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A TIME-DEPENDENT METRIC GRAPH WITH A
FOURTH-ORDER OPERATOR ON THE EDGES

I. V. Blinova, A. S. Gnedash, and I. Y. Popov

Abstract. The metric graph model is suggested for description of elastic
vibration in a network of rods under the assumption that the rod lengths vary
in time. A single rod and star-like graph are considered. Influence of the length
variation law on the vibration distribution is investigated. For high-frequency
length variation one observes a fast transition to high-frequency amplitude
distribution.

1. Introduction

The metric graph is a widely used low-dimensional model. To introduce the
metric graph, one should define firstly its geometric structure, i.e. a set of edges
(segments or curves) and a set of vertices (coupling and boundary points for edges).
Then, one defines a space of functions at the edges satisfying some coupling con-
ditions at the vertices and a differential operator acting in the space. A particular
choice of the metric graph is related to the properties of the modelled physical sys-
tem. Initiated in the 1930’s as modelling of macromolecules, the approach became
a powerful and, at the same time, simple tool for investigation of network-like sys-
tems. The largest class of such models, so-called quantum graphs, is presented in
quantum theory [1,2]. In this case, the Schrödinger or Dirac operator is considered
at the edges. As for other applications, e.g., in optics, hydrodynamics, elasticity,
etc., various operators at the edges are studied [3–8]. Recently, great attention
has been devoted to time-depending metric graphs, i.e. graphs having character-
istics (e.g., edge lengths) varying in time [9–16]. This problem is in relation to
time-dependent boundary conditions and time dependent potentials [17–21]. In
the present paper we consider with varying edge lengths for the case of the fourth-
order operator at the edges:

(1.1)
𝜕2

𝜕𝑡2
Ψ(𝑥, 𝑡) =

𝜕4

𝜕𝑥4
Ψ(𝑥, 𝑡)

As for the scattering problem on a line or half-line, we can mention the works
[22,23]. In order to describe this system, we firstly solve the problem for graphs
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with constant edge lengths, and then proceed to the dynamic problem, where the
lengths depend on time. The lengths of the edges of the graphs in these models
depend on time according to a harmonic law:

𝐿0(𝑡) = 𝑙𝐿(𝑡), 𝐿(𝑡) = 𝑎+ 𝑏 cos(𝜔𝑡),

where 𝜔 = 2𝜋𝑇−1 is the oscillation frequency, 𝑇 is the period of oscillation, and
𝑎, 𝑏 are real parameters.

2. Segment graph

Let us consider the equations on a segment graph. It is the simplest graph which
consists of two vertices and an edge between them. Firstly, we solve a problem with
a constant length 𝑙 of the edge. To obtain the eigenfunctions of the system we have
to find the solutions for the following equation:

(2.1)
𝜕4

𝜕𝑦4
𝜑(𝑦) = 𝑘4𝜑(𝑦),

where 𝜑(𝑦) is an eigenfunction satisfying boundary conditions:

(2.2)

{︃
𝜑(0) = 𝜑′(0) = 0

𝜑(𝑙) = 𝜑′(𝑙) = 0.

The solution for (2.1) has the form:

𝜑(𝑦) = 𝐶1 sinh(𝑘𝑦) + 𝐶2 cosh(𝑘𝑦) + 𝐶3 sin(𝑘𝑦) + 𝐶4 cos(𝑘𝑦).

Boundary conditions (2.2) give the following system for coefficients 𝐶𝑖:

(2.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐶2 + 𝐶4 = 0,

𝐶1 + 𝐶3 = 0,

𝐶1 sinh(𝑘𝑙) + 𝐶2 cosh(𝑘𝑙) + 𝐶3 sin(𝑘𝑙) + 𝐶4 cos(𝑘𝑙) = 0,

𝐶1 cosh (𝑘𝑙)) + 𝐶2 sinh(𝑘𝑙)− 𝐶1 cos(𝑘𝑙) + 𝐶2 sin(𝑘𝑙) = 0.

The condition for the existence of non-trivial solutions for (2.3) (spectral equa-
tion) is as follows

(2.4) cosh(𝑘𝑙) cos(𝑘𝑙)− 1 = 0.

Let 𝑘𝑛 be the 𝑛−th positive root of (2.4). The eigenfunction corresponding to the
eigenvalue 𝑘4𝑛 has the form:

(2.5) 𝜑𝑛(𝑦) = 𝐶1

[︁
sinh(𝑘𝑛𝑦) +

sinh(𝑘𝑛𝑙)− sin(𝑘𝑛𝑙)

cos(𝑘𝑛𝑙)− cosh(𝑘𝑛𝑙)
cosh(𝑘𝑛𝑦)− sin(𝑘𝑛𝑦)

− sinh(𝑘𝑛𝑙)− sin(𝑘𝑛𝑙)

cos(𝑘𝑛𝑙)− cosh(𝑘𝑛𝑙)
cos(𝑘𝑛𝑦)

]︁
,

where the coefficient 𝐶1 is determined from the normalization condition:

𝐶1 = [20𝑘𝑛𝑙 + 2 sin(2𝑘𝑛𝑙)− 16 cos(𝑘𝑛𝑙) sinh(𝑘𝑛𝑙) + sinh(2𝑘𝑛𝑙)(cos(2𝑘𝑛𝑙) + 2)

− 16 sin(𝑘𝑛𝑙) cosh(𝑘𝑛𝑙) + sin(2𝑘𝑛𝑙) cosh(2𝑘𝑛𝑙)]
−1/2.
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The next step is to solve the problem of a graph with edges of variable length. In
order to use the results of calculations from the stationary problem, it is necessary
to make a change of variables. {︃

𝑦 = 𝑥
𝐿(𝑡) ,

𝑡1 = 𝑡.

Below we use the same notation 𝑡 for 𝑡1.
The equation and the boundary conditions for the dynamical problem are as

follows:

(2.6)
𝜕2

𝜕𝑡2
Ψ(𝑥, 𝑡) =

𝜕4

𝜕𝑥4
Ψ(𝑥, 𝑡)

(2.7)

{︃
Ψ(0, 𝑡) = Ψ′(0, 𝑡) = 0,

Ψ(𝐿0(𝑡), 𝑡) = Ψ′(𝐿0(𝑡), 𝑡) = 0.

After replacement of the variables in (2.6) and (2.7), we seek the wave function
in the form of a Fourier series:

(2.8) Ψ(𝑦, 𝑡) =
∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡),

where 𝜑𝑛 is the 𝑛−th eigenfunction of the stationary problem (2.5). Below we use
the notations 𝜕2𝐿(𝑡)

𝜕𝑡2 = �̈�, 𝜕𝐿(𝑡)
𝜕𝑡 = �̇�, 𝐿(𝑡) = 𝐿 and replace 𝑡1 = 𝑡. We substitute

(2.8) in the equation and reduce it to the system of ordinary differential equations.
One can find the details of the equation transformation in the Appendix.

As a result, we obtain the following system of differential equations for the
coefficients of the Fourier series:

(2.9)

2�̇�2 − �̇�𝐿(𝑡)

𝐿2

𝜕

𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)𝐼1 +
�̇�2

𝐿2

∑︁
𝑛

𝐶𝑛(𝑡)𝐼2

2
𝐿

𝐿

∑︁
𝑛

�̇�𝑛(𝑡)𝐼1 + 𝐶𝑚 =
𝑘4

𝑝𝐿4

∑︁
𝑛

𝐶𝑛(𝑡).

Here 𝐼1, 𝐼2 are matrices having the following entries:

𝐼𝑛𝑚1 =

∫︁ 𝑙

0

𝑦
𝜕𝜑(𝑛)(𝑦)

𝜕𝑦
𝜑(𝑚)(𝑦)𝑑𝑦, 𝐼𝑛𝑚2 =

∫︁ 𝑙

0

𝑦2
𝜕2𝜑(𝑛)(𝑦)

𝜕𝑦2
𝜑(𝑚)(𝑦).

We solve system (2.9) using the ode45 function built into GNU Octave. Corre-
spondingly, we present (2.9) as a system of differential equations of the first order
by introducing a new variable:

𝐷𝑛 = �̇�𝑛.

Consequently, system (2.9) transforms to a system of 2𝑁 equations, where 𝑁 is
the number of eigenvalues taken into account (i.e. we cut series (A.2) at the 𝑁−th
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term). One obtains the following system in matrix form:{︃
𝐷 = �̇�,

�̇� = 𝐾4

𝐿4 * 𝐶 + 2 �̇�
𝐿𝐼1𝐷 − 2�̇�2−�̈�𝐿(𝑡)

𝐿2 𝐼1𝐶 − �̇�2

𝐿2 𝐼2𝐶.

Here 𝐾,𝐶,𝐷, �̇�, �̇� are matrices of dimension [𝑁, 1] and 𝐼1, 𝐼2 are matrices of
dimension [𝑁,𝑁 ]. For simulation, we take the following length variation law and
the initial conditions

𝐿(𝑡) = 𝑎+ 𝑏 cos(𝜔𝑡), 𝑎 = 1, 𝑏 = 0.1, 𝜔 = 50, 𝑙 = 1, 𝑁 = 10,

Ψ(𝑦, 0) = 1− cos(2𝜋𝑦).

The result of simulation is shown in Figures 1 and 2.

Figure 1. Modules |Ψ| on the edge of the graph. From top to
bottom: 𝑡 = 0, 𝑡 = 0.2𝑇 , 𝑡 = 0.4𝑇, where the period of oscillation
of the length is 𝑇 = 2𝜋/𝜔.

We took a smooth slowly varying initial condition and the length variation law
of high frequency. Comparison of Figures 1 and 2 shows that, at first, the length
variation does not lead to a change of the amplitude distribution. But later the
distribution is determined mainly by the high-frequency variation of the segment
length. There is a very fast transition from a smooth distribution of amplitude to
a high-frequency one. The details of this transition are shown in Figure 3.
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Figure 2. Modules |Ψ| on the edge of the graph. From top to
bottom: 𝑡 = 0.6𝑇 , 𝑡 = 0.8𝑇 , 𝑡 = 𝑇, where the period of oscillation
of the length is 𝑇 = 2𝜋/𝜔.

Figure 3. Modules |Ψ| on the edge of the graph. From top to
bottom: 𝑡 = 0.47𝑇, 𝑡 = 0.475𝑇 , 𝑡 = 0.48𝑇, where the period of
oscillation of the length is 𝑇 = 2𝜋/𝜔.
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3. Star-like graph

Let us consider the corresponding star like graph with three edges of varying
lengths 𝐿𝑗(𝑡), 𝑗 (𝑗 = 1, 2, 3):

𝐿𝑗(𝑡) = 𝑙𝑗𝐿(𝑡).

We will take a harmonic law for 𝐿(𝑡). The procedure is the same as for the segment.
Firstly, we solve the problem for the edges of constant length. The operator acts as
the fourth derivative at each edge. The operator domain consists of functions from
the Sobolev space 𝑊 4

2 at each edge satisfying the boundary conditions (3.1). To
obtain the eigenfunctions of the operator, we should find solutions 𝜑𝑗(𝑦) for equa-
tion (2.1) at each edge (𝑗 = 1, 2, 3) and ensure satisfying the boundary conditions
(3.1):

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑1(0) = 𝜑2(0) = 𝜑3(0) = 0,

𝜑1(𝑙1) = 𝜑2(𝑙2) = 𝜑3(𝑙3),

𝜑′
1(0) = 𝜑′

2(0) = 𝜑′
3(0) = 0,

𝜑′
1(𝑙1) = 𝜑′

2(𝑙2) = 𝜑′
3(𝑙3) = 0,

𝜑′′′
1 (𝑙1) + 𝜑′′′

2 (𝑙2) + 𝜑′′′
3 (𝑙3) = 0.

The solution for (2.1) at the 𝑗−th edge has the form:

𝜑𝑗(𝑦) = 𝐶𝑗
1 sinh(𝑘𝑦) + 𝐶𝑗

2 cosh(𝑘𝑦) + 𝐶𝑗
3 sin(𝑘𝑦) + 𝐶𝑗

4 cos(𝑘𝑦).

Correspondingly, (3.1) gives one

𝜑𝑗(0) = 𝐶𝑗
2 + 𝐶𝑗

4 = 0 ⇒ 𝐶𝑗
2 = −𝐶𝑗

4 ,

𝜑′
𝑗(0) = 𝑘[𝐶𝑗

1 + 𝐶𝑗
3 ] = 0 ⇒ 𝐶𝑗

1 = −𝐶𝑗
3 ,

𝜑′
1(𝑙1) = 𝐶1

1 (cosh(𝑘𝑙1)− cos(𝑘𝑙1)) + 𝐶1
2 (sinh(𝑘𝑙1) + sin(𝑘𝑙1)) = 0,⇒

𝐶1
2 = 𝐶1

1

cos(𝑘𝑙1)− cosh(𝑘𝑙1)

sinh(𝑘𝑙1) + sin(𝑘𝑙1)
.

For convenience, we put:

𝑄𝑗 =
cos(𝑘𝑙𝑗)− cosh(𝑘𝑙𝑗)

sinh(𝑘𝑙𝑗) + sin(𝑘𝑙𝑗)
.

Conditions (3.1) give the following equation for eigenvalues:
3∑︁

𝑗=1

cosh(𝑘𝑙𝑗) sin(𝑘𝑙𝑗) + cos(𝑘𝑙𝑗) sinh(𝑘𝑙𝑗)

sinh(𝑘𝑙𝑗) + sin(𝑘𝑙𝑗)
= 0.

The eigenfunction corresponding to the eigenvalue 𝑘𝑛 at the 𝑗-th edge takes the
form:

𝜑
(𝑛)
𝑗 (𝑦) = 𝐶

(𝑛)
1 [sinh(𝑘𝑛𝑦) +𝑄

(𝑛)
𝑗 cosh(𝑘𝑛𝑦)− sin(𝑘𝑛𝑦)−𝑄

(𝑛)
𝑗 cos(𝑘𝑛𝑦)],
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where 𝑄
(𝑛)
𝑗 denotes 𝑄𝑗 corresponding to the eigenvalue 𝑘𝑛, and 𝐶

(𝑛)
1 is the normal-

izing coefficient: ∑︁
𝑗

∫︁ 𝑙𝑗

0

(𝜑
(𝑛)
𝑗 (𝑦))2𝑑𝑦 = 1,

𝐶
(𝑛)
1 =

3∑︁
𝑗=1

[︁− sin(2𝑘𝑛𝑙𝑗) + sinh(2𝑘𝑛𝑙𝑗)

4𝑘𝑛

+
cos(𝑘𝑛𝑙𝑗) sinh(𝑘𝑛𝑙𝑗)− sin(𝑘𝑛𝑙𝑗) cosh(𝑘𝑛𝑙𝑗)

𝑘𝑛
+ 2𝑄

(𝑛)
𝑗

(sin(𝑘𝑛𝑙𝑗)− sinh(𝑘𝑛𝑙𝑗))
2

2𝑘𝑛

+ (𝑄
(𝑛)
𝑗 )2

(︁4𝑘𝑛𝑙𝑗 + sin(2𝑘𝑛𝑙𝑗) + sinh(2𝑘𝑛𝑙𝑗)

4𝑘𝑛

− cos(𝑘𝑛𝑙𝑗) sinh(𝑘𝑛𝑙𝑗) + sin(𝑘𝑛𝑙𝑗) cosh(𝑘𝑛𝑙𝑗)

𝑘𝑛

)︁]︁
.

Let us turn to the problem with a variable length of edges. We solve the
problem analogously to the segment case. A difference appears in the integrals 𝐼1
and 𝐼2 due to the existence of three edges:

𝐼1 =

∫︁
Γ

𝑦
𝜕𝜑(𝑛)(𝑦)

𝜕𝑦
𝜑(𝑚)(𝑦)𝑑𝑦 =

3∑︁
𝑗=1

∫︁ 𝑙𝑗

0

𝑦
𝜕𝜑

(𝑛)
𝑗 (𝑦)

𝜕𝑦
𝜑
(𝑚)
𝑗 (𝑦)𝑑𝑦,

𝐼2 =

∫︁
Γ

𝑦2
𝜕2𝜑(𝑛)(𝑦)

𝜕𝑦2
𝜑(𝑚)(𝑦)𝑑𝑦 =

3∑︁
𝑗=1

∫︁ 𝑙𝑗

0

𝑦2
𝜕2𝜑

(𝑛)
𝑗 (𝑦)

𝜕𝑦2
𝜑
(𝑚)
𝑗 (𝑦)𝑑𝑦.

For simulation, we take the length variation law and the initial conditions as
follows

𝐿(𝑡) = 𝑎+ 𝑏 cos(𝜔𝑡)

𝑎 = 1, 𝑏 = 0.1, 𝜔 = 10

𝑙1 = 1, 𝑙2 = 2, 𝑙3 = 3, 𝑁 = 15

Ψ1(𝑦, 0) = 1− cos(2𝜋𝑦)

Ψ𝑗(𝑦, 0) = 0, 𝑗 = 2, 3.

Results of the simulation were shown in Figures 4 and 5.
We can see that a transition from a smooth amplitude distribution to a high-

frequency one takes place for a very small value of time (at the moment of time
0.2T only a high-frequency distribution is observed. If one chooses different initial
characteristics, it is possible to look into this transition in detail in Figures 6 and 7).

𝐿(𝑡) = 𝑎+ 𝑏 cos(𝜔𝑡)

𝑎 = 1, 𝑏 = 0.5, 𝜔 = 30

𝑙1 = 1, 𝑙2 = 3, 𝑙3 = 5, 𝑁 = 15

Ψ1(𝑦, 0) = 1− cos(2𝜋𝑦)

Ψ𝑗(𝑦, 0) = 0, 𝑗 = 2, 3
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Figure 4. Modules |Ψ𝑗 | on the edge of the graph. From top to
bottom: 𝑡 = 0, 𝑡 = 0.2𝑇 , 𝑡 = 0.4𝑇, where the period of oscillation
of the length is 𝑇 = 2𝜋/𝜔.

Figure 5. Modules |Ψ𝑗 | on the edge of the graph. From top to
bottom: 𝑡 = 0.6, 𝑡 = 0.8𝑇 , 𝑡 = 𝑇, where the period of oscillation
of the length is 𝑇 = 2𝜋/𝜔.
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Figure 6. Modules |Ψ𝑗 | on the edge of the graph. From top to
bottom: 𝑡 = 0, 𝑡 = 0.2𝑇 , 𝑡 = 0.4𝑇, where the period of oscillation
of the length is 𝑇 = 2𝜋/𝜔.

Figure 7. Modules |Ψ𝑗 | on the edge of the graph. From top to
bottom: 𝑡 = 0.6, 𝑡 = 0.8𝑇 , 𝑡 = 𝑇, where the period of oscillation
of the length is 𝑇 = 2𝜋/𝜔.
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4. Conclusion

The metric graph model is suggested for description of elastic waves propaga-
tion in a rod and star-like system of rods. It is assumed that the rod lengths vary
in time. The law of the length variation has a strong influence on the distribution
of the vibration amplitude. If the frequency of the length vibration is essentially
high, a fast transition to high-frequency distribution of the amplitude is observed.
The model can be used for description of vibration of networks.
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Appendix

Let us find the expressions for the first spatial derivative in terms of new vari-
ables:

𝜕

𝜕𝑥
Ψ(𝑥, 𝑡) =

𝜕

𝜕𝑥
Ψ(𝑦(𝑥, 𝑡), 𝑡1(𝑥, 𝑡)) =

𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

𝜕𝑦

𝜕𝑥
+

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1)

𝜕𝑡1
𝜕𝑥

=
𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

1

𝐿(𝑡)
+

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1) · 0 =

1

𝐿(𝑡)

𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1).

Similarly, we find the second, third, and fourth derivatives:

𝜕2

𝜕𝑥2
Ψ(𝑥, 𝑡) =

𝜕

𝜕𝑥

(︁ 1

𝐿(𝑡)

𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

)︁
=

1

𝐿(𝑡)

𝜕

𝜕𝑥

𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

=
1

𝐿(𝑡)

(︁ 𝜕2

𝜕𝑦2
Ψ(𝑦, 𝑡1)

𝜕𝑦

𝜕𝑥
+

𝜕2

𝜕𝑦𝜕𝑡1
Ψ(𝑦, 𝑡1)

𝜕𝑡1
𝜕𝑥

)︁
=

1

𝐿2(𝑡)

𝜕2

𝜕𝑦2
Ψ(𝑦, 𝑡1),

𝜕3

𝜕𝑥3
Ψ(𝑥, 𝑡) =

1

𝐿3(𝑡)

𝜕3

𝜕𝑦3
Ψ(𝑦, 𝑡1),

(A.1)
𝜕4

𝜕𝑥4
Ψ(𝑥, 𝑡) =

1

𝐿4(𝑡)

𝜕4

𝜕𝑦4
Ψ(𝑦, 𝑡1).

We calculate the derivative of the variable
𝜕𝑦

𝜕𝑡
=

𝜕

𝜕𝑡

𝑥

𝐿(𝑡)
= − 1

𝐿2(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑥 = − 1

𝐿2(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦𝐿(𝑡) = − 1

𝐿(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦.

Then the first and the second time derivatives are as follows:
𝜕

𝜕𝑡
Ψ(𝑥, 𝑡) =

𝜕

𝜕𝑡
Ψ(𝑦(𝑥, 𝑡), 𝑡1(𝑥, 𝑡)) =

𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

𝜕𝑦

𝜕𝑡
+

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1)

𝜕𝑡

𝜕𝑡1

=
𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

(︁
− 1

𝐿(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦
)︁
+

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1) · 1

= − 1

𝐿(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦
𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1) +

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1),
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(A.2)
𝜕2

𝜕𝑡2
Ψ(𝑥, 𝑡) =

𝜕

𝜕𝑡

(︁
− 1

𝐿(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦
𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1) +

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1)

)︁
=

𝜕

𝜕𝑡

(︁
− 1

𝐿(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦
)︁ 𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)−

1

𝐿(𝑡)

𝜕𝐿(𝑡)

𝜕𝑡
𝑦
𝜕

𝜕𝑡

𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

+
𝜕

𝜕𝑡

𝜕

𝜕𝑡1
Ψ(𝑦, 𝑡1) =

2
(︀𝜕𝐿(𝑡)

𝜕𝑡

)︀2 − 𝜕2𝐿(𝑡)
𝜕𝑡2 𝐿(𝑡)

𝐿2(𝑡)
𝑦
𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1)

−
𝜕𝐿(𝑡)
𝜕𝑡

𝐿(𝑡)
𝑦
(︁ 𝜕2

𝜕𝑦2
Ψ(𝑦, 𝑡1)

𝜕𝑦

𝜕𝑡
+

𝜕2

𝜕𝑦𝜕𝑡1
Ψ(𝑦, 𝑡1)

𝜕𝑡1
𝜕𝑡

)︁
+

𝜕2

𝜕𝑡1𝜕𝑦
Ψ(𝑦, 𝑡1)

𝜕𝑦

𝜕𝑡
+

𝜕2

𝜕𝑡21
Ψ(𝑦, 𝑡1)

𝜕𝑡1
𝜕𝑡

=
2
(︀𝜕𝐿(𝑡)

𝜕𝑡

)︀2 − 𝜕2𝐿(𝑡)
𝜕𝑡2 𝐿(𝑡)

𝐿2(𝑡)
𝑦
𝜕

𝜕𝑦
Ψ(𝑦, 𝑡1) +

𝜕2𝐿(𝑡)
𝜕𝑡2

𝐿2(𝑡)
𝑦2

𝜕2

𝜕𝑦2
Ψ(𝑦, 𝑡1)

− 2
𝜕𝐿(𝑡)
𝜕𝑡

𝐿(𝑡)
𝑦

𝜕2

𝜕𝑦𝜕𝑡1
Ψ(𝑦, 𝑡1) +

𝜕2

𝜕𝑡21
Ψ(𝑦, 𝑡1).

We can substitute (2.8) in (A.2) and (A.1), and substitute them in (1.1):

𝜕

𝜕𝑡

(︁
− 𝐿

𝐿
𝑦
)︁ 𝜕

𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)−
𝐿

𝐿
𝑦
𝜕

𝜕𝑡

𝜕

𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)

+
𝜕

𝜕𝑡

𝜕

𝜕𝑡1

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡) =
2�̇�2 − �̈�𝐿(𝑡)

𝐿2
𝑦
𝜕

𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)

− �̇�

𝐿
𝑦

(︂
𝜕2

𝜕𝑦2

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)
𝜕𝑦

𝜕𝑡
+

𝜕2

𝜕𝑦𝜕𝑡1

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)
𝜕𝑡1
𝜕𝑡

)︂
+

𝜕2

𝜕𝑡1𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)
𝜕𝑦

𝜕𝑡
+

𝜕2

𝜕𝑡21

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)
𝜕𝑡1
𝜕𝑡

=
2�̇�2 − �̈�𝐿

𝐿2
𝑦
𝜕

𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡) +
�̈�

𝐿2
𝑦2

𝜕2

𝜕𝑦2

∑︁
𝑛

𝑐𝑛(𝑡)𝜑𝑛(𝑡)

− 2
𝐿

𝐿
𝑦

𝜕2

𝜕𝑦𝜕𝑡1

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡) +
𝜕2

𝜕𝑡21

∑︁
𝑛

𝐶𝑛(𝑡)𝜑𝑛(𝑡)

=
1

𝐿4

𝜕4

𝜕𝑦4
Ψ(𝑦, 𝑡1).

We multiply the resulting expression by 𝜑(𝑚), integrate from 0 to 𝑙 over 𝑑𝑦 and
apply condition (2.1). Then, we come to the following equation

2�̇�2 − �̈�𝐿(𝑡)

𝐿2

𝜕

𝜕𝑦

∑︁
𝑛

𝐶𝑛(𝑡)

∫︁ 𝑙

0

𝑦
𝜕𝜑(𝑛)(𝑦)

𝜕𝑦
𝜑(𝑚)(𝑦)𝑑𝑦

+
�̇�2

𝐿2

∑︁
𝑛

𝐶𝑛(𝑡)

∫︁ 𝑙

0

𝑦2
𝜕2𝜑(𝑛)(𝑦)

𝜕𝑦2
𝜑(𝑚)(𝑦)𝑑𝑦
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− 2
𝐿

𝐿

∑︁
𝑛

�̇�𝑛(𝑡)

∫︁ 𝑙

0

𝑦
𝜕𝜑(𝑛)(𝑦)

𝜕𝑦
𝜑(𝑚)(𝑦)𝑑𝑦 + 𝐶𝑚

=
𝑘4

𝐿4

∑︁
𝑛

𝐶𝑛(𝑡)

∫︁ 𝑙

0

𝜑(𝑛)(𝑦)𝜑(𝑚)(𝑦)𝑑𝑦.

Integrals in the obtained equation are independent of time; therefore, they can
be denoted as 𝐼1, 𝐼2 and counted once:

𝐼𝑛𝑚1 =

∫︁ 𝑙

0

𝑦
𝜕𝜑(𝑛)(𝑦)

𝜕𝑦
𝜑(𝑚)(𝑦)𝑑𝑦, 𝐼𝑛𝑚2 =

∫︁ 𝑙

0

𝑦2
𝜕2𝜑(𝑛)(𝑦)

𝜕𝑦2
𝜑(𝑚)(𝑦).

Eigenfunctions form an orthogonal and normalised system, i.e.∫︁ 𝑙

0

𝜑(𝑛)(𝑦)𝜑(𝑚)(𝑦)𝑑𝑦 = 𝛿𝑛𝑚.
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ВРЕМЕНСКИ-ЗАВИСНИ МЕТРИЧКИ ГРАФ СА
ОПЕРАТОРОМ ЧЕТВРТОГ РЕДА НА ТЕМЕНИМА

Резиме. Предложен jе модел метричког графа за опис еластичних вибра-
циjа у мрежи штапова под претпоставком да jе дужина штапова променљива у
времену. Разматрани су jедан случаjеви графа са jедном ивицом и звездастог
графа. Истражуjе се утицаj закона вариjациjе дужине на расподелу вибрациjа.
За вариjациjу дужине високе фреквенциjе примећуjе се брз прелаз на распо-
делу амплитуда високе фреквенциjе.
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