism between g and the space X𝑅(𝐺) of right invariant vector
fields endowed with the Jacobi–Lie bracket. The coadjoint action Ad*𝑔 of 𝐺 on the
dual g* of the Lie algebra g is a right representation and is the linear algebraic dual
of Ad𝑔−1 , namely,

(2.1) ⟨Ad*𝑔 𝜇, 𝜉⟩ = ⟨𝜇,Ad𝑔−1 𝜉⟩

holds for all 𝜉 ∈ g and 𝜇 ∈ g*. The inverse element 𝑔−1 appears in the definition
(2.1) in order to make Ad*𝑔 a right action. The infinitesimal coadjoint action ad*𝜉
of g on g* is the linear algebraic dual of ad𝜉. Note that the infinitesimal generator
of the coadjoint action Ad*𝑔 is minus the infinitesimal coadjoint action ad*𝜉 , that is,
if 𝑔𝑡 ⊂ 𝐺 is a curve passing through the identity in the direction of 𝜉 ∈ g, then

𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

Ad*𝑔𝑡 𝜇 = − ad*𝜉 𝜇.

In the diagrams of this work, EL and EP will stand for Euler–Lagrange and
Euler–Poincaré equations, respectively, and PR, SR, LR, EPR and EPR will denote
Poisson, symplectic, Lagrangian, and Euler–Poincaré reductions, respectively.

2.1. The first order tangent group 𝑇𝐺. The trivialization

(2.2) triv𝑇𝐺 : 𝑇𝐺 −→ 𝐺Ⓢg1, 𝑉𝑔 ↦→ (𝑔, 𝑇𝑔𝑅𝑔−1𝑉𝑔) =: (𝑔, 𝜉)

enables us to endow 𝑇𝐺 with the semi-direct product group structure on 𝐺Ⓢg1
given by

(2.3) (𝑔, 𝜉(1))(𝑔, 𝜉(1)) = (𝑔𝑔, 𝜉(1) +Ad𝑔−1 𝜉(1)),

for any 𝜉(1), 𝜉(1) ∈ g1 = g. Accordingly, the Lie algebra of 𝑇𝐺 ∼= 𝐺Ⓢg is the
semi-direct sum Lie algebra g2Ⓢg3 := gⓈg with the Lie bracket

[(𝜉(2), 𝜉(3)), (𝜉(2), 𝜉(3))] = ([𝜉(2), 𝜉(2)], ad𝜉(2) 𝜉
(3) − ad𝜉(2) 𝜉

(3))

for any 𝜉(2), 𝜉(2) ∈ g2 = g, and any 𝜉(3), 𝜉(3) ∈ g3 = g. For further details on the
tangent group, see [26,31,38,45,46].
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Remark 2.1. Here, the subindices on the Lie algebra g serve to distinguish the
copies of g. For the tangent bundle 𝑇𝐺, we denote the trivialization as 𝑇𝐺 ∼= 𝐺Ⓢg1.
The Lie algebra of this space is denoted by g2Ⓢg3, that is,

Lie(𝑇𝐺) ∼= Lie(𝐺Ⓢg1) ∼= g2Ⓢg3,

where Lie(𝐻) stands for the Lie algebra of the group 𝐻. We have that the dual
space of the Lie algebra g2Ⓢg3 is the Cartesian space g*2 × g*3, that is,

(g2Ⓢg3)
* ∼= g*2 × g*3,

where g*2 and g*3 are the dual spaces of the constitutive Lie algebras g2 and g3,
respectively.

2.2. The first order cotangent group 𝑇 *𝐺. The cotangent bundle 𝑇 *𝐺
can also be endowed with a group structure borrowed from the semi-direct product
group 𝐺Ⓢg* via the right trivialization

triv𝑇*𝐺 : 𝑇 *𝐺→ 𝐺Ⓢg*, 𝛼𝑔 ↦→ (𝑔, 𝑇 *
𝑒𝑅𝑔𝛼𝑔).

The group operation on 𝐺Ⓢg* is

(2.4) (𝑔, 𝜇1)(𝑔, 𝜇2) :=
(︁
𝑔𝑔, 𝜇1 +Ad*𝑔−1 𝜇2

)︁
.

On the other hand, we can pull back the canonical 1-form and the symplectic 2-form
on the cotangent bundle 𝑇 *𝐺 with the structure of an exact symplectic manifold
symplectic 2-form Ω𝑇*𝐺 and a potential 1-form 𝜃𝑇*𝐺.

A right invariant vector field 𝑋𝑇*𝐺
(𝜉,𝜈) on the trivialization 𝑇 *𝐺 ∼= 𝐺Ⓢg* corre-

sponding to (𝜉, 𝜈) ∈ gⓈg* at a point (𝑔, 𝜇) is given by [23, App. B. (B.9)]

𝑋𝑇*𝐺
(𝜉,𝜈)(𝑔, 𝜇) =

(︁
𝑇𝑒𝑅𝑔𝜉, 𝜈 + ad*𝜉 𝜇

)︁
.

Accordingly, the values of the canonical 1-form 𝜃𝑇*𝐺 and the symplectic 2-form
Ω𝑇*𝐺 on a right invariant vector field are [1,3,23,34]

⟨𝜃𝑇*𝐺, 𝑋
𝑇*𝐺
(𝜉,𝜈)⟩(𝑔, 𝜇) = ⟨𝜇, 𝜉⟩,(2.5)

⟨Ω𝑇*𝐺; (𝑋
𝑇*𝐺
(𝜉1,𝜈1)

, 𝑋𝑇*𝐺
(𝜉2,𝜈2)

)⟩(𝑔, 𝜇) = ⟨𝜈1, 𝜉2⟩ − ⟨𝜈2, 𝜉1⟩+ ⟨𝜇, [𝜉1, 𝜉2]⟩.(2.6)

Remark 2.2. The symplectic 2-form Ω𝑇*𝐺 is not conserved under the group
operation (2.4), as such, 𝐺Ⓢg* is not a symplectic Lie group as defined in [33].

2.3. The cotangent group of the tangent group 𝑇 *𝑇𝐺.
2.3.1. Trivialization. The global trivialization of 𝑇 *𝑇𝐺 ≃ 𝑇 *(𝐺Ⓢg) can be

achieved by trivializing 𝑇 *(𝐺Ⓢg) into the semidirect product group 𝐺Ⓢg1 and the
dual g*2 × g*3 of its Lie algebra g2Ⓢg3

(2.7)
triv𝑇*(𝐺Ⓢg) : 𝑇

*(𝐺Ⓢg1) → (𝐺Ⓢg1)Ⓢ(g*2 × g*3)

: (𝛼𝑔, 𝛼𝜉) → (𝑔, 𝜉, 𝑇 *
𝑒𝑅𝑔(𝛼𝑔) + ad*𝜉 𝛼𝜉, 𝛼𝜉),

which preserves the group multiplication rule

(2.8) (𝑔, 𝜉, 𝜇1, 𝜇2)(ℎ, 𝜂, 𝜈1, 𝜈2)

= (𝑔ℎ, 𝜉 +Ad𝑔−1 𝜂, 𝜇1 +Ad*𝑔−1(𝜈1 + ad*Ad𝑔 𝜉 𝜈2), 𝜇2 +Ad*𝑔−1 𝜈2)
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on 𝑇 *𝑇𝐺 and results in the following subgroups. Here, the Cartesian space g*2 × g*3
is the one defined in Remark 2.1.

Proposition 2.1. The canonical immersions of the following submanifolds

(2.9)
𝐺, g1, g*2, g*3, 𝐺Ⓢg1, 𝐺Ⓢg*2, 𝐺Ⓢg*3, g*2 × g*3,

g1Ⓢ(g*2 × g*3), (𝐺Ⓢg1)Ⓢg*2, 𝐺Ⓢ(g*2 × g*3)

define subgroups of 𝑇 *𝑇𝐺 and hence they act on 𝑇 *𝑇𝐺 by actions induced from
the multiplication in Eq. (2.8).

Here, the group structure on 𝐺Ⓢg1 is the one given in (2.3), whereas the group
structure on 𝐺Ⓢ𝑔* is in the form of Eq. (2.4) and we obtain the multiplications

(𝑔, 𝜉, 𝜇)(ℎ, 𝜂, 𝜈) = (𝑔ℎ, 𝜉 +Ad𝑔−1 𝜂, 𝜇+Ad*𝑔−1 𝜈)(2.10)

(𝑔, 𝜇1, 𝜇2)(ℎ, 𝜈1, 𝜈2) = (𝑔ℎ, 𝜇1 +Ad*𝑔−1 𝜈1, 𝜇2 +Ad*𝑔−1 𝜈2)(2.11)

(𝜉, 𝜇1, 𝜇2)(𝜂, 𝜈1, 𝜈2) = (𝜉 + 𝜂, 𝜇1 + 𝜈1 + ad*𝜉 𝜈2, 𝜇2 + 𝜈2)(2.12)

defining the group structures on (𝐺Ⓢg1)Ⓢg*2, 𝐺Ⓢ(g*2 × g*3) and g1Ⓢ(g*2 × g*3),
respectively.

2.3.2. Symplectic structure. By requiring that the trivialization triv𝑇*(𝐺Ⓢg) be
a symplectic map, we define a canonical one-form 𝜃𝑇*𝑇𝐺 and a symplectic two-
form Ω𝑇*𝑇𝐺 on the trivialized cotangent bundle 𝑇 *𝑇𝐺. To this end, we recall
that a right invariant vector field 𝑋𝑇*𝑇𝐺

(𝜂1,𝜂2,𝜈1,𝜈2)
on 𝑇 *𝑇𝐺 is generated by an element

(𝜂1, 𝜂2, 𝜈1, 𝜈2) in the Lie algebra (gⓈg)Ⓢ(g*×g*) of 𝑇 *𝑇𝐺 by means of the tangent
lift of right translation on 𝑇 *𝑇𝐺. At a point (𝑔, 𝜉, 𝜇1, 𝜇2) in 𝑇 *𝑇𝐺, the value of
such a right invariant vector field at the point (𝑔, 𝜉, 𝜇1, 𝜇2) reads

(2.13) 𝑋𝑇*𝑇𝐺
(𝜂1,𝜂2,𝜈1,𝜈2)

= (𝑇𝑒𝑅𝑔𝜂1, 𝜂2 + ad𝜉 𝜂1, 𝜈1 + ad*𝜂1
𝜇1 + ad*𝜂2

𝜇2, 𝜈2 + ad*𝜂1
𝜇2)

and is an element of the fiber 𝑇(𝑔,𝜉,𝜇1,𝜇2)(𝑇
*𝑇𝐺). The values of canonical forms

𝜃𝑇*𝑇𝐺 and Ω𝑇*𝑇𝐺 on right invariant vector fields can then be computed at the
point (𝑔, 𝜉, 𝜇1, 𝜇2) as

⟨𝜃𝑇*𝑇𝐺;𝑋
𝑇*𝑇𝐺
(𝜉1,𝜉2,𝜈1,𝜈2)

⟩ = ⟨𝜇1, 𝜉1⟩+ ⟨𝜇2, 𝜉2⟩

⟨Ω𝑇*𝑇𝐺; (𝑋
𝑇*𝑇𝐺
(𝜉1,𝜉2,𝜆1,𝜆2)

, 𝑋𝑇*𝑇𝐺
(𝜂1,𝜂2,𝜈1,𝜈2)

)⟩ = ⟨𝜆1, 𝜂1⟩+ ⟨𝜆2, 𝜂2⟩
− ⟨𝜈1, 𝜉1⟩ − ⟨𝜈2, 𝜉2⟩+ ⟨𝜇1, [𝜉1, 𝜂1]⟩+ ⟨𝜇2, [𝜉1, 𝜂2]− [𝜉2, 𝜂1]⟩.

The musical isomorphism Ω♭
𝑇*𝑇𝐺, induced from the symplectic two-form Ω𝑇*𝑇𝐺,

maps the tangent bundle 𝑇 (𝑇 *𝑇𝐺) to the cotangent bundle 𝑇 *(𝑇 *𝑇𝐺). It takes
the right invariant vector field in Eq. (2.13) to an element of the cotangent bundle
𝑇 *
(𝑔,𝜉,𝜇1,𝜇2)

(𝑇 *𝑇𝐺) with coordinates at the point (𝑔, 𝜉, 𝜇1, 𝜇2)) as

Ω♭
𝑇*𝑇𝐺(𝑋

𝑇*𝑇𝐺
(𝜂1,𝜂2,𝜆1,𝜆2)

) = (𝑇 *
𝑔𝑅𝑔−1(𝜆1 − ad*𝜉 𝜆2), 𝜆2,−𝜂1,−𝜂2).

Remark 2.3. The actions of the subgroups g*2 and g*3 are not symplectic, nor
is any subgroup in the list of Eq. (2.9) containing g*2 and g*3. There remains only
the action of the group 𝐺Ⓢg to perform symplectic reduction on 𝑇 *𝑇𝐺.



208 ESEN, GÜMRAL, AND SÜTLÜ

2.4. The cotangent group of the cotangent group 𝑇 *𝑇 *𝐺. The global
trivialization of the iterated cotangent bundle can be achieved by semidirect prod-
uct of the group 𝐺Ⓢg*1 and the dual g*2 × g3 of its Lie algebra [19]. The trivializa-
tion map

triv𝑇*𝑇*𝐺 : 𝑇 *(𝐺Ⓢg*1) → (𝐺Ⓢg*1)Ⓢ(g*2 × g3)

: (𝛼𝑔, 𝛼𝜇) → (𝑔, 𝜇, 𝑇 *
𝑒𝑅𝑔(𝛼𝑔)− ad*𝛼𝜇

𝜇, 𝛼𝜇)

implies on 𝑇 *𝑇 *𝐺 the group multiplication rule

(2.14) (𝑔, 𝜇1, 𝜇2, 𝜉)(ℎ, 𝜈1, 𝜈2, 𝜂)

= (𝑔ℎ, 𝜇1 +Ad*𝑔−1 𝜈1, 𝜇2 +Ad*𝑔−1 𝜈2 − ad*Ad𝑔−1 𝜂 𝜇1, 𝜉 +Ad𝑔−1 𝜂).

Proposition 2.2. Embeddings of the following subspaces

(2.15)
𝐺, g*1, g*2, g3, 𝐺Ⓢg*1, 𝐺Ⓢg*2, 𝐺Ⓢg3, g*1Ⓢg*2, g*2 × g3,

(𝐺Ⓢg*1)Ⓢg*2, 𝐺Ⓢ(g*2 × g3), g*1Ⓢ(g*2 × g3)

define subgroups of 𝑇 *𝑇 *𝐺 and hence they act on 𝑇 *𝑇 *𝐺 by actions induced from
the multiplication in Eq. (2.14).

The group structures on 𝐺Ⓢ(g*2×g3), 𝐺Ⓢg*1Ⓢg*2, g*1Ⓢ(g*2×g3) are (up to some
reordering) given by Eqs. (2.10), (2.11) and (2.12), respectively.

2.4.1. Symplectic structure on 𝑇 *𝑇 *𝐺. The canonical one-form and the sym-
plectic two-form on 𝑇 *𝑇 *𝐺 can be mapped by triv𝑇*𝑇*𝐺 to 𝑇 *𝑇 *𝐺 based on the
fact that the trivialization map is a symplectic diffeomorphism. Consider a right
invariant vector field 𝑋𝑇*𝑇*𝐺

(𝜂1,𝜈1,𝜈2,𝜂2)
generated by an element (𝜂1, 𝜈1, 𝜈2, 𝜂2) in the Lie

algebra (gⓈg*)Ⓢ(g* × g) of 𝑇 *𝑇 *𝐺. At the point (𝑔, 𝜇1, 𝜇2, 𝜉), the right invariant
vector

(2.16) 𝑋𝑇*𝑇*𝐺
(𝜂1,𝜈1,𝜈2,𝜂2)

= (𝑇𝑅𝑔𝜂1, 𝜈1 + ad*𝜂1
𝜇1, 𝜈2 + ad*𝜂1

𝜇2 − ad*𝜉 𝜈1, 𝜂2 + ad𝜉 𝜂1)

is an element of 𝑇(𝑔,𝜇1,𝜇2,𝜉)(𝑇
*𝑇 *𝐺). At the point (𝑔, 𝜇1, 𝜇2, 𝜉), the values of canon-

ical forms 𝜃𝑇*𝑇*𝐺 and Ω𝑇*𝑇*𝐺 at right invariant vector fields can now be evaluated
to be

⟨𝜃𝑇*𝑇*𝐺, 𝑋
𝑇*𝑇*𝐺
(𝜉1,𝜆1,𝜆2,𝜉2)

⟩ = ⟨𝜉1, 𝜇2⟩+ ⟨𝜆1, 𝜉⟩

(2.17) ⟨Ω𝑇*𝑇*𝐺; (𝑋
𝑇*𝑇*𝐺
(𝜉1,𝜆1,𝜆2,𝜉2)

, 𝑋𝑇*𝑇*𝐺
(𝜂1,𝜈1,𝜈2,𝜂2)

)⟩ = ⟨𝜆2, 𝜂1⟩+ ⟨𝜈1, 𝜉2⟩
− ⟨𝜈2, 𝜉1⟩ − ⟨𝜆1, 𝜂2⟩+ ⟨𝜇2, [𝜉1, 𝜉2]⟩ − ⟨𝜈1, [𝜉1, 𝜉]⟩+ ⟨𝜆1, [𝜂1, 𝜉]⟩.

The musical isomorphism Ω♭
𝑇*𝑇*𝐺, induced from the symplectic two-form Ω𝑇*𝑇*𝐺

in Eq. (2.17), maps 𝑇 (𝑇 *𝑇 *𝐺) to 𝑇 *(𝑇 *𝑇 *𝐺). At the point (𝑔, 𝜇1, 𝜇2, 𝜉), Ω♭
𝑇*𝑇*𝐺

takes the vector in Eq. (2.16) to the element

Ω♭
𝑇*𝑇*𝐺(𝑋

𝑇*𝑇*𝐺
(𝜂1,𝜈1,𝜈2,𝜂2)

) = (𝑇 *
𝑔𝑅𝑔−1(𝜈2 + ad*𝜂2

𝜇1), 𝜂2,−𝜂1,−𝜈1)

in 𝑇 *
(𝑔,𝜇1,𝜇2,𝜉)

(𝑇 *𝑇 *𝐺).

Remark 2.4. Actions of subgroups g*2 and g3, and hence any subgroup in the
list (2.15) containing g*2 and g3, are not symplectic. Thus, there remains only the
action of the group 𝐺Ⓢg*1 to perform symplectic reduction on 𝑇 *𝑇 *𝐺.
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2.5. The tangent group of the cotangent group 𝑇𝑇 *𝐺. 𝑇𝑇 *𝐺 ≃
𝑇 (𝐺Ⓢg*) can be trivialized as a semidirect product of the group 𝐺Ⓢg* and its
Lie algebra gⓈg* by

(2.18)
triv𝑇𝑇*𝐺 : 𝑇 (𝐺Ⓢg*) → (𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3)

: (𝑉𝑔, 𝑉𝜇) → (𝑔, 𝜇, 𝑇𝑅𝑔−1𝑉𝑔, 𝑉𝜇 − ad*𝑇𝑅𝑔−1𝑉𝑔
𝜇),

where (𝑉𝑔, 𝑉𝜇) ∈ 𝑇(𝑔,𝜇)(𝐺Ⓢg*) [19]. The group multiplication on 𝑇𝑇 *𝐺 is

(𝑔, 𝜇1, 𝜉, 𝜇2)(ℎ, 𝜈1, 𝜂, 𝜈2)

= (𝑔ℎ, 𝜇1 +Ad*𝑔−1 𝜈1, 𝜉 +Ad𝑔−1 𝜂, 𝜇2 +Ad*𝑔−1 𝜈2 − ad*Ad𝑔−1 𝜂 𝜇1)

and embedded subgroups of 𝑇𝑇 *𝐺 follow.

Remark 2.5. As in the case of the tangent group, the subindices appear on
the Lie algebra and the dual space serves to distinguish the copies of g and the dual
g*. For the cotangent bundle 𝑇 *𝐺, we denote the trivialization as 𝑇𝐺 ∼= 𝐺Ⓢg*1.
The Lie algebra of this space is denoted by g2Ⓢg*3, that is,

Lie(𝑇 *𝐺) ∼= Lie(𝐺Ⓢg*1)
∼= g2Ⓢg*3,

where Lie(𝐻) stands for the Lie algebra of the group 𝐻. The dual space of the Lie
algebra g2Ⓢg*3 is

(g2Ⓢg*3)
* ∼= g*2 × g3,

where g*2 and g**3
∼= g3 are the dual spaces of the constitutive Lie algebras g2 and

g*3, respectively.

Proposition 2.3. The embeddings of the subspaces

𝐺, g*1, g2, g*3 𝐺Ⓢg*1, 𝐺Ⓢg2, 𝐺Ⓢg*3, g*1Ⓢg*3, g2Ⓢg*3,

(𝐺Ⓢg*1)Ⓢg*3, 𝐺Ⓢ(g2Ⓢg*3), g*1Ⓢ(g2Ⓢg*3)

of 𝑇𝑇 *𝐺 define its subgroups. The group structures on 𝐺Ⓢg, 𝐺Ⓢg* are defined
by Eqs. (2.3) and (2.4), respectively. The group structures on the product spaces
(𝐺Ⓢg*1)Ⓢg*3, 𝐺Ⓢ(g2Ⓢg*3) and g*1Ⓢ(g2Ⓢg*3) are defined (up to some reordering) by
Eqs. (2.11), (2.10) and (2.12), respectively. The group multiplications on g*1, g2,
g*3, g*1 × g*3 and g2 × g*3 are vector additions.

2.5.1. Tulczyjew symplectic strcuture on 𝑇𝑇 *𝐺. 𝑇𝑇 *𝐺 is central in Tulczyjew’s
triplet and carries a two-sided symplectic two-form. An element (𝜂1, 𝜈1, 𝜂2, 𝜈2)
in the semidirect product Lie algebra (gⓈg*)Ⓢ(gⓈg*) defines a right invariant
vector field on 𝑇𝑇 *𝐺 by the tangent lift of right translation in 𝑇𝑇 *𝐺. At a point
(𝑔, 𝜇1, 𝜉, 𝜇2), a right invariant vector is given by

(2.19) 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

= (𝑇𝑅𝑔𝜉2, 𝜈2 + ad*𝜉2 𝜇1, 𝜉3 + ad𝜉 𝜉2, 𝜈3 + ad*𝜉2 𝜇2 − ad*𝜉 𝜈2).

The bundle 𝑇 (𝐺Ⓢg*) carries Tulczyjew’s symplectic two-form Ω𝑇 (𝐺Ⓢg*) with two
potential one-forms. The one-forms 𝜃1 and 𝜃2 are obtained by taking derivations
of the symplectic two-form Ω𝑇*𝐺 and the canonical one-form 𝜃𝑇*𝐺 respectively
in Eq. (2.5) [19]. By requiring that the trivialization triv𝑇𝑇*𝐺 in Eq. (2.18) be
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a symplectic mapping, we obtain an exact symplectic structure Ω𝑇𝑇*𝐺 with two
potential one-forms 𝜃1 and 𝜃2 taking the values

⟨Ω𝑇𝑇*𝐺; (𝑋
𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

, 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

)⟩(𝑔, 𝜇1, 𝜉, 𝜇2) = ⟨𝜈3, 𝜉2⟩+ ⟨𝜈2, 𝜉3⟩(2.20)

− ⟨𝜈2, 𝜉3⟩ − ⟨𝜈3, 𝜉2⟩+ ⟨𝜇2, [𝜉2, 𝜉2]⟩+ ⟨𝜇1, [𝜉3, 𝜉2] + [𝜉2, 𝜉3] + [𝜉, [𝜉2, 𝜉2]]⟩,

⟨𝜃1, 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

⟩ = ⟨𝜇2, 𝜉2⟩ − ⟨𝜈2, 𝜉⟩+ ⟨𝜇1, [𝜉, 𝜉2]⟩,(2.21)

⟨𝜃2, 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

⟩ = ⟨𝜇1, 𝜉3⟩+ ⟨𝜇2, 𝜉2⟩+ ⟨𝜇1, [𝜉, 𝜉2]⟩(2.22)

on right invariant vector fields of the form of Eq. (2.19). At a point (𝑔, 𝜇1, 𝜉, 𝜇2) ∈
𝑇𝑇 *𝐺, the musical isomorphism Ω♭

𝑇𝑇*𝐺, induced from Ω𝑇𝑇*𝐺, maps the image of
a right invariant vector field 𝑋𝑇𝑇*𝐺

(𝜉2,𝜈2,𝜉3,𝜈3)
to an element

Ω♭
𝑇𝑇*𝐺(𝑋

𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

) = (𝑇 *
𝑔𝑅𝑔−1(𝜈3 − ad*𝜉 𝜈2),−(𝜉3 + [𝜉, 𝜉2]), 𝜈2 + ad*𝜉2 𝜇1,−𝜉2)

of 𝑇 *
(𝑔,𝜇,𝜉,𝜈)(𝑇𝑇

*𝐺).

3. Dynamics on the first order bundles

3.1. Lagrangian dynamics on the tangent group 𝑇𝐺. Given a La-
grangian function 𝐿 : 𝑇𝐺 → R, let �̄� : 𝐺Ⓢg → R be the corresponding function
determined by �̄� ∘ triv𝑇𝐺 = 𝐿. The variation of the action integral of the latter is
computed as

𝛿

∫︁ 𝑏

𝑎

�̄�(𝜉, 𝑔)𝑑𝑡 =

∫︁ 𝑏

𝑎

(︁⟨𝛿�̄�
𝛿𝜉
, 𝛿𝜉

⟩
𝑒
+

⟨𝛿�̄�
𝛿𝑔
, 𝛿𝑔

⟩
𝑔

)︁
𝑑𝑡,

applying Hamilton’s principle to the variations of the group (base) component, and
the reduced variational principle

𝛿𝜉 = �̇� + [𝜉, 𝜂]

to the variations of the Lie algebra (fiber) component. For the reduced variational
principle we refer to [9,20,27,30,39] and for the Lagrangian dynamics on semidirect
products to [4,8,28,37,40,47,48]. For the following result, see [5,12,13,15,20].

Proposition 3.1. The trivialized Euler–Lagrange dynamics generated by a La-
grangian function �̄� : 𝐺Ⓢg → R is given by

(3.1)
𝑑

𝑑𝑡

𝛿�̄�

𝛿𝜉
= 𝑇 *

𝑒𝑅𝑔
𝛿�̄�

𝛿𝑔
+ ad*𝜉

𝛿�̄�

𝛿𝜉
.

If, in addition, the Lagrangian function �̄� : 𝐺Ⓢg → R is right invariant (namely,
it is independent of the group variable, that is, �̄�(𝑔, 𝜉) = ℓ(𝜉)), then Eq. (3.1)
reduces to the Euler–Poincaré equations on g = (𝐺Ⓢg)/𝐺

(3.2)
𝑑

𝑑𝑡

𝛿𝑙

𝛿𝜉
= ad*𝜉

𝛿𝑙

𝛿𝜉
.

Along the motion, for any Lagrangian �̄� = �̄�(𝑔, 𝜉), we compute that

𝑑𝐿

𝑑𝑡
=

⟨𝛿�̄�
𝛿𝑔
, �̇�
⟩
+
⟨𝛿�̄�
𝛿𝜉
, 𝜉
⟩
=

⟨𝛿�̄�
𝛿𝑔
, 𝑇𝑒𝑅𝑔𝜉

⟩
+

⟨𝛿�̄�
𝛿𝜉
, 𝜉
⟩

(3.3)
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=
⟨
𝑇 *
𝑒𝑅𝑔

𝛿�̄�

𝛿𝑔
, 𝜉
⟩
+
⟨𝛿�̄�
𝛿𝜉
, 𝜉
⟩

=
⟨ 𝑑
𝑑𝑡

𝛿�̄�

𝛿𝜉
− ad*𝜉

𝛿�̄�

𝛿𝜉
, 𝜉
⟩
+
⟨𝛿�̄�
𝛿𝜉
, 𝜉
⟩

=
⟨ 𝑑
𝑑𝑡

𝛿�̄�

𝛿𝜉
, 𝜉
⟩
+
⟨𝛿�̄�
𝛿𝜉
, 𝜉
⟩
=

𝑑

𝑑𝑡

⟨𝛿�̄�
𝛿𝜉
, 𝜉
⟩
,

where, according to the trivialization (2.2), we have employed the identification
�̇� = 𝑇𝑒𝑅𝑔𝜉 in the first line, whereas we substitute the Euler–Lagrange equations
(3.1) in the third line. The calculation (3.3) reads that the quantity ⟨𝛿�̄�/𝛿𝜉, 𝜉⟩ −𝐿
is a constant of the motion.

3.2. Hamiltonian dynamics on the cotangent group 𝑇 *𝐺. Given �̄�:𝑇 *𝐺
∼= 𝐺Ⓢg* → R, one obtains Hamilton’s equations

(3.4)
𝑑𝑔

𝑑𝑡
= 𝑇𝑒𝑅𝑔

(︁𝛿�̄�
𝛿𝜇

)︁
,

𝑑𝜇

𝑑𝑡
= ad*𝛿�̄�

𝛿𝜇

𝜇− 𝑇 *
𝑒𝑅𝑔

𝛿�̄�

𝛿𝑔

on the semidirect product 𝑇 *𝐺 ∼= 𝐺Ⓢg* from the very definition

𝑖𝑇
*𝐺

𝑋�̄�
Ω𝑇*𝐺 = −𝑑�̄�,

where the right invariant vector field

𝑋𝑇*𝐺
�̄� (𝑔, 𝜇) :=

(︁
𝑇𝑒𝑅𝑔

𝛿�̄�

𝛿𝜇
, ad*𝛿�̄�

𝛿𝜇

𝜇− 𝑇 *
𝑒𝑅𝑔

𝛿�̄�

𝛿𝑔

)︁
is the Hamiltonian vector field associated to(︁𝛿�̄�

𝛿𝜇
,−𝑇 *

𝑒𝑅𝑔
𝛿�̄�

𝛿𝑔

)︁
∈ gⓈg*.

For further details of Hamiltonian dynamics on semi-direct products we refer the
reader to [4,7,11,20,29,35–38,40,42,46].

The canonical Poisson bracket of two functionals 𝐹 , �̄� : 𝐺Ⓢg* → R at a point
(𝑔, 𝜇) ∈ 𝐺Ⓢg* is given by

(3.5) {𝐹 , �̄�}𝑇*𝐺 =
⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐹

𝛿𝑔
,
𝛿�̄�

𝛿𝜇

⟩
−

⟨
𝑇 *
𝑒𝑅𝑔

𝛿�̄�

𝛿𝑔
,
𝛿𝐹

𝛿𝜇

⟩
+
⟨
𝜇,

[︁𝛿𝐹
𝛿𝜇
,
𝛿�̄�

𝛿𝜇

]︁⟩
.

3.2.1. Reduction of 𝑇 *𝐺 by 𝐺. The right action of 𝐺 on 𝐺Ⓢg* is

(3.6) (𝐺Ⓢg*)×𝐺→ 𝐺Ⓢg* : ((𝑔, 𝜇);ℎ) → (𝑔ℎ, 𝜇)

with the infinitesimal generator 𝑋𝑇*𝐺
(𝜉,0) . If �̄�, defined on 𝐺Ⓢg*, is independent of

𝑔, it becomes right invariant under 𝐺. In this case, dropping the terms involving
𝛿�̄�/𝛿𝑔 in Poisson bracket (3.5) is the Poisson reduction 𝐺Ⓢg* → (𝐺Ⓢg*)/𝐺 ≃ g*.
When 𝐹 and �̄� are independent of the group variable 𝑔 ∈ 𝐺, that is, when 𝐹 = 𝑓(𝜇)
and �̄� = 𝑘(𝜇), we have the Lie–Poisson bracket

(3.7) {𝑓, 𝑘}g*(𝜇) =
⟨
𝜇,

[︁𝛿𝑓
𝛿𝜇
,
𝛿𝑘

𝛿𝜇

]︁⟩
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from which the Lie–Poisson equation

(3.8) �̇� = ad*𝛿ℎ
𝛿𝜇
𝜇

on the dual space g* follows. The Lie–Poisson bracket given in Eq. (3.7) can also
be obtained by pulling back the non-degenerate Poisson bracket in Eq. (3.5) with
the embedding g* → 𝐺Ⓢg*.

For the symplectic leaves of this Poisson structure [50], we apply the Marsden–
Weinstein symplectic reduction theorem [43] to 𝐺Ⓢg* with the action of 𝐺. The
action (3.6) is symplectic and it induces the momentum mapping

J𝐺Ⓢg* : 𝐺Ⓢg* −→ g* : (𝑔, 𝜇) → 𝜇,

which is also Poisson, and hence it projects trivialized Hamiltonian dynamics in
(3.4) to the Lie–Poisson dynamics in (3.8).

The inverse image J−1
𝐺Ⓢg*(𝜇) ⊂ 𝐺Ⓢg* of a regular value 𝜇 ∈ g* consists of

two-tuples (𝑔, 𝜇) for 𝑔 ∈ 𝐺 and fixed 𝜇 ∈ g*. We may identify J−1
𝐺Ⓢg*(𝜇) with the

group 𝐺. Let 𝐺𝜇 be the isotropy group of the coadjoint action Ad*, defined in
(2.1), preserving the momenta 𝜇. Then, we have the isomorphism

J−1
𝐺Ⓢg*(𝜇)

⧸︀
𝐺𝜇 ≃ 𝐺/𝐺𝜇 ≃ 𝒪𝜇

identifying the equivalence class [𝑔] of 𝑔 in 𝐺/𝐺𝜇 with the coadjoint orbit

𝒪𝜇 = {Ad*𝑔 𝜇 : 𝑔 ∈ 𝐺}

through the point 𝜇 in g* [41]. We denote the reduced symplectic two-form on
𝒪𝜇 by Ω

/𝐺
𝑇*𝐺(𝜇), which is the Kostant–Kirillov–Souriau two-form [30,41,44]. The

value of Ω/𝐺
𝑇*𝐺(𝜇) on two vector fields ad*𝜉 𝜇, ad*𝜂 𝜇 in 𝑇𝜇𝒪𝜇 is

(3.9) ⟨Ω/𝐺
𝑇*𝐺; (ad

*
𝜉 𝜇, ad

*
𝜂 𝜇)⟩ = −⟨𝜇, [𝜉, 𝜂]g⟩.

3.2.2. Reduction of 𝑇 *𝐺 by 𝐺𝜇. The isotropy subgroup 𝐺𝜇 acts on 𝐺Ⓢg* as
described by Eq. (3.6). Then, Poisson and symplectic reductions of dynamics are
possible. The Poisson reduction of the symplectic manifold 𝐺Ⓢg* under the action
of the isotropy group 𝐺𝜇 results in

(𝐺Ⓢg*)/𝐺𝜇 ≃ 𝒪𝜇 × g*,

with a Poisson bracket

{𝐻,𝐾}𝒪𝜇×g*(𝜇, 𝜈) =
⟨
𝜇,

[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜇

]︁⟩
+
⟨
𝜈,
[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜈

]︁
−
[︁𝛿𝐾
𝛿𝜇

,
𝛿𝐻

𝛿𝜈

]︁⟩
which is not a direct product of Lie–Poisson structures on 𝒪𝜇 and g*.

The coadjoint action of 𝐺Ⓢg on the dual g* × g* of its Lie algebra is

(3.10) Ad*(𝑔,𝜉) : g
* × g* → g* × g* : (𝜇, 𝜈) ↦→ (Ad*𝑔 𝜇− ad*𝜉 Ad*𝑔 𝜈,Ad*𝑔 𝜈).

The symplectic reduction of 𝐺Ⓢg* under the action of the isotropy subgroup 𝐺𝜇

results in the coadjoint orbit 𝒪(𝜇,𝜈) in g* × g* through the point (𝜇, 𝜈) under the
action in Eq. (3.10). The reduced symplectic two-form Ω𝒪(𝜇,𝜈)

takes the value

⟨Ω𝒪(𝜇,𝜈)
; (𝜂, 𝜁), (𝜂, 𝜁)⟩(𝜇, 𝜈) = ⟨𝜇, [𝜂, 𝜂]⟩+ ⟨𝜈, [𝜂, 𝜁]− [𝜂, 𝜁]⟩
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on two vectors (𝜂, 𝜁) and (𝜂, 𝜁) in 𝑇(𝜇,𝜈)𝒪(𝜇,𝜈).
We summarize reductions of the symplectic space 𝐺Ⓢg* in the following dia-

gram.

(3.11) g*

Poisson
embedding

��

𝒪𝜇
? _

symplectic leafoo

symplectic
embedding

��

𝐺Ⓢg*

PR by G

hh

SR by G

66

PR by 𝐺𝜇

vv
SR by 𝐺𝜇

((
𝒪𝜇Ⓢg* 𝒪(𝜇,𝜈)_?symplectic leaf

oo

Reductions of 𝑇 *𝐺 = 𝐺Ⓢg*

3.3. The Legendre transformation. For a (hyper)regular Lagrangian �̄� on
𝑇𝐺 = 𝐺Ⓢg, the Legendre transformation is

𝐺Ⓢg → 𝐺Ⓢg* : (𝑔, 𝜉) →
(︁
𝑔,
𝛿�̄�

𝛿𝜉
= 𝜇

)︁
,

which identifies 𝛿�̄�/𝛿𝜉 with the fiber variable 𝜇 of 𝐺Ⓢg*. Define a Hamiltonian
function

𝐻(𝑔, 𝜇) = ⟨𝜇, 𝜉⟩ − 𝐿(𝑔, 𝜉)

for which the Hamiltonian dynamics in Eq. (3.4) gives Euler-Lagrange equations
(3.1). When �̄� is independent of the group variable, we have Euler–Poincare equa-
tions (3.2) and the Legendre transformation 𝜇 = 𝛿𝑙/𝛿𝜉 maps these to Lie–Poisson
equations (3.8) with the Hamiltonian function

ℎ(𝜇) = ⟨𝜇, 𝜉⟩ − 𝑙(𝜉).

When the Lagrangian function is degenerate, the fiber derivative is not invertible
and hence a direct passage from the Lagrangian dynamics to the Hamiltonian one
is not possible. One possible way to define a general Legendre transformation,
including the degenerate cases, is possible in Tulczyjew’s approach [49]. We refer
to [19,20,25], where Tulczyjew’s triplet is constructed for Lie groups.

4. Hamiltonian dynamics on the cotangent of the tangent bundle

For a Hamiltonian function(al) 𝐻 = 𝐻(𝑔, 𝜉, 𝜇, 𝜈) on the symplectic manifold
(𝑇 *𝑇𝐺,Ω𝑇*𝑇𝐺), Hamilton’s equations read

𝑖𝑋𝑇*𝑇𝐺
𝐻

Ω𝑇*𝑇𝐺 = −𝑑𝐻,

where the right invariant Hamiltonian vector field 𝑋𝑇*𝑇𝐺
𝐻 is generated by [2](︁𝛿𝐻

𝛿𝜇
,
𝛿𝐻

𝛿𝜈
,−𝑇 *

𝑒𝑅𝑔

(︁𝛿𝐻
𝛿𝑔

)︁
− ad*𝜉

(︁𝛿𝐻
𝛿𝜉

)︁
,−𝛿𝐻

𝛿𝜉

)︁
∈ (gⓈg)Ⓢ(g* × g*).
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Proposition 4.1. Components of 𝑋𝑇*𝑇𝐺
𝐻 are trivialized Hamilton’s equations

on (𝑇 *𝑇𝐺,Ω𝑇*𝑇𝐺)

𝑑𝑔

𝑑𝑡
= 𝑇𝑒𝑅𝑔

𝛿𝐻

𝛿𝜇
,(4.1)

𝑑𝜉

𝑑𝑡
=
𝛿𝐻

𝛿𝜈
+ ad𝜉

𝛿𝐻

𝛿𝜇
,(4.2)

𝑑𝜇

𝑑𝑡
= −𝑇 *

𝑒𝑅𝑔
𝛿𝐻

𝛿𝑔
− ad*𝜉

𝛿𝐻

𝛿𝜉
+ ad*𝛿𝐻

𝛿𝜇
𝜇+ ad*𝛿𝐻

𝛿𝜈
𝜈,(4.3)

𝑑𝜈

𝑑𝑡
= −𝛿𝐻

𝛿𝜉
+ ad*𝛿𝐻

𝛿𝜇
𝜈.(4.4)

From the equations (4.2) and (4.4), we single out 𝛿𝐻/𝛿𝜈 and 𝛿𝐻/𝛿𝜉, respec-
tively. By substituting these into Eq. (4.3), we obtain the system(︁ 𝑑

𝑑𝑡
− ad*𝛿𝐻

𝛿𝜇

)︁
(ad*𝜉 𝜈 − 𝜇) = 𝑇 *

𝑒𝑅𝑔
𝛿𝐻

𝛿𝑔
,

𝑑𝑔

𝑑𝑡
= 𝑇𝑒𝑅𝑔

𝛿𝐻

𝛿𝜇

equivalent to Eqs. (4.1)–(4.4).

Remark 4.1. Hamilton’s equations (4.1)–(4.4) have extra terms, compared to
the ones, for example, in [11,24], coming from the choice of trivialization preserving
group structure. The trivialization of [11] is of the second kind given by Eq. (1.1),
whereas Eqs. (4.1)–(4.4) result from trivializations of the first kind. Reference [6]
studies geometric integrators of this Hamiltonian dynamics.

4.1. Reduction of 𝑇 *𝑇𝐺 by 𝐺. We shall first perform Poisson reduction
of the Hamiltonian system on 𝑇 *𝑇𝐺 under the action of 𝐺 given by

((𝑔, 𝜉, 𝜇, 𝜈); 𝑔) → (𝑔𝑔, 𝜉, 𝜇, 𝜈)

for a right invariant Hamiltonian 𝐻 = 𝐻(𝜉, 𝜇, 𝜈).

Proposition 4.2. The Poisson reduced manifold g1Ⓢ(g*2×g*3) carries the Pois-
son bracket

{𝐻,𝐾}g1Ⓢ(g*
2×g*

3)
(𝜉, 𝜇, 𝜈) = −

⟨𝛿𝐻
𝛿𝜉
,
𝛿𝐾

𝛿𝜈

⟩
+
⟨𝛿𝐾
𝛿𝜉

,
𝛿𝐻

𝛿𝜈

⟩
+

⟨
𝜇,

[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜇

]︁⟩
(4.5)

+
⟨
ad*𝜉

𝛿𝐾

𝛿𝜉
,
𝛿𝐻

𝛿𝜇

⟩
−
⟨
ad*𝜉

𝛿𝐻

𝛿𝜉
,
𝛿𝐾

𝛿𝜇

⟩
+

⟨
𝜈,
[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜈

]︁
−
[︁𝛿𝐾
𝛿𝜇

,
𝛿𝐻

𝛿𝜈

]︁⟩
,

for two right invariant functionals 𝐻 and 𝐾 on 𝑇 *𝑇𝐺.

Remark 4.2. 𝑇 *g1 = g1×g*3 carries a canonical Poisson bracket, and g*2 carries
a Lie–Poisson bracket. The immersions g1×g*3 → g1Ⓢ(g*2×g*3) and g*2 → g1Ⓢ(g*2×
g*3) are Poisson maps. However, the Poisson structure described by Eq. (4.5) on
g1Ⓢ(g*2 × g*3) is not a direct product of these. In fact, a direct product structure
on g1 × (g*2 × g*3) whereas the group structure on 𝐺Ⓢ𝑔* is in the form of in [11]
and [24]. In these cases the second line of (4.5) disappears. Here, we are employing
the notations presented in Remark 2.1.
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Proposition 4.3. The Marsden–Weinstein symplectic reduction by the action
of 𝐺 on 𝑇 *𝑇𝐺 with the momentum mapping

J𝐺
𝑇*𝑇𝐺 : 𝑇 *𝑇𝐺→ g* : (𝑔, 𝜉, 𝜇, 𝜈) → 𝜇

results in the reduced symplectic two-form Ω
/𝐺
𝑇*𝑇𝐺 on the reduced space 𝒪𝜇×g1×g*3.

The value of Ω/𝐺
𝑇*𝑇𝐺 on two vectors (𝜂g*(𝜇), 𝜁, 𝜆) and (𝜂g*(𝜇), 𝜁, �̄�) is

(4.6) Ω
/𝐺
𝑇*𝑇𝐺((𝜂g*(𝜇), 𝜁, 𝜆), (𝜂g*(𝜇), 𝜁, �̄�)) = ⟨𝜆, 𝜁⟩ − ⟨�̄�, 𝜁⟩ − ⟨𝜇, [𝜂, 𝜂]⟩

and reduced Hamilton’s equations for a right invariant Hamiltonian 𝐻 are

𝑑𝜁

𝑑𝑡
=
𝛿𝐻

𝛿𝜆
,

𝑑𝜆

𝑑𝑡
= −𝛿𝐻

𝛿𝜁
,

𝑑𝜇

𝑑𝑡
= ad*𝛿𝐻

𝛿𝜇
𝜇.

Remark 4.3. The reduced space 𝒪𝜇 × g1 × g*3 is a symplectic leaf [50] for the
Poisson manifold g1Ⓢ(g*2 × g*3) of Proposition 4.2 as well as for g1 × g*2 × g*3 with
the direct product Poisson structure described in Remark 4.2 above. Here, we are
employing the notations presented in Remark 2.1.

The symplectic two-form Ω
/𝐺
𝑇*𝑇𝐺 given in Eq. (4.6) on 𝒪𝜇 × g1 × g*3 is in a

direct product form. Hence a reduction is possible by the additive action of g1 to
the second factor in 𝒪𝜇 × g1 × g*3.

Proposition 4.4. The momentum map of additive action of g1 on the sym-
plectic manifold (𝒪𝜇 × g1 × g*3,Ω

/𝐺
𝑇*𝑇𝐺) is

Jg
𝒪𝜇×g1×g*

3
: 𝒪𝜇 × g1 × g*3 → g*3 : (𝜇, 𝜉, 𝜈) → 𝜈

and the symplectic reduction results in the orbit 𝒪𝜇 with a Kostant–Kirillov–Souriau
two-form (3.9).

4.2. Reduction of 𝑇 *𝑇𝐺 by g. The vector space structure of g makes it
an Abelian group, and according to the immersion in Eq. (2.9), g is an Abelian
subgroup of 𝑇 *𝑇𝐺. It acts on the total space 𝑇 *𝑇𝐺 by

((𝑔, 𝜉, 𝜇, 𝜈); 𝜂) → (𝑔, 𝜉 +𝐴𝑑𝑔−1𝜂, 𝜇, 𝜈).

Since the action of 𝐺Ⓢg on its cotangent bundle 𝑇 *𝑇𝐺 is symplectic, the subgroup
g of 𝐺Ⓢg also acts on 𝑇 *𝑇𝐺 symplectically. The following results describe Poisson
and symplectic reductions of 𝑇 *𝑇𝐺 by g assuming that functions 𝐾 = 𝐾(𝑔, 𝜇, 𝜈)
and 𝐻 = 𝐻(𝑔, 𝜇, 𝜈) defined on 𝐺Ⓢ(g*2 × g*3) are right invariant under the above
action of g.

Proposition 4.5. Poisson reduction of 𝑇 *𝑇𝐺 by the Abelian subgroup g gives
the Poisson manifold 𝐺Ⓢ(g*2 × g*3) endowed with the Poisson bracket

{𝐻,𝐾}𝐺Ⓢ(g*
2×g*

3)
(𝑔, 𝜇, 𝜈) = −

⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐻

𝛿𝑔
,
𝛿𝐾

𝛿𝜇

⟩
+
⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐾

𝛿𝑔
,
𝛿𝐻

𝛿𝜇

⟩
(4.7)

+
⟨
𝜇,

[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜇

]︁⟩
+
⟨
𝜈,
[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜈

]︁
−

[︁𝛿𝐾
𝛿𝜇

,
𝛿𝐻

𝛿𝜈

]︁⟩
.
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Remark 4.4. Recall that 𝐺 × g*2 is canonically symplectic with the Poisson
bracket in Eq. (3.5) and the immersion 𝐺 × g*2 → 𝐺Ⓢ(g*2 × g*3) is a Poisson map.
On the other hand, g*3 is naturally Lie–Poisson and g*3 → g1Ⓢ(g*2 × g*3) is also a
Poisson map. The Poisson bracket in Eq. (4.7) is, however, not a direct product of
these structures. Here, we are employing the notations presented in Remark 2.1.

Proposition 4.6. The Marsden–Weinstein symplectic reduction by the action
of g on 𝑇 *𝑇𝐺 with the momentum mapping

Jg
𝑇*𝑇𝐺 : 𝑇 *𝑇𝐺→ g*3 : (𝑔, 𝜉, 𝜇, 𝜈) → 𝜈

results in the reduced symplectic space (Jg
𝑇*𝑇𝐺)

−1/g isomorphic to 𝐺Ⓢg*2 and with
the canonical symplectic two-form Ω𝐺Ⓢg*

2
in Eq. (2.6).

It follows that the immersion 𝐺Ⓢg*2 → 𝐺Ⓢ(g*2 × g*3) defines symplectic leaves
of the Poisson manifold 𝐺Ⓢ(g*2 × g*3). The symplectic reduction of 𝐺Ⓢg*2 under
the action of 𝐺 results in the total space 𝒪𝜇 with the Kostant–Kirillov–Souriau
two-form (3.9). We arrive at the following proposition.

Proposition 4.7. Reductions by actions of g and 𝐺 make the following dia-
gram commutative

(𝐺Ⓢg1)Ⓢ(g*2 × g*3)

SR by g1

ww
SR by 𝐺 at 𝜇

))
𝐺Ⓢg*2

SR by 𝐺 at 𝜇

''

𝒪𝜇 × g1 × g*3

SR by g1

uu𝒪𝜇

Symplectic Reductions of 𝑇 *𝑇𝐺.

Note that the symplectic reduction of 𝑇 *𝑇𝐺 by the total action of the group
𝐺Ⓢg1 does not result in 𝒪𝜇 as reduced space. This is a matter of Hamiltonian
reduction by stages theorem [35]. In the following subsection, we will discuss the
reduction of 𝑇 *𝑇𝐺 under the action of 𝐺Ⓢg1 as well as the implications of the
Hamiltonian reduction by stages theorem for this case.

4.3. Reduction of 𝑇 *𝑇𝐺 by 𝐺Ⓢg. The Lie algebra of 𝐺Ⓢg is the space
gⓈg endowed with the semidirect product Lie algebra bracket

[(𝜉1, 𝜉2), (𝜂1, 𝜂2)]gⓈg = ([𝜉1, 𝜂1], [𝜉1, 𝜂2]− [𝜂1, 𝜉2])

for (𝜉1, 𝜉2) and (𝜂1, 𝜂2) in gⓈg. Accordingly, the dual space g*2 × g*3 has the Lie–
Poisson bracket

(4.8) {𝐹,𝐸}g*
2×g*

3
(𝜇, 𝜈) =

⟨
𝜇,

[︁𝛿𝐹
𝛿𝜇
,
𝛿𝐸

𝛿𝜇

]︁⟩
+

⟨
𝜈,
[︁𝛿𝐹
𝛿𝜇
,
𝛿𝐸

𝛿𝜈

]︁
−
[︁𝛿𝐸
𝛿𝜇
,
𝛿𝐹

𝛿𝜈

]︁⟩
for two functionals 𝐹 and 𝐸 on g*2 × g*3.
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Proposition 4.8. The Lie–Poisson structure on g*2×g*3 is given by the bracket
in Eq. (4.8) and the Lie–Poisson equations for a function 𝐻(𝜇, 𝜈) on g*2 × g*3 read

(4.9)
𝑑𝜇

𝑑𝑡
= ad*𝛿𝐻

𝛿𝜇
𝜇+ ad*𝛿𝐻

𝛿𝜈
𝜈,

𝑑𝜈

𝑑𝑡
= ad*𝛿𝐻

𝛿𝜇
𝜈.

Alternatively, the Lie–Poisson equations (4.9) can be obtained by Poisson re-
duction of 𝑇 *𝑇𝐺 with the action of 𝐺Ⓢg given by

(4.10) ((𝑔, 𝜉, 𝜇, 𝜈); (𝑔, 𝜂)) ↦→ (𝑔𝑔, 𝜉 +Ad𝑔−1 𝜂, 𝜇, 𝜈)

and restricting the Hamiltonian function 𝐻 to the fiber variables (𝜇, 𝜈). In this
case, the Lie–Poisson dynamics of 𝑔 and 𝜉 remains the same but the dynamics
governing 𝜇 and 𝜈 has the reduced form given by Eq. (4.9). This is a manifestation
of the fact that the projections to the last two factors in the trivialization (2.7)
are a momentum map under the left Hamiltonian action of the group 𝐺Ⓢg1 to
its trivialized cotangent bundle 𝑇 *𝑇𝐺. Yet another way is to reduce the bracket
(4.5) on g1Ⓢ(g*2×g*3) by assuming that functionals depend on elements of the dual
spaces. That is, to consider the Abelian group action of g1 on g1Ⓢ(g*2×g*3) given by

((𝜉, 𝜇, 𝜈); 𝜂) ↦→ (𝜉 + 𝜂, 𝜇, 𝜈)

and then apply Poisson reduction. Note finally that the immersion g*2 × g*3 →
g1Ⓢ(g*2 × g*3) is a Poisson map. Here, we are employing the notations presented in
Remark 2.1.

Application of the Marsden–Weinstein reduction to the symplectic manifold
𝑇 *𝑇𝐺 results in the symplectic leaves of the Poisson structure on g*2 × g*3. The
action in Eq. (4.10) has the momentum mapping

J𝐺Ⓢg
𝑇*𝑇𝐺 : 𝑇 *𝑇𝐺→ g*2 × g*3 : (𝑔, 𝜉, 𝜇, 𝜈) → (𝜇, 𝜈).

The pre-image (J𝐺Ⓢg
𝑇*𝑇𝐺)

−1(𝜇, 𝜈) of an element (𝜇, 𝜈) ∈ g*2 × g*3 is diffeomorphic
to 𝐺Ⓢg. The isotropy group (𝐺Ⓢg)(𝜇,𝜈) of (𝜇, 𝜈) consists of pairs (𝑔, 𝜉) in 𝐺Ⓢg
satisfying

(4.11) Ad*(𝑔,𝜉)(𝜇, 𝜈) = (Ad*𝑔(𝜇+ ad*𝜉 𝜈),Ad*𝑔 𝜈) = (𝜇, 𝜈),

which means that 𝑔 ∈ 𝐺𝜈 ∩ 𝐺𝜇 and the representation of Ad𝑔 𝜉 on 𝜈 is null, that
is, ad*Ad𝑔 𝜉 𝜈 = 0. From the general theory, we deduce that the quotient space

(J𝐺Ⓢg
𝑇*𝑇𝐺)

−1(𝜇, 𝜈)
⧸︀
(𝐺Ⓢg)(𝜇,𝜈) ≃ 𝒪(𝜇,𝜈)

is diffeomorphic to the coadjoint orbit 𝒪(𝜇,𝜈) in g*2 × g*3 through the point (𝜇, 𝜈)
under the action Ad*(𝑔,𝜉) in Eq. (4.11), that is,

(4.12) 𝒪(𝜇,𝜈) =
{︀
(𝜇, 𝜈) ∈ g*2 × g*3 : Ad*(𝑔,𝜉)(𝜇, 𝜈) = (𝜇, 𝜈)

}︀
.

Proposition 4.9. The symplectic reduction of 𝑇 *𝑇𝐺 results in the coadjoint
orbit 𝒪(𝜇,𝜈) in g*2 × g*3 through the point (𝜇, 𝜈). The reduced symplectic two-form
Ω

𝐺Ⓢg∖
𝑇*𝑇𝐺 (denoted simply by Ω𝒪(𝜇,𝜈)

) takes the value

(4.13) ⟨Ω𝒪(𝜇,𝜈)
; (𝜂, 𝜁), (𝜂, 𝜁)⟩(𝜇, 𝜈) = ⟨𝜇, [𝜂, 𝜂]⟩+ ⟨𝜈, [𝜂, 𝜁]− [𝜂, 𝜁]⟩

on two vectors (𝜂, 𝜁) and (𝜂, 𝜁) in 𝑇(𝜇,𝜈)𝒪(𝜇,𝜈).
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This reduction can also be achieved by stages as described in [28,35]. That is,
dynamics is first trivialized by the action of Lie algebra g on 𝑇 *𝑇𝐺, which results
in the Poisson structure on the product 𝐺Ⓢ(g*2×g*3) given by Eq. (4.7). Symplectic
leaves of this Poisson structure are spaces diffeomorphic to 𝐺Ⓢg*2 with a symplectic
two-form given in Eq. (2.6). The isotropy group 𝐺𝜇 of an element 𝜇 ∈ g* acts on
𝐺Ⓢg*2 with a the same way as assigned in Eq. (3.6), that is,

(𝐺Ⓢg*2)×𝐺𝜇 → 𝐺Ⓢg*2 : ((ℎ, 𝜆); 𝑔) → (ℎ𝑔, 𝜆).

Then, the Hamiltonian reduction by stages theorem states that the symplectic
reduction of 𝐺Ⓢg*2 under the action of 𝐺𝜇 will result in 𝒪(𝜇,𝜈) as the reduced
space endowed with the symplectic two-form Ω𝒪(𝜇,𝜈)

in Eq. (4.13). The following
diagram summarizes the Hamiltonian reduction by stages theorem for the case of
𝑇 *𝑇𝐺 under consideration

(𝐺Ⓢg1)Ⓢ(g*2 × g*3)

SR by g1 at 𝜇

uu
SR by 𝐺×g1 at (𝜇,𝜈)

��

𝐺Ⓢg*2

SR by 𝐺𝜇 at 𝜈

))
𝒪(𝜇,𝜈)

Hamiltonian reduction by stages for 𝑇 *𝑇𝐺.

There exists a momentum mapping J
𝐺𝜇

𝐺Ⓢg*
2

from 𝐺Ⓢg*2 to the dual space g*𝜇
of the isotropy subalgebra g𝜇 of 𝐺𝜇. The isotropy subgroup 𝐺𝜇,𝜈 of the coadjoint
action is

𝐺𝜇,𝜈 = {𝑔 ∈ 𝐺𝜇 : Ad*𝑔−1 𝜈 = 𝜈}.

The quotient symplectic space

(J
𝐺𝜇

𝐺Ⓢg*
2
)−1(𝜈)

⧸︀
𝐺𝜇,𝜈 ≃ 𝒪(𝜇,𝜈)

is diffeomorphic to the coadjoint orbit 𝒪(𝜇,𝜈) defined in (4.12).
It is also possible to establish the Poisson reduction of the symplectic manifold

𝐺Ⓢg*2 under the action of the isotropy group 𝐺𝜇. This results in

𝐺𝜇∖(𝐺Ⓢg*2) ≃ 𝒪𝜇 × g*2

with the Poisson bracket

{𝐻,𝐾}𝒪𝜇×g*
2
(𝜇, 𝜈) =

⟨
𝜇,

[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜇

]︁⟩
+

⟨
𝜈,
[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜈

]︁
−

[︁𝛿𝐾
𝛿𝜇

,
𝛿𝐻

𝛿𝜈

]︁⟩
.

We note again that the Poisson structure on 𝒪𝜇 × g* is not a direct product of
the Lie–Poisson structures on 𝒪𝜇 and g*2. The following diagram illustrates various
reductions of 𝑇 *𝑇𝐺 under the actions of 𝐺, g and 𝐺Ⓢg. Diagram (3.11), describing
reductions of 𝐺Ⓢg*, can be attached to the lower right corner of this diagram to



TULCZYJEW’S TRIPLET FOR LIE GROUPS III 219

have a complete picture of reductions. In the light of the notation in Remark 2.1
we have the following.
(4.14)

g1Ⓢ(g*2 × g*3) 𝒪𝜇 × g1 × g*3? _
symplectic leafoo

g*2 × g*3

Poisson
emb.

��

Poisson
emb.

OO

(𝐺Ⓢg1)Ⓢ(g*2 × g*3)

PR by G

ff

SR by G

88

PR by g

xx

SR by g

&&

SR by 𝐺Ⓢg //PR by 𝐺Ⓢgoo 𝒪(𝜇,𝜈)

symplectic
emb.

��

symplectic
emb.

OO
symplectic

leaf

}}

𝐺Ⓢ(g*2 × g*3) 𝐺Ⓢg*2_?symplectic leaf
oo

Reductions of 𝑇 *𝑇𝐺

5. Hamiltonian dynamics on the cotangent of the cotangent bundle

Proposition 5.1. A Hamiltonian function 𝐻 = 𝐻(𝑔, 𝜇, 𝜈, 𝜉) on the iterated
cotangent bundle 𝑇 *𝑇 *𝐺 determines Hamilton’s equations

𝑖𝑋𝑇*𝑇*𝐺
𝐻

Ω𝑇*𝑇*𝐺 = −𝑑𝐻

by uniquely defining the Hamiltonian vector field 𝑋𝑇*𝑇*𝐺
𝐻 . The Hamiltonian vector

field is a right invariant vector field generated by a 4-tuple Lie algebra element(︁𝛿𝐻
𝛿𝜈

,
𝛿𝐻

𝛿𝜉
, ad*𝛿𝐻

𝛿𝜇
𝜇− 𝑇 *

𝑒𝑅𝑔

(︁𝛿𝐻
𝛿𝑔

)︁
,−𝛿𝐻

𝛿𝜇

)︁
in (gⓈg*)Ⓢ(g* × g). At the point (𝑔, 𝜇, 𝜈, 𝜉), Hamilton’s equations are

𝑑𝑔

𝑑𝑡
= 𝑇𝑒𝑅𝑔

(︁𝛿𝐻
𝛿𝜈

)︁
,(5.1)

𝑑𝜇

𝑑𝑡
=
𝛿𝐻

𝛿𝜉
+ ad*𝛿𝐻

𝛿𝜈
𝜇

𝑑𝜈

𝑑𝑡
= ad*𝛿𝐻

𝛿𝜇
𝜇+ ad*𝛿𝐻

𝛿𝜈
𝜈 − 𝑇 *

𝑒𝑅𝑔

(︁𝛿𝐻
𝛿𝑔

)︁
− ad*𝜉

𝛿𝐻

𝛿𝜉

𝑑𝜉

𝑑𝑡
= −𝛿𝐻

𝛿𝜇
− [

𝛿𝐻

𝛿𝜈
, 𝜉].(5.2)

5.1. Reduction of 𝑇 *𝑇 *𝐺 by 𝐺. It follows from Eq. (2.14) that the right
action of 𝐺 on 𝑇 *𝑇 *𝐺 is

((𝑔, 𝜇, 𝜈, 𝜉); 𝑔) → (𝑔𝑔, 𝜇, 𝜈, 𝜉)

with the infinitesimal generator 𝑋𝑇*𝑇*𝐺
(𝜂,0,0,0) being a right invariant vector field as in

Eq. (2.16) generated by (𝜂, 0, 0, 0) for 𝜂 ∈ g.



220 ESEN, GÜMRAL, AND SÜTLÜ

Proposition 5.2. Poisson reduction of 𝑇 *𝑇 *𝐺 under the action of 𝐺 results
in g*1Ⓢ(g*2 × g3) endowed with the Poisson bracket

{𝐻,𝐾}g*
1Ⓢ(g*

2×g3)(𝜇, 𝜈, 𝜉) = −
⟨𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜉

⟩
+

⟨𝛿𝐾
𝛿𝜇

,
𝛿𝐻

𝛿𝜉

⟩
+
⟨
𝜈,
[︁𝛿𝐻
𝛿𝜈

,
𝛿𝐾

𝛿𝜈

]︁⟩
+
⟨
𝜉,− ad*𝛿𝐻

𝛿𝜈

𝛿𝐾

𝛿𝜉
+ ad*𝛿𝐾

𝛿𝜈

𝛿𝐻

𝛿𝜉

⟩
+

⟨
𝜇,

[︁𝛿𝐻
𝛿𝜇

,
𝛿𝐾

𝛿𝜈

]︁
−

[︁𝛿𝐾
𝛿𝜇

,
𝛿𝐻

𝛿𝜈
]
⟩
,

and symplectic reduction gives 𝒪𝜇 × g× g* with the symplectic two-form defined by

Ω
/𝐺
𝑇*𝑇*𝐺((𝜂g*(𝜇), 𝜆, 𝜁), (𝜂g*(𝜇), �̄�, 𝜁)) = ⟨𝜁, �̄�⟩ − ⟨𝜁, 𝜆⟩ − ⟨𝜇, [𝜂, 𝜂]⟩

on two elements (𝜂g*(𝜇), 𝜆, 𝜁) and (𝜂g*(𝜇), �̄�, 𝜁) of 𝑇𝜇𝒪𝜇 × g× g*.

Recall that, in the previous section, the Poisson and symplectic reductions of
𝑇 *𝑇𝐺 result in reduced spaces gⓈ(g* × g*) and 𝒪𝜇 × g × g*, respectively. The
reduced Poisson bracket on gⓈ(g* × g*) is given by Eq. (4.5) and the reduced
symplectic two-form Ω

/𝐺
𝑇*𝑇𝐺 on 𝒪𝜇 × g × g is in Eq. (4.6). We have the follow-

ing proposition from [19] relating the reductions of cotangent bundles 𝑇 *𝑇 *𝐺 and
𝑇 *𝑇𝐺. We refer to [32] for a detailed study on the canonical maps between semidi-
rect products.

5.2. Reduction of 𝑇 *𝑇 *𝐺 by g*. The action of g* on 𝑇 *𝑇 *𝐺, given by

(5.3) ((𝑔, 𝜇, 𝜈, 𝜉);𝜆) → (𝑔, 𝜇+Ad*𝑔 𝜆, 𝜈, 𝜉).

is generated by 𝑋𝑇*𝑇*𝐺
(0,𝜆,0,0) = (0, 𝜆,− ad*𝜉 𝜆, 0), as the action of 𝐺Ⓢg* on its cotangent

bundle 𝑇 *𝑇 *𝐺 is symplectic, and g* is a subgroup. The action in Eq. (5.3) is
symplectic, hence we can perform Poisson and symplectic reductions of 𝑇 *𝑇 *𝐺.

Proposition 5.3. The Poisson reduction of 𝑇 *𝑇 *𝐺 with the action of g* re-
sults in 𝐺Ⓢ(g*2 × g3) endowed with the bracket

{𝐻,𝐾}𝐺Ⓢ(g*
2×g3)(𝑔, 𝜈, 𝜉) = −

⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐻

𝛿𝑔
,
𝛿𝐾

𝛿𝜈

⟩
+
⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐾

𝛿𝑔
,
𝛿𝐻

𝛿𝜈

⟩
(5.4)

+
⟨
𝜉,− ad*𝛿𝐻

𝛿𝜈

𝛿𝐾

𝛿𝜉
+ ad*𝛿𝐾

𝛿𝜈

𝛿𝐻

𝛿𝜉

⟩
+
⟨
𝜈,
[︁𝛿𝐻
𝛿𝜈

,
𝛿𝐾

𝛿𝜈

]︁⟩
.

The application of the Marsden–Weinstein symplectic reduction with the action of
g* on 𝑇 *𝑇 *𝐺 having the momentum mapping

Jg*

𝑇*𝑇*𝐺 : 𝑇 *𝑇 *𝐺→ g2 : (𝑔, 𝜇, 𝜈, 𝜉) → 𝜉

results in the reduced symplectic space (Jg*

𝑇*𝑇*𝐺)
−1(𝜉)/g* isomorphic to 𝐺Ⓢg*3 with

the canonical symplectic two-form Ω𝐺Ⓢg*
2

in Eq. (2.6).

5.3. Reduction of 𝑇 *𝑇 *𝐺 by 𝐺Ⓢg*. The Lie algebra of the group 𝐺Ⓢg*1 is
the space gⓈg* carrying the bracket

(5.5) [(𝜉, 𝜇), (𝜂, 𝜈)]gⓈg* = ([𝜉, 𝜂],− ad*𝜉 𝜈 + ad*𝜂 𝜇).

The dual space g*2 × g3 carries the Lie–Poisson bracket

(5.6) {𝐹,𝐸}g*
2×g3

(𝜈, 𝜉) =
⟨
𝜈,
[︁𝛿𝐹
𝛿𝜈
,
𝛿𝐸

𝛿𝜈

]︁⟩
+

⟨
𝜉, ad*𝛿𝐸

𝛿𝜈

𝛿𝐹

𝛿𝜉
− ad*𝛿𝐹

𝛿𝜈

𝛿𝐸

𝛿𝜉

⟩
,
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which follows from the Lie algebra bracket in Eq. (5.5).

Proposition 5.4. The Lie–Poisson bracket, in Eq. (5.6), on g*2 × g3 defines
the Hamiltonian vector field 𝑋g*×g

𝐸 by

{𝐹,𝐸}g*
2×g3

= −
⟨
𝑑𝐹,𝑋

g*
2×g3

𝐸

⟩
,

whose components are the Lie–Poisson equations

(5.7)
𝑑𝜈

𝑑𝑡
= ad*𝛿𝐻

𝛿𝜈
𝜈 − ad*𝜉

𝛿𝐻

𝛿𝜉
,

𝑑𝜉

𝑑𝑡
=

[︁𝛿𝐻
𝛿𝜈

, 𝜉
]︁
.

Although these equations result from Eq. (5.6), it is possible to obtain them
starting from Hamilton’s equations (5.1)–(5.2) on 𝑇 *𝑇 *𝐺 and applying a Poisson
reduction with the action of 𝐺Ⓢg* given by

𝑇 *𝑇 *𝐺× (𝐺Ⓢg*) → 𝑇 *𝑇 *𝐺 : ((ℎ, 𝜈, 𝜆, 𝜉); (𝑔, 𝜇))(5.8)

↦→ (ℎ𝑔, 𝜈 +Ad*ℎ 𝜇, 𝜆, 𝜉).

In other words, choosing the Hamiltonian function 𝐻 in Eqs. (5.1)–(5.2) depending
on fiber variables only, that is, 𝐻 = 𝐻(𝜈, 𝜉), Eq. (5.7) follows.

To reduce Hamilton’s equations (5.1)–(5.2) on 𝑇 *𝑇 *𝐺 symplectically, we first
compute the momentum mapping

J
𝐺𝜉

𝐺Ⓢg*
3
: 𝑇 *𝑇 *𝐺→ g* × g : (𝑔, 𝜇, 𝜈, 𝜉) → (𝜈, 𝜉),

associated with the action of 𝐺Ⓢg* in Eq. (5.8) and the quotient space

(5.9) (J
𝐺𝜉

𝐺Ⓢg*
3
)−1(𝜈, 𝜉)

⧸︀
𝐺(𝜈,𝜉) ≃ 𝒪(𝜈,𝜉).

Here, 𝐺(𝜈,𝜉) is the isotropy subgroup of 𝐺Ⓢg* consisting of elements preserved
under the coadjoint action 𝐺Ⓢg* on the dual space g* × g of its Lie algebra

Ad* : (𝐺Ⓢg*)× (g* × g) → g* × g(5.10)

: ((𝑔, 𝜇), (𝜈, 𝜉)) → (Ad*𝑔(𝜈 + ad*𝜉 𝜇),Ad𝑔 𝜉)

and the space 𝒪(𝜈,𝜉) is the coadjoint orbit passing through the point (𝜈, 𝜉) under
this coadjoint action.

Proposition 5.5. The symplectic reduction of 𝑇 *𝑇 *𝐺 results in the coadjoint
orbit 𝒪(𝜈,𝜉) in g*2 × g through the point (𝜈, 𝜉). The reduced symplectic two-form
Ω

/(𝐺Ⓢg*)
𝑇*𝑇*𝐺 (denoted simply by Ω𝒪(𝜈,𝜉)

) takes the value

(5.11) ⟨Ω𝒪(𝜈,𝜉)
; (𝜆, 𝜂), (�̄�, 𝜂)⟩(𝜈, 𝜉) = ⟨𝜈, [𝜂, 𝜂]⟩+ ⟨𝜉, ad*𝜂 �̄�− ad*𝜂 𝜆]⟩

on two vectors (𝜆, 𝜂) and (�̄�, 𝜂) in 𝑇(𝜈,𝜉)𝒪(𝜈,𝜉).

Alternatively, this reduction can be performed in two steps by applying the
Hamiltonian reduction by stages theorem [35]. The first step consists of the sym-
plectic reduction of 𝑇 *𝑇 *𝐺 with the action of g* which has already been estab-
lished in the previous subsection and resulted in the reduced symplectic space
(Jg*

𝑇*𝑇*𝐺)
−1(𝜉)/g*, isomorphic to 𝐺Ⓢg*3, with the canonical symplectic two-form
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Ω𝐺Ⓢg*
3

in Eq. (2.6). For the second step, we recall the adjoint group action Ad𝑔−1

of 𝐺 on g and define the isotropy subgroup

(5.12) 𝐺𝜉 = {𝑔 ∈ 𝐺 : Ad𝑔−1 𝜉 = 𝜉}

for an element
𝑥𝑖 ∈ g under the adjoint action. The Lie algebra g𝜉 of 𝐺𝜉 consists of vectors 𝜂 ∈ g
satisfying [𝜂, 𝜉] = 0. The isotropy subgroup 𝐺𝜉 acts on 𝐺Ⓢg*3 in the same way as
described in Eq. (3.6). This action is Hamiltonian and has the momentum mapping

J
𝐺𝜉

𝐺Ⓢg*
3
: 𝐺Ⓢg*3 → g*𝜉 ,

where g*𝜉 is the dual space of g𝜉. The quotient space

(J
𝐺𝜉

𝐺Ⓢg*
3
)−1(𝜈)

⧸︀
𝐺𝜉,𝜈 ≃ 𝒪(𝜈,𝜉)

is diffeomorphic to the coadjoint orbit 𝒪(𝜈,𝜉) in Eq. (5.9). Referring to the notations
presented in Remark 2.5 we draw the following graph.
(5.13)

g*1Ⓢ(g*2 × g3) 𝒪𝜇 × g*1 × g3? _
symplectic leafoo

g*2 × g3

Poisson
emb.

��

Poisson
emb.

OO

(𝐺Ⓢg*1)Ⓢ(g*2 × g3)

PR by G

ff

SR by G

88

PR by g*
1

xx

SR by g*
1

&&

SR by 𝐺Ⓢg* //PR by 𝐺Ⓢg*
1

oo 𝒪(𝜇,𝜉)

symplectic
emb.

��

symplectic
emb.

OO
symplectic

leaf

}}

𝐺Ⓢ(g*2 × g3) 𝐺Ⓢg*2_?symplectic leaf
oo

Reduction of 𝑇 *𝑇 *𝐺 = (𝐺Ⓢg*1)Ⓢ(g*2 × g3)

6. Hamiltonian and Lagrangian dynamics
on Tulczyjew symplectic space

6.1. Hamiltonian dynamics on 𝑇𝑇 *𝐺.

Proposition 6.1. Given a Hamiltonian function 𝐸 = 𝐸(𝑔, 𝜇, 𝜉, 𝜈) on 𝑇𝑇 *𝐺,
Hamilton’s equation

𝑖𝑋𝑇𝑇*𝐺
𝐸

Ω𝑇𝑇*𝐺 = −𝑑𝐸

defines a Hamiltonian right invariant vector field 𝑋𝑇𝑇*𝐺
𝐸 generated by the element(︁𝛿𝐸

𝛿𝜈
,−

(︁𝛿𝐸
𝛿𝜉

+ ad*𝛿𝐸
𝛿𝜈
𝜇
)︁
,
𝛿𝐸

𝛿𝜇
− ad𝜉

𝛿𝐸

𝛿𝜈
,−

(︁
𝑇 *𝑅𝑔

𝛿𝐸

𝛿𝑔
+ ad*𝜉

𝛿𝐸

𝛿𝜉
+ ad*𝜉 ad

*
𝛿𝐸
𝛿𝜈
𝜇
)︁)︁
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of the Lie algebra (gⓈg*)Ⓢ(gⓈg*). Components of 𝑋𝑇𝑇*𝐺
𝐸 define Hamilton’s equa-

tions

(6.1) �̇� = 𝑇𝑅𝑔

(︁𝛿𝐸
𝛿𝜈

)︁
, �̇� = −𝛿𝐸

𝛿𝜉
, 𝜉 =

𝛿𝐸

𝛿𝜇
, �̇� = ad*𝛿𝐸

𝛿𝜈
𝜈 − 𝑇 *𝑅𝑔

(︁𝛿𝐸
𝛿𝑔

)︁
in the adapted trivialization of 𝑇𝑇 *𝐺.

6.1.1. Reduction of 𝑇𝑇 *𝐺 by 𝐺.

Proposition 6.2. The Poisson reduction of 𝑇𝑇 *𝐺 under the action of 𝐺 re-
sults in the total space g*1Ⓢ(g2Ⓢg*3) endowed with the Poisson bracket

{𝐸,𝐹}g*
1Ⓢ(g2Ⓢg*

3)
(𝜇, 𝜉, 𝜈) =

⟨𝛿𝐹
𝛿𝜉
,
𝛿𝐸

𝛿𝜇

⟩
−
⟨𝛿𝐸
𝛿𝜉
,
𝛿𝐹

𝛿𝜇

⟩
+

⟨
𝜈,
[︁𝛿𝐸
𝛿𝜈
,
𝛿𝐹

𝛿𝜈

]︁⟩
.

Remark 6.1. Here, the Poisson bracket on g*1Ⓢ(g2Ⓢg*3) is the direct product
of the canonical Poisson bracket on g*1 × g2 and Lie–Poisson bracket on g*3 whereas
in Eq. (4.5) we obtained a Poisson bracket, on the isomorphic space gⓈ(g* × g*),
which is not in the form of a direct product. Here, we are employing the notations
presented in Remark 2.5.

The action of 𝐺 is Hamiltonian with the momentum mapping

(6.2) J𝐺
𝑇𝑇*𝐺 : 𝑇𝑇 *𝐺→ g* : (𝑔, 𝜇, 𝜉, 𝜈) → 𝜈 + ad*𝜉 𝜇.

The quotient space of the preimage J−1
𝑇𝑇*𝐺(𝜆) of an element 𝜆 ∈ g* under the action

of the isotropy subgroup 𝐺𝜆 is

J−1
𝑇𝑇*𝐺(𝜆)

⧸︀
𝐺𝜆 ≃ 𝒪𝜆 × g* × g.

Pushing forward a right invariant vector field 𝑋𝑇𝑇*𝐺
(𝜂,𝜈,𝜁,𝜈) in the form of Eq. (2.19) by

the symplectic projection 𝑇𝑇 *𝐺→ 𝒪𝜆 × g* × g, we obtain the vector field

𝑋𝒪𝜆×g*×g
(𝜂,𝜈,𝜁) (Ad*𝑔−1 𝜆, 𝜇, 𝜉) = (ad*𝜂 ∘Ad*𝑔−1 𝜆, 𝜈 + ad*𝜂 𝜇, 𝜁 + [𝜉, 𝜂])

on the quotient space 𝒪𝜆 × g* × g. We refer to [20] for the proof of the following
proposition.

Proposition 6.3. Reduced Tulczyjew’s space 𝒪𝜆 × g* × g has an exact sym-
plectic two-form Ω𝒪𝜆×g*×g with two potential one-forms 𝜒1 and 𝜒2 whose values
on vector fields of the form of Eq. (2.19) at the point (Ad*𝑔−1 𝜆, 𝜇, 𝜉) are

⟨Ω𝒪𝜆×g*×g, (𝑋
𝒪𝜆×g*×g
(𝜂,𝜈,𝜁) , 𝑋𝒪𝜆×g*×g

(𝜂,𝜈,𝜁)
)⟩ = ⟨𝜈, 𝜁⟩ − ⟨𝜈, 𝜁⟩ − ⟨𝜆, [𝜂, 𝜂]⟩,

⟨𝜒1, 𝑋
𝒪𝜆×g*×g
(𝜂,𝜈,𝜁) ⟩(Ad*𝑔−1 𝜆, 𝜇, 𝜉) = ⟨𝜆, 𝜂⟩ − ⟨𝜈, 𝜉⟩,

⟨𝜒2, 𝑋
𝒪𝜆×g*×g
(𝜂,𝜈,𝜁) ⟩(Ad*𝑔−1 𝜆, 𝜇, 𝜉) = ⟨𝜆, 𝜂⟩+ ⟨𝜇, 𝜁⟩.

6.1.2. Reduction of 𝑇𝑇 *𝐺 by g.

Proposition 6.4. The action of g2 on 𝑇𝑇 *𝐺 is given, for 𝜂 ∈ g2, by

(6.3) 𝜙𝜂 : 𝑇𝑇
*𝐺→ 𝑇𝑇 *𝐺 : ((𝑔, 𝜇, 𝜉, 𝜈); 𝜂) → (𝑔, 𝜇, 𝜉 + 𝜂, 𝜈)

and it is symplectic.
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Proof. Push forward of a vector field 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

in the form of Eq. (2.19)
by the transformation 𝜙𝜂 is also a right invariant vector field

(𝜙𝜂)*𝑋
𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

= 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3−[𝜂,𝜉2],𝜈3+ad*

𝜂 𝜈2)
.

By direct calculation, one establishes the identity

(6.4) 𝜙*
𝜂Ω𝑇𝑇*𝐺(𝑋,𝑌 )(𝑔, 𝜇, 𝜉, 𝜈) = Ω𝑇𝑇*𝐺((𝜙𝜂)*𝑋, (𝜙𝜂)*𝑌 )(𝑔, 𝜇, 𝜉 + 𝜂, 𝜈)

which gives the desired result. In Eq. (6.4) 𝑋 and 𝑌 are right invariant vector fields
as in Eq. (2.19) and Ω𝑇𝑇*𝐺 is the symplectic two-form given in Eq. (2.20). □

Proposition 6.5. The Poisson reduction of 𝑇𝑇 *𝐺 under the action in Eq.
(6.3) of g2 results in (𝐺Ⓢg*1)Ⓢg*3 endowed with the bracket at the point (𝑔, 𝜇, 𝜈) as

{𝐸,𝐹}(𝐺Ⓢg*
1)Ⓢg*

3
= −

⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐸

𝛿𝑔
,
𝛿𝐹

𝛿𝜈

⟩
+

⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐹

𝛿𝑔
,
𝛿𝐸

𝛿𝜈

⟩
+

⟨
𝜈,
[︁𝛿𝐸
𝛿𝜈
,
𝛿𝐹

𝛿𝜈

]︁⟩
.

Remark 6.2. The Poisson bracket {𝐸,𝐹}(𝐺Ⓢg*
1)Ⓢg*

3
is independent of functions

with respect to 𝜇, that is, it does not involve 𝛿𝐸/𝛿𝜇 and 𝛿𝐹/𝛿𝜇. Its structure
resembles the canonical Poisson bracket in Eq. (3.5) on 𝐺Ⓢg*. We recall that on
(𝐺Ⓢg*)Ⓢg* there is another Poisson bracket given in Eq. (4.7) that involves 𝛿𝐸/𝛿𝜇,
𝛿𝐹/𝛿𝜇, 𝛿𝐸/𝛿𝜈, and 𝛿𝐹/𝛿𝜈. This latter comes from reduction of 𝑇 *𝑇𝐺 by g.

The infinitesimal generator 𝑋𝑇𝑇*𝐺
(0,0,𝜉3,0)

of the action in Eq. (6.3) corresponds
to the element 𝜉3 ∈ g and is a right invariant vector field. Since the action is
Hamiltonian, and the symplectic two-form is exact, we can derive the associated
momentum map Jg2

𝑇𝑇*𝐺 from the equation

⟨Jg2

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈), 𝜉3⟩ = ⟨𝜃2, 𝑋𝑇𝑇*𝐺
(0,0,𝜉3,0)

⟩ = ⟨𝜇, 𝜉3⟩,

where 𝜃2 is the potential one-form of Tulczyjew in Eq. (2.22) satisfying 𝑑𝜃2 =
Ω𝑇𝑇*𝐺. We find that

(6.5) Jg2

𝑇𝑇*𝐺 : 𝑇𝑇 *𝐺→ Lie*(g2) = g* : (𝑔, 𝜇, 𝜉, 𝜈) → 𝜇

is the projection to the second entry in 𝑇𝑇 *𝐺. The preimage of an element 𝜇 ∈
g* by Jg2

𝑇𝑇*𝐺 is the space 𝐺Ⓢ(g2Ⓢg*3). The following proposition describes the
symplectic reduction of 𝑇𝑇 *𝐺 with the action of g2.

Proposition 6.6. The symplectic reduction of 𝑇𝑇 *𝐺 under the action of g2
given by Eq. (6.3) gives the reduced space

(Jg2

𝑇𝑇*𝐺)
−1(𝜇)

⧸︀
g2 ≃ 𝐺Ⓢg*3

with the canonical symplectic two-form Ω𝐺Ⓢg*
3

as in Eq. (2.6).

Remark 6.3. Existence of the symplectic action of g2 on 𝑇𝑇 *𝐺 is directly
related to the existence of a symplectic diffeomorphism

�̄�𝐺 : 𝑇𝑇 *𝐺→ 𝑇 *𝑇𝐺 : (𝑔, 𝜇, 𝜉, 𝜈) → (𝑔, 𝜉, 𝜈 + ad*𝜉 𝜇, 𝜇)

in the Tulczyjew triplet described in [19].
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6.1.3. Reduction of 𝑇𝑇 *𝐺 by g*. Induced from the group operation on 𝑇𝑇 *𝐺,
there are two canonical actions of g* on 𝑇𝑇 *𝐺

𝜓 : g*1 × 𝑇𝑇 *𝐺→ 𝑇𝑇 *𝐺, 𝜑 : g*3 × 𝑇𝑇 *𝐺→ 𝑇𝑇 *𝐺

described by

𝜓𝜆(𝑔, 𝜇, 𝜉, 𝜈) = (𝑔, 𝜇+ 𝜆, 𝜉, 𝜈),(6.6)
𝜑𝜆(𝑔, 𝜇, 𝜉, 𝜈) = (𝑔, 𝜇, 𝜉, 𝜈 + 𝜆).(6.7)

Proposition 6.7. 𝜓 is a symplectic action whereas 𝜑 is not.

Proof. Pushing forward of a vector field 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

in the form of Eq. (2.19)
by transformations 𝜓𝜆 and 𝜑𝜆 results in right invariant vector fields

(𝜓𝜆)*𝑋
𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

= 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2−ad*

𝜉2
𝜆,𝜉3,𝜈3−ad*

𝜉 ad*
𝜉2

𝜆),

(𝜑𝜆)*𝑋
𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3)

= 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,𝜉3,𝜈3−ad*

𝜉2
𝜆).

If Ω𝑇𝑇*𝐺 is the symplectic two-form on 𝑇𝑇 *𝐺 given in Eq. (2.20), direct calculations
show that the identity

𝜓𝜆
*Ω𝑇𝑇*𝐺(𝑋,𝑌 )(𝑔, 𝜇, 𝜉, 𝜈) = Ω𝑇𝑇*𝐺((𝜓𝜆)*𝑋, (𝜓𝜆)*𝑌 )(𝑔, 𝜇+ 𝜆, 𝜉, 𝜈)

holds for all vector fields 𝑋 and 𝑌 , and 𝜆 ∈ g*, whereas

𝜑𝜆
*Ω𝑇𝑇*𝐺(𝑋,𝑌 )(𝑔, 𝜇, 𝜉, 𝜈) = Ω𝑇𝑇*𝐺((𝜑𝜆)*𝑋, (𝜑𝜆)*𝑌 )(𝑔, 𝜇, 𝜉, 𝜈 + 𝜆)

does not necessarily hold. Hence, 𝜓𝜆 is a symplectic action, but not 𝜑𝜆. □

Proposition 6.8. Poisson reduction of 𝑇𝑇 *𝐺 under the action 𝜓 of g*1 results
in 𝐺Ⓢ(g2Ⓢg*3) endowed with the bracket

{𝐸,𝐹}𝐺Ⓢ(g2×g*
3)
(𝑔, 𝜉, 𝜈) =

⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐹

𝛿𝑔
,
𝛿𝐸

𝛿𝜈

⟩
−
⟨
𝑇 *
𝑒𝑅𝑔

𝛿𝐸

𝛿𝑔
,
𝛿𝐹

𝛿𝜈

⟩
+

⟨
𝜈,
[︁𝛿𝐸
𝛿𝜈
,
𝛿𝐹

𝛿𝜈

]︁⟩
.

Remark 6.4. The Poisson bracket {𝐸,𝐹}𝐺Ⓢ(g2Ⓢg*
3)

is independent of deriva-
tives of functions with respect to 𝜉 and it resembles the canonical Poisson bracket
in Eq. (3.5) on 𝐺Ⓢg*. On the other hand, the space 𝐺Ⓢ(g* × g), which is isomor-
phic to 𝐺Ⓢ(g2Ⓢg*3), has the Poisson bracket in Eq. (5.4) involving derivatives with
respect to both 𝜉 and 𝜈. This latter is obtained from 𝑇 *𝑇𝐺 via reduction by g*.

The infinitesimal generator 𝑋𝑇𝑇*𝐺
(0,𝜈2,0,0)

of the action are defined by 𝜈2 ∈ Lie(g*1).
We compute the associated momentum map from the equation

⟨Jg*
1

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈), 𝜈2⟩ = ⟨𝜃1, 𝑋𝑇𝑇*𝐺
(0,𝜈2,0,0)

⟩ = −⟨𝜈2, 𝜉⟩,

where 𝜃1 is the Tulczyjew potential one-form in Eq. (2.21). We find that

(6.8) J
g*
1

𝑇𝑇*𝐺 : 𝑇𝑇 *𝐺→ Lie*(g*1) ≃ g : (𝑔, 𝜇, 𝜉, 𝜈) → −𝜉

is minus the projection to the third factor in 𝑇𝑇 *𝐺. The preimage of an element
𝜉 ∈ g is the space 𝐺Ⓢ(g*1 × g*3).
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Proposition 6.9. The symplectic reduction of 𝑇𝑇 *𝐺 under the action of g*
defined in Eq. (6.3) results in the reduced space

(J
g*
1

𝑇𝑇*𝐺)
−1(𝜉)

⧸︀
g*1 ≃ 𝐺Ⓢ(g*1 × g*3)

⧸︀
g*1 ≃ 𝐺Ⓢg*3

with the canonical symplectic two-form Ω𝐺Ⓢg*
3

as given in Eq. (2.6).

Remark 6.5. The existence of the symplectic action of g* on 𝑇𝑇 *𝐺 can be
traced back to the existence of the symplectic diffeomorphism

Ω♭
𝑇*𝐺 : 𝑇𝑇 *𝐺→ 𝑇 *𝑇 *𝐺 : (𝑔, 𝜇, 𝜉, 𝜈) → (𝑔, 𝜇, 𝜈 + ad*𝜉 𝜇,−𝜉)

described in [19].

In the following proposition, we discuss the actions 𝜓 and 𝜑 of g* on 𝑇𝑇 *𝐺 in
Eqs. (6.6) and (6.7) from a different point of view.

Proposition 6.10. The mappings

Emb1 : 𝐺Ⓢg* →˓ 𝑇𝑇 *𝐺 : (𝑔, 𝜇) → (𝑔, 𝜇, 0, 0)

Emb2 : 𝐺Ⓢg* →˓ 𝑇𝑇 *𝐺 : (𝑔, 𝜈) → (𝑔, 0, 0, 𝜈)

define respectively Lagrangian and symplectic embeddings of 𝐺Ⓢg* into 𝑇𝑇 *𝐺.

Proof. The first embedding is Lagrangian because it is the zero section of
the fibration 𝑇𝑇 *𝐺 → 𝐺Ⓢg*1. The second one is symplectic because the pull-
back of Ω𝑇𝑇*𝐺 to 𝐺Ⓢg* by Emb2 results in the symplectic two-form Ω𝑇*𝐺 in
Eq. (2.5). On the image of Emb2, Hamilton’s equations (6.1) reduce to trivialized
Hamilton’s equations (3.4) on 𝐺Ⓢg*. Consequently, the embedding g*3 → 𝑇𝑇 *𝐺
is a Poisson map. When 𝐸 = ℎ(𝜈), Hamilton’s equations (6.1) reduce to the Lie–
Poisson equations (3.8). □

6.1.4. Reduction of 𝑇𝑇 *𝐺 by 𝐺Ⓢg. The action

𝜗 : 𝑇𝑇 *𝐺× (𝐺Ⓢg2) → 𝑇𝑇 *𝐺,

(6.9) ((𝑔, 𝜇, 𝜉, 𝜈); (ℎ, 𝜂)) ↦→ 𝜗(ℎ,𝜂)(𝑔, 𝜇, 𝜉, 𝜈) := (𝑔ℎ, 𝜇, 𝜉 +Ad𝑔 𝜂, 𝜈 − ad*Ad𝑔 𝜂 𝜇)

of 𝐺Ⓢg on 𝑇𝑇 *𝐺 can be described as a composition

𝜗(ℎ,𝜂) = 𝜗(ℎ,0) ∘ 𝜗(𝑒,Ad𝑔 𝜂),

where 𝜗(ℎ,0) and 𝜗(𝑒,Ad𝑔 𝜂) can be identified with the actions of 𝐺 and g on 𝑇𝑇 *𝐺,
respectively. Since both of these are symplectic, the action 𝜗 of 𝐺Ⓢg on 𝑇𝑇 *𝐺 is
symplectic.

Proposition 6.11. The Poisson reduction of 𝑇𝑇 *𝐺 under the action of 𝐺Ⓢg2
in Eq. (6.9) results in g*1 × g*3 endowed with the bracket

(6.10) {𝐸,𝐹}g*
1×g*

3
(𝜇, 𝜈) =

⟨
𝜈,
[︁𝛿𝐸
𝛿𝜈
,
𝛿𝐹

𝛿𝜈

]︁⟩
.

Remark 6.6. Although the Poisson bracket (6.10) structurally resembles the
Lie–Poisson bracket on g*3, it is not a Lie–Poisson bracket on g*1 × g*3 considered as
a dual of the Lie algebra gⓈg of the group 𝐺Ⓢg. We refer to the Poisson bracket
in Eq. (4.8) for the Lie–Poisson structure on Lie*(𝐺Ⓢg) = g* × g*.
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The right invariant vector field generating the action 𝜗 is associted to two tuples
(𝜉2, 𝜉3) in the Lie algebra of 𝐺Ⓢg2, and is given by

𝑋𝑇𝑇*𝐺
(𝜉2,0,𝜉3,0)

(𝑔, 𝜇, 𝜉, 𝜈) = (𝑇𝑅𝑔𝜉2, ad
*
𝜉2 𝜇, 𝜉3 + [𝜉, 𝜉2], ad

*
𝜉2 𝜈).

The momentum map for this Hamiltonian action is defined by the equation

⟨J𝐺Ⓢg2

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈), (𝜉2, 𝜉3)⟩ = ⟨𝜃2, 𝑋𝑇𝑇*𝐺
(𝜉2,0,𝜉3,0)

⟩ = ⟨𝜇, 𝜉3⟩+ ⟨𝜈 + ad*𝜉 𝜇, 𝜉2⟩,

where 𝜃2, in Eq. (2.22), is the Tulczyjew potential one-form on 𝑇𝑇 *𝐺. We find

J𝐺Ⓢg2

𝑇𝑇*𝐺 : 𝑇𝑇 *𝐺→ Lie*(𝐺Ⓢg2) = g* × g* : (𝑔, 𝜇, 𝜉, 𝜈) = (𝜈 + ad*𝜉 𝜇, 𝜇).

Note that we have the following relation

J𝐺Ⓢg2

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈) = (J𝐺
𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈),J

g2

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈))

for momentum maps in Eqs. (6.2) and (6.5) for the actions of 𝐺 and g2 on 𝑇𝑇 *𝐺.
The preimage of a fixed element (𝜆, 𝜇) ∈ g* × g* is

(J𝐺Ⓢg2

𝑇𝑇*𝐺)
−1(𝜆, 𝜇) = {(𝑔, 𝜇, 𝜉, 𝜈) : 𝜈 = 𝜆− ad*𝜉 𝜇},

which we may identify with the semidirect product 𝐺Ⓢg2. We recall the coadjoint
action Ad*(𝑔,𝜉), in Eq. (4.11), of the group 𝐺Ⓢg2 on the dual g* × g* of its Lie
algebra. The isotropy subgroup (𝐺Ⓢg2)(𝜆,𝜇) of this coadjoint action is

(𝐺Ⓢg2)(𝜆,𝜇) = {(𝑔, 𝜉) ∈ 𝐺Ⓢg2 : Ad*(𝑔,𝜉)(𝜆, 𝜇) = (𝜆, 𝜇)}

and acts on the preimage (J𝐺Ⓢg2

𝑇𝑇*𝐺)
−1(𝜆, 𝜇). A generic quotient space

(J𝐺Ⓢg2

𝑇𝑇*𝐺)
−1(𝜆, 𝜇)

⧸︀
(𝐺Ⓢg2)(𝜆,𝜇) ≃ 𝐺Ⓢg2

⧸︀
(𝐺Ⓢg2)(𝜆,𝜇) ≃ 𝒪(𝜆,𝜇)

is a coadjoint orbit in g* × g* through the point (𝜆, 𝜇) under the coadjoint action
Ad*(𝑔,𝜉) in Eq. (4.11).

Proposition 6.12. The symplectic reduction of 𝑇𝑇 *𝐺 under the action of
𝐺Ⓢg2 given in Eq. (6.9) results in the coadjoint orbit 𝒪(𝜆,𝜇)in g* × g* through the
point (𝜆, 𝜇) under the coadjoint action Ad*(𝑔,𝜉) in Eq. (4.11) as the total space and
the symplectic two-form Ω𝒪(𝜆,𝜇)

in Eq. (4.13).

It is also possible to obtain the symplectic space 𝒪(𝜆,𝜇) in two steps. Recall
the symplectic reduction of 𝑇𝑇 *𝐺 under the action of g2 at 𝜇 ∈ g* which results in
𝐺Ⓢg*3 with the canonical symplectic two-form Ω𝐺Ⓢg*

3
. Then, consider the action of

the isotropy subgroup 𝐺𝜇 on 𝐺Ⓢg*3 and apply symplectic reduction which results
in (𝒪(𝜆,𝜇),Ω𝒪(𝜆,𝜇)

). The diagram summarizing this two stage reduction of 𝑇𝑇 *𝐺
follows

(𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3)

SR by g2 at 𝜇

uu
SR by 𝐺Ⓢg2 at (𝜆,𝜇)

��

𝐺Ⓢg*3

SR by 𝐺𝜇 at 𝜆

))
𝒪(𝜆,𝜇)

Reductions of 𝑇𝑇 *𝐺 by 𝐺Ⓢg.
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6.1.5. Reduction of 𝑇𝑇 *𝐺 by 𝐺Ⓢg*. The action

𝛼 : 𝑇𝑇 *𝐺× (𝐺Ⓢg*1) → 𝑇𝑇 *𝐺 : ((𝑔, 𝜇, 𝜉, 𝜈); (ℎ, 𝜆)) ↦→ 𝛼(ℎ,𝜆)(𝑔, 𝜇, 𝜉, 𝜈)

of 𝐺Ⓢg*1 on 𝑇𝑇 *𝐺 is given by

(6.11) 𝛼(ℎ,𝜆)(𝑔, 𝜇, 𝜉, 𝜈) = (𝑔ℎ, 𝜇+Ad*𝑔 𝜆, 𝜉, 𝜈).

As in the case of the action of 𝐺Ⓢg2, it can also be described by composition of
two actions

𝛼(ℎ,𝜆) = 𝛼(ℎ,0) ∘ 𝛼(𝑒,𝐴𝑑*
𝑔𝜆)
,

where 𝛼(ℎ,0) and 𝛼(𝑒,𝐴𝑑*
𝑔𝜆)

can be identified with the actions of 𝐺 and g*1 on 𝑇𝑇 *𝐺,
respectively. Since both of them are symplectic, 𝛼 is also symplectic.

Proposition 6.13. Poisson reduction of 𝑇𝑇 *𝐺 under the action (6.11) of
𝐺Ⓢg*1 results in g2Ⓢg*3 endowed with the bracket

(6.12) {𝐹,𝐻}g2Ⓢg*
3
(𝜉, 𝜈) =

⟨
𝜈,
[︁𝛿𝐸
𝛿𝜈
,
𝛿𝐹

𝛿𝜈

]︁⟩
.

Remark 6.7. Regarding g* × g as a dual of the Lie algebra gⓈg* of 𝐺Ⓢg*,
we obtained the Lie–Poisson bracket in Eq. (5.6). Although g* × g and g2 × g*3 are
isomorphic as vector spaces, (5.6) is different from the Poisson bracket in Eq. (6.12)
as manifestation of a group structure carried by adapted trivialization.

The infinitesimal generator of 𝛼 is associated to the two tuple (𝜉2, 𝜈2) in the
Lie algebra gⓈg* of 𝐺Ⓢg*1 and is of the form

𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,0,0)

(𝑔, 𝜇, 𝜉, 𝜈) = (𝑇𝑅𝑔𝜉2, 𝜈2 + ad*𝜉2 𝜇, [𝜉, 𝜉2], ad
*
𝜉2 𝜈 − ad*𝜉 𝜈2).

The momentum mapping J
𝐺Ⓢg*

1

𝑇𝑇*𝐺 is defined by the equation

⟨J𝐺Ⓢg*
1

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈), (𝜉2, 𝜈2)⟩ = ⟨𝜃1, 𝑋𝑇𝑇*𝐺
(𝜉2,𝜈2,0,0)

⟩ = −⟨𝜈2, 𝜉⟩+ ⟨𝜈 + ad*𝜉 𝜇, 𝜉2⟩,

where 𝜃1 is the potential one-form given by Eq. (2.21). We obtain

J
𝐺Ⓢg*

1

𝑇𝑇*𝐺 : 𝑇𝑇 *𝐺→ Lie*(𝐺Ⓢg*1) = g* × g : (𝑔, 𝜇, 𝜉, 𝜈) → (𝜈 + ad*𝜉 𝜇,−𝜉),
which can be decomposed as

J
𝐺Ⓢg*

1

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈) = (J𝐺
𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈),J

g*
1

𝑇𝑇*𝐺(𝑔, 𝜇, 𝜉, 𝜈)),

where J𝐺
𝑇𝑇*𝐺 and J

g*
1

𝑇𝑇*𝐺 are momentum mappings in Eqs. (6.2) and (6.8) for the
actions of 𝐺 and g*1 on 𝑇𝑇 *𝐺, respectively. The preimage of an element (𝜆, 𝜉) in
g* × g is

(J
𝐺Ⓢg*

1

𝑇𝑇*𝐺)
−1(𝜆, 𝜉) = {(𝑔, 𝜇,−𝜉, 𝜈) : 𝜈 = 𝜆+ ad*𝜉 𝜇},

which can be identified with the space 𝐺Ⓢg*1. The isotropy subgroup of coadjoint
action of 𝐺Ⓢg2 on g* × g is

(𝐺Ⓢg*1)(𝜆,𝜉) = {(𝑔, 𝜇) ∈ 𝐺Ⓢg2 : 𝐴𝑑*(𝑔,𝜇)(𝜆, 𝜉) = (𝜆, 𝜉)},

where the coadjoint action is given by Eq. (5.10). The isotropy subgroup acts on the
preimage of (𝜆, 𝜉) and results in the coadjoint orbit through the point (𝜆, 𝜉) ∈ g*×g

(J
𝐺Ⓢg*

1

𝑇𝑇*𝐺)
−1(𝜆, 𝜉)

⧸︀
(𝐺Ⓢg*1)(𝜆,𝜉) ≃ 𝐺Ⓢg*1

⧸︀
(𝐺Ⓢg2)(𝜆,𝜉) ≃ 𝒪(𝜆,𝜉).
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Proposition 6.14. Symplectic reduction of 𝑇𝑇 *𝐺 under the action of 𝐺Ⓢg*1
given by Eq. (6.11) results in the coadjoint orbit 𝒪(𝜆,𝜉) and the symplectic two-form
Ω𝒪(𝜆,𝜉)

in Eq. (5.11).

Similar to the reduction of 𝑇𝑇 *𝐺 by 𝐺Ⓢg2, we may perform symplectic re-
duction of 𝑇𝑇 *𝐺 with the action of 𝐺Ⓢg*1 by two stages. Let us recall symplectic
reduction of 𝑇𝑇 *𝐺 with action of g*1 at 𝜉 ∈ g which results in 𝐺Ⓢg*3 and the
canonical symplectic two-form Ω𝐺Ⓢg*

3
. Then, consider the action of the isotropy

subgroup 𝐺𝜉, defined in Eq. (5.12), on 𝐺Ⓢg*3 and apply symplectic reduction. This
gives 𝒪(𝜆,𝜉) and the symplectic two-form Ω𝒪(𝜆,𝜉)

. The following diagram shows this
two-stage reduction of 𝑇𝑇 *𝐺

(𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3)

SR by g*
1 at 𝜉

uu
SR by 𝐺Ⓢg*

1 at (𝜆,𝜉)

��

𝐺Ⓢg*2

SR by 𝐺𝜉 at 𝜆

))
𝒪(𝜆,𝜉)

Reduction of 𝑇𝑇 *𝐺 by 𝐺Ⓢg*1.
We summarize diagrammatically all possible reductions of Hamiltonian dynam-

ics on the Tulczyjew symplectic space 𝑇𝑇 *𝐺.
(6.13)

(𝐺Ⓢg*1)Ⓢg*3 𝐺Ⓢg*3
� �

symplectic
leaf //_?

symplectic
leafoo 𝐺Ⓢ(g2Ⓢg*3)

g*1Ⓢg*3

Poisson
embedding

OO

(𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3)

PR by g2

ff

PR by g*
1

88

SR by g2

��

SR by g*
1

��

PR by 𝐺Ⓢg2
oo PR by 𝐺Ⓢg*

1
//

SR by 𝐺Ⓢg2

xx

PR by 𝐺Ⓢg*
1

&&

SR by g2

SS

SR by g*
1

KK

g2Ⓢg*3

Poisson
embedding

OO

𝒪(𝜇,𝜈)

� ?

symp.
leaf

OO

𝐺Ⓢg*3
SR by 𝐺𝜇oo SR by 𝐺𝜉 // 𝒪(𝜇,𝜉)

� ?

symp.
leaf

OO

Hamiltonian reductions of 𝑇𝑇 *𝑄 = (𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3).

6.2. Lagrangian dynamics on 𝑇𝑇 *𝐺. As it is a tangent bundle, we can
study Lagrangian dynamics on 𝑇𝑇 *𝐺 ≃ (𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3). We define variation
of the base element (𝑔, 𝜇) ∈ 𝐺Ⓢg*1 by tangent lift of right translation of the Lie
algebra element (𝜂, 𝜆) ∈ gⓈg*, that is,

𝛿(𝑔, 𝜇) = 𝑇(𝑒,0)𝑅(𝑔,𝜇)(𝜂, 𝜆) = (𝑇𝑒𝑅𝑔𝜂, 𝜆+ ad*𝜂 𝜇).
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To obtain the reduced variational principle 𝛿(𝜉, 𝜈) on the Lie algebra g2Ⓢg*3 we
compute

𝛿(𝜉, 𝜈) =
𝑑

𝑑𝑡
(𝜂, 𝜆) + [(𝜉, 𝜈), (𝜂, 𝜆)]gⓈg*

=
𝑑

𝑑𝑡
(𝜂, 𝜆) + ([𝜉, 𝜂], ad*𝜂 𝜈 − ad*𝜉 𝜆)

= (�̇� + [𝜉, 𝜂], �̇�+ ad*𝜂 𝜈 − ad*𝜉 𝜆)

for any (𝜂, 𝜆) ∈ gⓈg*. Assuming 𝛿(𝜉, 𝜈) = (𝛿𝜉, 𝛿𝜈) and 𝛿(𝑔, 𝜇) = (𝛿𝑔, 𝛿𝜇), we have
the set of variations

(6.14) 𝛿𝑔 = 𝑇𝑒𝑅𝑔𝜂, 𝛿𝜇 = 𝜆+ ad*𝜂 𝜇, 𝛿𝜉 = �̇� + [𝜉, 𝜂] 𝛿𝜈 = �̇�+ ad*𝜂 𝜈 − ad*𝜉 𝜆

for an arbitrary choice of (𝜂, 𝜆) ∈ gⓈg*. Note that these variations are the image
of the right invariant vector field 𝑋𝑇𝑇*𝐺

(𝜂,𝜆,�̇�,�̇�)
generated by (𝜂, 𝜆, �̇�, �̇�).

Proposition 6.15. For a given Lagrangian 𝐸 on 𝑇𝑇 *𝐺, extremals of the ac-
tion integral are defined by the trivialized Euler-Lagrange equations

(6.15)

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜉

)︁
= 𝑇 *

𝑒𝑅𝑔

(︁𝛿𝐸
𝛿𝑔

)︁
− ad*𝛿𝐸

𝛿𝜇
𝜇+ ad*𝜉

(︁𝛿𝐸
𝛿𝜉

)︁
− ad*𝛿𝐸

𝛿𝜈
𝜈

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜈

)︁
=
𝛿𝐸

𝛿𝜇
− ad𝜉

𝛿𝐸

𝛿𝜈

obtained by the variational principles in Eq. (6.14).

Proof. Let us begin with the observation that for any (𝑔, 𝜉) ∈ 𝐺Ⓢg, the
variation 𝛿(𝑔, 𝜉) = (𝛿𝑔, 𝛿𝜉) at (𝜂, �̇�) ∈ gⓈg may be given by

(𝛿𝑔, 𝛿𝜉) = 𝑋𝑇𝐺
(𝜂,�̇�)(𝑔, 𝜉) = (𝑇𝑅𝑔𝜂, �̇� + [𝜂, 𝜉]).

Accordingly, given a Lagrangian L : 𝑇𝐺 ∼= 𝐺Ⓢg → R, the action integral

𝛿

∫︁ 𝑏

𝑎

L(𝑔, 𝜉)𝑑𝑡 =

∫︁ 𝑏

𝑎

(︁⟨𝛿L
𝛿𝑔
, 𝛿𝑔

⟩
+
⟨𝛿L
𝛿𝜉
, 𝛿𝜉

⟩)︁
𝑑𝑡

=

∫︁ 𝑏

𝑎

(︁⟨𝛿L
𝛿𝑔
, 𝑇𝑅𝑔𝜂

⟩
+

⟨𝛿L
𝛿𝜉
, �̇�
⟩
+

⟨𝛿L
𝛿𝜉
, [𝜉, 𝜂]

⟩)︁
𝑑𝑡

=
⟨𝛿L
𝛿𝜉
, 𝜂
⟩⃒⃒⃒𝑏

𝑎
+

∫︁ 𝑏

𝑎

(︁⟨
𝑇 *𝑅𝑔

𝛿L

𝛿𝑔
, 𝜂
⟩
+

⟨
− 𝑑

𝑑𝑡

𝛿L

𝛿𝜉
, 𝜂
⟩
+

⟨
ad*𝜉

𝛿L

𝛿𝜉
, 𝜂
⟩)︁
𝑑𝑡

leads to the (trivialized) Euler–Lagrange equations

𝑑

𝑑𝑡

𝛿L

𝛿𝜉
= 𝑇 *𝑅𝑔

𝛿L

𝛿𝑔
+ ad*𝜉

𝛿L

𝛿𝜉
.

Accordingly, the (trivialized) Euler-Lagrange equations on 𝑇𝑇 *𝐺 are given by

𝑑

𝑑𝑡

𝛿𝐸

𝛿(𝜉, 𝜈)
= 𝑇 *𝑅(𝑔,𝜇)

𝛿𝐸

𝛿(𝑔, 𝜇)
+ ad*(𝜉,𝜈)

𝛿𝐸

𝛿(𝜉, 𝜈)
,
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where the first summand on the right hand side is

𝑇 *𝑅(𝑔,𝜇)
𝛿𝐸

𝛿(𝑔, 𝜇)
=

(︁
𝑇 *𝑅𝑔

𝛿𝐸

𝛿𝑔
− ad*𝛿𝐸

𝛿𝜇
𝜇,
𝛿𝐸

𝛿𝜇

)︁
,

while the second summand is

ad*(𝜉,𝜈)
𝛿𝐸

𝛿(𝜉, 𝜈)
=

(︁
ad*𝜉

𝛿𝐸

𝛿𝜉
− ad*𝛿𝐸

𝛿𝜈
𝜈,
𝛿𝐸

𝛿𝜈
+ ad𝜉

𝛿𝐸

𝛿𝜈

)︁
. □

Proposition 6.16. Given a Lagrangian 𝐸 = 𝐸(𝑔, 𝜇, 𝜉, 𝜈) on 𝑇𝑇 *𝐺, the quan-
tity ⟨𝛿𝐸

𝛿𝜉
, 𝜉
⟩
+

⟨𝛿𝐸
𝛿𝜈
, 𝜈

⟩
− 𝐸

is constant.

Proof. Let us begin with

𝑑𝐸

𝑑𝑡
=

⟨𝜕𝐸
𝜕𝑔

, �̇�
⟩
+
⟨𝜕𝐸
𝜕𝜇

, �̇�
⟩
+

⟨𝜕𝐸
𝜕𝜉

, 𝜉
⟩
+
⟨𝜕𝐸
𝜕𝜈

, �̇�
⟩

=
⟨𝜕𝐸
𝜕𝑔

, 𝑇𝑅𝑔𝜉
⟩
+
⟨𝜕𝐸
𝜕𝜇

, 𝜈 + ad*𝜉 𝜇
⟩
+

⟨𝜕𝐸
𝜕𝜉

, 𝜉
⟩
+

⟨𝜕𝐸
𝜕𝜈

, �̇�
⟩

=
⟨
𝑇 *𝑅𝑔

(︁𝜕𝐸
𝜕𝑔

)︁
− ad*𝜕𝐸

𝜕𝜇
𝜇, 𝜉

⟩
+

⟨𝜕𝐸
𝜕𝜇

, 𝜈
⟩
+
⟨𝜕𝐸
𝜕𝜉

, 𝜉
⟩
+

⟨𝜕𝐸
𝜕𝜈

, �̇�
⟩
.

Next, substituting the (trivialized) Euler–Lagrange equations (6.15), we obtain

𝑑𝐸

𝑑𝑡
=

⟨ 𝑑
𝑑𝑡

(︁𝜕𝐸
𝜕𝜉

)︁
− ad*𝜉

𝜕𝐸

𝜕𝜉
+ ad*𝜕𝐸

𝜕𝜈
𝜈, 𝜉

⟩
+
⟨
𝜈,
𝑑

𝑑𝑡

(︁𝜕𝐸
𝜕𝜈

)︁
− ad𝜉

𝜕𝐸

𝜕𝜈

⟩
+

⟨𝜕𝐸
𝜕𝜉

, 𝜉
⟩
+

⟨𝜕𝐸
𝜕𝜈

, �̇�
⟩

=
⟨ 𝑑
𝑑𝑡

(︁𝜕𝐸
𝜕𝜉

)︁
, 𝜉
⟩
+

⟨𝜕𝐸
𝜕𝜉

, 𝜉
⟩
+

⟨
�̇�,
𝜕𝐸

𝜕𝜈

⟩
+
⟨
𝜈,
𝑑

𝑑𝑡

(︁𝜕𝐸
𝜕𝜈

)︁⟩
+
⟨
ad*𝜕𝐸

𝜕𝜈
𝜈, 𝜉

⟩
−

⟨
ad*𝜉

𝜕𝐸

𝜕𝜉
, 𝜉
⟩
−

⟨
𝜈, ad𝜉

𝜕𝐸

𝜕𝜈

⟩
=

𝑑

𝑑𝑡

(︁⟨𝜕𝐸
𝜕𝜉

, 𝜉
⟩
+

⟨
𝜈,
𝜕𝐸

𝜕𝜈

⟩)︁
,

from which the result follows. □

6.2.1. Reductions on 𝑇𝑇 *𝐺. When the Lagrangian function 𝐸 in the trivialized
Euler-Lagrange equations (6.15) is independent of the group variable 𝑔 ∈ 𝐺, we
arrive at Euler–Lagrange equations (6.20) on g*1Ⓢ(g2Ⓢg*3). In addition, if the
Lagrangian 𝐸 depends only on the fiber coordinates 𝐸 = 𝐸(𝜉, 𝜈), we have the
Euler–Poincaré equations (6.16).

Proposition 6.17. The Euler–Poincaré equations on the Lie algebra g2Ⓢg*3 are

(6.16)
𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜉

)︁
= ad*𝜉

(︁𝛿𝐸
𝛿𝜉

)︁
− ad*𝛿𝐸

𝛿𝜈
𝜈,

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜈

)︁
= − ad𝜉

𝛿𝐸

𝛿𝜈
.
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If, moreover, 𝐸 = 𝐸(𝜉), the Euler–Poincaré equations (3.2) on g2 arise. This
procedure is called reduction by stages [10,28].

Alternatively, the Lagrangian function 𝐸 in trivialized Euler–Lagrange equa-
tions (6.15) can be independent of 𝜇 ∈ g*1, that is, 𝐸 can be invariant under the
action of g*1 on 𝑇𝑇 *𝐺. In this case, we have Euler–Lagrange equations (6.18) on
𝐺Ⓢ(g2Ⓢg*3). When 𝐸 = 𝐸(𝑔, 𝜉), we have trivialized Euler–Lagrange equations
(6.19) on 𝐺Ⓢg2. Referring to the notation in Remark 2.5, the following diagram
summarizes this discussion.

(𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3)
EL in (6.15)

L.R. by 𝐺

||

L.R. by g*
1

""

EPR by 𝐺Ⓢg*
1

��
g*1Ⓢ(g2Ⓢg*3)
EL in (6.20)

(g2Ⓢg*3)
EP in (6.16)

𝐺Ⓢ(g2Ⓢg*3)
EL in (6.18)

g2
EP in (3.2)

?�

canonical
immersion

OO

Q1

canonical
immersion

bb

- 

canonical
immersion

<<

𝐺Ⓢg2
EL in (6.19)

?�

canonical
immersion

OO

(6.17)

Lagrangian reductions on 𝑇𝑇 *𝐺

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜉

)︁
= 𝑇 *

𝑒𝑅𝑔

(︁𝛿𝐸
𝛿𝑔

)︁
+ ad*𝜉

(︁𝛿𝐸
𝛿𝜉

)︁
− ad*𝛿𝐸

𝛿𝜈
𝜈

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜈

)︁
= − ad𝜉

𝛿𝐸

𝛿𝜈

(6.18)

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜉

)︁
= 𝑇 *

𝑒𝑅𝑔

(︁𝛿𝐸
𝛿𝑔

)︁
+ ad*𝜉

(︁𝛿𝐸
𝛿𝜉

)︁
(6.19)

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜉

)︁
= − ad*𝛿𝐸

𝛿𝜇
𝜇+ ad*𝜉

(︁𝛿𝐸
𝛿𝜉

)︁
− ad*𝛿𝐸

𝛿𝜈
𝜈

𝑑

𝑑𝑡

(︁𝛿𝐸
𝛿𝜈

)︁
=
𝛿𝐸

𝛿𝜇
− ad𝜉

𝛿𝐸

𝛿𝜈

(6.20)

7. Summary, discussions and prospectives

We write Hamilton’s equations on the cotangent bundles 𝑇 *𝑇𝐺 and 𝑇 *𝑇 *𝐺.
Symplectic and Poisson reductions of 𝑇 *𝑇𝐺 are performed under actions of 𝐺, g
and 𝐺Ⓢg as shown in diagram (4.14). 𝑇 *𝑇 *𝐺 is also reduced by actions of 𝐺, g*
and 𝐺Ⓢg* c.f. diagram (5.13).
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On Tulczyjew’s symplectic space 𝑇𝑇 *𝐺 = (𝐺Ⓢg*1)Ⓢ(g2Ⓢg*3), we obtain both
Hamilton’s and Euler-Lagrange equations. Hamilton’s equations are reduced by
symplectic and Poisson actions of 𝐺, g*1, g2, 𝐺Ⓢg2 and 𝐺Ⓢg*1. These reductions
are summarized in diagram (6.13). As it is a tangent bundle, Lagrangian reductions
are performed with actions of 𝐺, g*1, 𝐺Ⓢg*1 and 𝐺Ⓢ(g*1 × g2) and are shown in
diagram (6.17).

Hamiltonian reductions of Tulczyjew’s symplectic space 𝑇𝑇 *𝐺 can be gener-
alized to symplectic reduction of a tangent bundle of a symplectic manifold with
lifted symplectic structure. This may be a first step towards reduction of special
symplectic structures and reduction of Tulczyjew’s triplet for the arbitrary configu-
ration manifold 𝒬. In order to obtain this more general picture for trivialization and
reduction of the Tulczyjew triplet, we plan to pursue a new project where the reduc-
tion is applied to Lagrangian dynamics on 𝑇𝑄 and Hamiltonian dynamics on 𝑇 *𝑄
for an arbitrary manifold 𝑄. In this case, the reduced Lagrangian dynamics on the
orbit space 𝑇𝑄/𝐺 is called Lagrange–Poincaré equations. If, particularly, 𝑄 = 𝐺
then the Lagrange–Poincaré equations turn out to be Euler–Poincaré equations on
g. Similarly, the Hamiltonian dynamics on 𝑇 *𝑄/𝐺 is called Hamilton–Poincaré
equations and, reduce to Lie–Poisson equations on g* for the case of 𝑄 = 𝐺. In
the first paper [21] of that series, we have already presented the trivialization and
reduction of the Tulczyjew triplet for an arbitrary manifold under the presence of
an Ehresmann connection.
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TULCZYJEW-И ТРИПЛЕТИ ЛИJЕВИХ ГРУПА III: ДИНАМИКА
ВИШЕГ РЕДА И РЕДУКЦИJЕ ИТЕРИРАНИХ РАСЛОJЕЊА

Резиме. За дату Лиjеву групу 𝐺 разрађена jе Хамилотнова динамика на
𝑇 *𝑇 *𝐺 и 𝑇 *𝑇𝐺, као и динамика на Tulczyjew-овом симплектичком простору
𝑇𝑇 *𝐺 коjа се може дефинисати како Лагранжиjаном тако и Хамилтониjаном.
Разматраjу се тривиjализациjе коjе су прилагођене груповноj структури ите-
рираних раслоjења, што омогућуjе опис свих могућих редукциjа (Пуасонове,
симплектичке или обе) динамика вишег реда у односу на деjство одговараjућих
подгрупа.
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