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NOETHER’S THEOREM FOR HERGLOTZ
TYPE VARIATIONAL PROBLEMS UTILIZING

COMPLEX FRACTIONAL DERIVATIVES

Marko Janev, Teodor M. Atanacković, and
Stevan Pilipović

Abstract. This is a review article which elaborates the results presented
in [1], where the variational principle of Herglotz type with a Lagrangian that
depends on fractional derivatives of both real and complex orders is formu-
lated and the invariance of this principle under the action of a local group of
symmetries is determined. The conservation law for the corresponding frac-
tional Euler Lagrange equation is obtained and a sequence of approximations
of a fractional Euler–Lagrange equation by systems of integer order equations
established and analyzed.

1. Introduction

In this review article, the results obtained in [1] are elaborated. Namely, vari-
ational principles of Hamilton type are suited for conservative systems, while for
systems with non-conservative forces, variational principles of Hamilton type are
rare (see [2, 3]). An important advantage of the Herglotz variational principle
(HVP) [4] is that it could be formulated for a non-conservative dynamical sys-
tem. It leads to Nöther’s type theorems and first integrals of the non-conservative
dynamical systems [5].

In [1] symmetry properties of the HVP with real and complex order fractional
derivatives are derived. Concerning the variational principle of Hamilton type with
real fractional derivatives, important contributions are by Riewe [6,7] and recent
[8–16]. For the Hamilton variational principle with complex order derivatives,
important contributions are in [11]. Mathematical models of mechanical systems
involving complex order derivatives are connected with viscoelasticty. A generalized
wave equation related to a viscoelastic body with the complex order fractional
derivatives in a constitutive equation is considered in [17]. Also, Noether’s theory
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for the fractional variational principle of Hamilton type was presented in many
publications (c.f. [18] with the references therein).

The HVP and corresponding Noether’s theorems for systems involving integer
order derivatives were studied in a series of papers by Georgieva and Guenther,
[19–22]. The symmetry properties which correspond to a Lagrangian with integer
and real fractional order derivatives were recently presented in [5,19,20,23,24].
The HVP for Birkhoffian systems with combined fractional derivatives, introduced
in [25], was treated in [26].

The real and complex order fractional derivatives in the HVP are introduced
in [12], where generalized Euler–Lagrange equations are introduced, with different
assumptions imposed on the Lagrangian (see also [11]).

In [1], a HVP in the case when its Lagrangian involves real and complex or-
der fractional derivatives is introduced, where the results are continuation of the
work presented in [12]. The actions of a local one-parameter group of transfor-
mations related to the corresponding Euler–Lagrange equation are formulated and
the infinitesimal criteria obtained, so that the results presented in [13] and [18] are
generalized. Moreover, using the expansion of fractional derivative of a function
into series, the approximations of the already established Euler–Lagrange equation
are invoked as well as the infinitesimal criteria and Noether’s type theorem. The
convergence in a weak sense within the dual pairing of corresponding topological
spaces is proved. Finally, two examples are given, generalizing known results.

1.1. Notation. The left and right Riemann–Liouville fractional derivatives of
order 𝛼 ∈ (0, 1) are defined by

𝑎𝐷
𝛼
𝑡 𝑢(𝑡) =

1

Γ(1− 𝛼)

𝑑

𝑑𝑡

∫︁ 𝑡

𝑎

𝑢(𝜏)

(𝑡− 𝜏)𝛼
𝑑𝜏,

𝑡𝐷
𝛼
𝑇𝑢(𝑡) =

1

Γ(1− 𝛼)

(︁
− 𝑑

𝑑𝑡

)︁∫︁ 𝑇

𝑡

𝑢(𝜏)

(𝜏 − 𝑡)𝛼
𝑑𝜏, 𝑡 ∈ [𝑎, 𝑇 ].

The same definition can be extended for complex 𝛼 (𝛼 ∈ C) with Re𝛼 ∈ [0, 1),
cf. [27–31]. However, in this case, the result of the Riemann–Liouville fractional
operator of complex order applied to a real valued function is a complex valued
function. Therefore, in order to obtain as a result a real valued function, we use
the fractional derivatives of complex order defined as

𝑎𝒟𝛼
𝑡 =

1

2
(𝑎𝐷

𝛼
𝑡 + 0𝐷

�̄�
𝑡 ), and 𝑡𝒟𝛼

𝑇 =
1

2
(𝑡𝐷

𝛼
𝑇 + 𝑡𝐷

�̄�
𝑇 ),

where �̄� is the complex conjugate of 𝛼. In this way 𝑎𝒟𝛼
𝑡 𝑢 and 𝑡𝒟𝛼

𝑇𝑢, 𝑢 ∈ 𝒰 , have
real values.

Let 𝑓, 𝑔 ∈ 𝐴𝐶([𝑎, 𝑏]), 𝛼 ∈ C with Re𝛼 ∈ (0, 1), Im 𝛼 ⩾ 0. Then, the fractional
integration by parts formula [11,12] reads

(1.1)
∫︁ 𝑏

𝑎

𝑓(𝑡)𝑎𝒟𝛼
𝑡 𝑔(𝑡)𝑑𝑡 =

∫︁ 𝑏

𝑎

𝑔(𝑡)𝑡𝒟𝛼
𝑏 𝑓(𝑡)𝑑𝑡.
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1.2. HVP. Let 𝑢0, 𝑎, 𝑇 ∈ R, 𝑇 > 𝑎, and let

(1.2) 𝒰 := {𝑢 ∈ 𝐶1([𝑎, 𝑇 ]) | 𝑢 is real, 𝑢(𝑎) = 𝑢0}

be the set of admissible functions; 𝐶1 = 𝐶1([𝑎, 𝑇 ]) denotes the space of continuous
functions with continuous first derivatives on [𝑎, 𝑇 ]. We consider the following first
order equation for a real function 𝑧 (with 𝑧(𝑎) = 𝑧0),

(1.3) �̇�(𝑡) =
𝑑𝑧

𝑑𝑡
= 𝐿(𝑡, 𝑢, 𝑎𝐷

𝛼
𝑡 𝑢, 𝑎𝒟

𝛾
𝑡 𝑢, 𝑧), 𝑡 ∈ [𝑎, 𝑇 ], 𝑢 ∈ 𝒰 ,

𝛼 ∈ (0, 1), 𝛾 ∈ 𝐶 ∖R with Re 𝛾 ∈ [0, 1).
The Lagrangian 𝐿 is an absolutely continuous function over [𝑎, 𝑇 ] × R4 (𝐿 ∈

𝐴𝐶([𝑎, 𝑇 ]× R4)) as well as

(1.4) 𝑡 ↦→ 𝜕5𝐿
(︀
𝑡, 𝑢, 0𝐷

𝛼
𝑡 𝑢, 0𝒟

𝛾
𝑡 𝑢, 𝑧

)︀
∈ 𝐿1([𝑎, 𝑇 ]);

(1.5) 𝑡 ↦→ 𝑡𝐷
𝛼
𝑇 (𝜆(𝑡)𝜕3𝐿(𝑡, 𝑢, 0𝐷

𝛼
𝑡 𝑢, 0𝒟

𝛾
𝑡 𝑢, 𝑧)) ∈ 𝐿1([𝑎, 𝑇 ]);

(1.6) 𝑡 ↦→ 𝑡𝒟𝛾
𝑇 (𝜆(𝑡)𝜕4𝐿(𝑡, 𝑢, 0𝐷

𝛼
𝑡 𝑢, 0𝒟

𝛾
𝑡 𝑢, 𝑧)) ∈ 𝐿1([𝑎, 𝑇 ]),

where

(1.7) 𝜆(𝑡) = exp

(︂
−

∫︁ 𝑡

0

𝜕5𝐿(𝜏, 𝑢, 0𝐷
𝛼
𝜏 𝑢, 0𝒟𝛾

𝜏 𝑢, 𝑧)𝑑𝜏

)︂
,

and 𝜕𝑖 denotes differentiation with respect to the 𝑖-th variable.
Denote by 𝑆 the set of solutions to equation (1.3). The HVP is related to a

mapping 𝑍 : 𝒰 → 𝑆, 𝑢 ↦→ 𝑍(𝑢) = 𝑧. The HVP is stated as:
Find 𝑢 ∈ 𝒰 such that the solution to (1.3) takes the extremal value (𝑒𝑥𝑡𝑟) at

the point 𝑇 , that is,

(1.8) 𝑧(𝑇 ) → extr, so that (1.3) holds.

Remark 1.1. Concerning the admissible set 𝒰 , one can make additional as-
sumptions. Actually, this was done in the section 5. Also, additional assumptions
are included in the section 4.

We recall our result from [12], related to functions defined on [0, 𝑇 ].

Theorem 1.1. [12] Let 𝑢* ∈ 𝒰 such that 𝑧(𝑡), 𝑡 ∈ [0, 𝑇 ], takes its extremal
value 𝑧(𝑇 ) at 𝑇 , and 𝑧 satisfies (1.3). Then 𝑢* satisfies the following generalized
Euler–Lagrange equation:

(1.9) 𝜆(𝑡)
𝜕𝐿

𝜕𝑢
+ 𝑡𝐷

𝛼
𝑇 (𝜆(𝑡)𝜕3𝐿) + 𝑡𝒟𝛾

𝑇 (𝜆(𝑡)𝜕4𝐿) = 0, on [0, 𝑇 ],

where

(1.10) 𝜆(𝑡) = exp

(︂
−
∫︁ 𝑡

0

𝜕𝑧𝐿(𝜏)𝑑𝜏

)︂
, 𝑡 ∈ [0, 𝑇 ].
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2. Local group of symmetries for HVP

In [1], the following results are formulated and proved, so we elaborate on
those. We list those together with proofs in order to illustrate the concept used.
Consider a local one-parameter group of transformations acting on real functions
𝑢 and 𝑡:

𝑡 = 𝜑(𝑡, 𝑢, 𝜂), �̄�(𝑡) = 𝜓(𝑡, 𝑢, 𝜂),

where 𝜂 ∈ (−𝜀, 𝜀) is a parameter of the group, and 𝜑(𝑡, 𝑢, 0) = 𝑡, 𝜓(𝑡, 𝑢, 0) = 𝑢. The
infinitesimal generators are 𝜏(𝑡, 𝑢) = 𝑑

𝑑𝜂𝜑(𝑡, 𝑢, 𝜏)|𝜂=0, 𝜉(𝑡, 𝑢) = 𝑑
𝑑𝜂𝜓(𝑡, 𝑢, 𝜏)|𝜂=0 so

that

(2.1) 𝑡 = 𝑡+ 𝜂𝜏(𝑡, 𝑢) + 𝑜(𝜂), �̄�(𝑡) = 𝑢(𝑡) + 𝜂𝜉(𝑡, 𝑢) + 𝑜(𝜂).

We assume that 𝜏, 𝜉 ∈ 𝐶1([𝑎, 𝑡] × R). In Section 4 we will assume that these
functions are analytic ones. Let

Δ𝑡 = lim
𝜂→0

𝑡(𝜂)− 𝑡

𝜂
, Δ𝑢 = lim

𝜂→0

�̄�(𝑡, 𝜂)− 𝑢(𝑡)

𝜂
, 𝛿𝑢 = lim

𝜂→0

�̄�(𝑡)− 𝑢(𝑡)

𝜂
.

Then, it could be shown that the following proposition holds, see [13,21].

Proposition 2.1.

(2.2)
Δ𝑡 = 𝜏, Δ𝑢 = 𝜉, Δ𝑢 = 𝛿𝑢+ �̇�𝜏,

𝛿𝑢 = 𝜉 − 𝜏 �̇�, Δ�̇� = (Δ𝑢)̇− �̇�𝜏 , (𝛿𝑢)̇ = 𝛿�̇�.

In particular, 𝑑𝑡/𝑑𝑡|𝜂=0 = 1, (𝑑𝑡/𝑑𝜂)(𝑑𝑡/𝑑𝑡)|𝜂=0 = 𝜏 .

The action of the local symmetry on Riemann–Liouville fractional derivatives
was presented in our paper [13] and, in a different way, in [18]. Recall

(2.3) Δ𝑎𝐷
𝛼
𝑡 𝑢 = 𝑎𝐷

𝛼
𝑡 𝛿𝑢+ (𝑎𝐷

𝛼
𝑡 𝑢)̇𝜏, Δ𝑎𝒟𝛼

𝑡 𝑢 = 𝑎𝒟𝛼
𝑡 𝛿𝑢+ (𝑎𝒟𝛼

𝑡 𝑢)̇ 𝜏.

Note that in (2.3) the terms (𝑎𝐷
𝛼
𝑡 𝑢)̇ and (𝑎𝒟𝛼

𝑡 𝑢)̇ must be calculated taking into
account that the lower bound in the fractional derivatives 𝑡 = 𝑎 is also a subject
which should be transformed so that in (2.3) we have

(𝑎𝐷
𝛼
𝑡 𝑢)̇𝜏 =

𝜕

𝜕𝑡
[𝑎𝐷

𝛼
𝑡 𝑢(𝑡)]𝜏(𝑡, 𝑢(𝑡)) +

𝜕

𝜕𝑎
[𝑎𝐷

𝛼
𝑡 𝑢(𝑡)]𝜏(𝑎, 𝑢(𝑡)),

(𝑎𝒟𝛼
𝑡 𝑢)̇𝜏 =

𝜕

𝜕𝑡
[𝑎𝒟𝛼

𝑡 𝑢(𝑡)]𝜏(𝑡, 𝑢(𝑡)) +
𝜕

𝜕𝑎
[𝑎𝒟𝛼

𝑡 𝑢(𝑡)]𝜏(𝑎, 𝑢(𝑡)).

Thus, we have

(2.4)
00Δ𝑎𝐷

𝛼
𝑡 𝑢 = 𝑎𝐷

𝛼
𝑡 𝛿𝑢+

𝑑

𝑑𝑡
(𝑎𝐷

𝛼
𝑡 𝑢(𝑡))𝜏(𝑡, 𝑢(𝑡)) +𝑅(𝑎, 𝑡),

Δ𝑎𝒟𝛼
𝑡 𝑢 = 𝑎𝒟𝛼

𝑡 𝛿𝑢+
𝑑

𝑑𝑡
(𝑎𝒟𝛼

𝑡 𝑢(𝑡))𝜏(𝑡, 𝑢(𝑡)) +𝑅(𝑎, 𝑡),

where

(2.5) 𝑅(𝑎, 𝑡) =
𝛼

Γ(1− 𝛼)

𝑢(𝑎)

(𝑡− 𝑎)𝛼+1
𝜏(𝑎, 𝑢(𝑎)).

Let us turn to the invariance of the solution to the variational problem 1.3 under
the action of the local group. Every element of the group transforms 𝒰 bijectively
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to 𝒰 consisting of 𝐶1-real functions defined on [�̄�, 𝑇 ] with the same initial value 𝑢0.
The function 𝑡 ↦→ �̄�(𝑡) ∈ 𝒰 , satisfying

(2.6)
𝑑𝑧

𝑑𝑡
= 𝐿(𝑡, �̄�, �̄�𝐷

𝛼
𝑡 �̄�, �̄�𝒟

𝛾
𝑡 �̄�, 𝑧),

(in the transformed domain) is the solution to the variational problem, i.e. 𝑧(𝑇 ) =
𝑧(𝑇 ), where 𝑧 solves (1.8).

Remark 2.1. The definition of symmetries implies that for any sub-interval
[𝐴,𝐵] ⊂ [𝑎, 𝑇 ] we have

(2.7) Δ𝑧(𝑡) = lim
𝜂→0

𝑧(𝑡, 𝜂)− 𝑧(𝑡)

𝜂
= 0, 𝑡 ∈ [𝐴,𝐵],

that is, 𝑧(𝑡) = 𝑧(𝑡), 𝑡 ∈ [𝑎, 𝑇 ].

Now we give the infinitesimal criteria:

Theorem 2.1. Infinitesimals 𝜏, 𝜉 define a local symmetry group of (1.3) if and
only if

𝜏
𝜕𝐿

𝜕𝑡
+ 𝜉

𝜕𝐿

𝜕𝑢
+ (𝑎𝐷

𝛼
𝑡 (𝜉 − �̇�𝜏) + (𝑎𝐷

𝛼
𝑡 𝑢)̇𝜏 +𝑅(𝑎, 𝑡))

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑡 𝑢

(2.8)

+ (𝑎𝒟𝛾
𝑡 (𝜉 − �̇�𝜏) + (𝑎𝒟𝛾

𝑡 𝑢)̇𝜏 +𝑅(𝑎, 𝑡))
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑡 𝑢

+ 𝐿𝜏 = 0,

for all 𝑢 ∈ 𝒰 .

Proof. Suppose that 𝜏, 𝜉 define a symmetry group. From �̇� = 𝐿 we have
Δ�̇�(𝑡) = Δ𝐿. So, (2.2)4 implies Δ�̇� = (Δ𝑧)̇− �̇�𝜏 . Therefore,

(Δ𝑧)̇ = Δ𝐿+ 𝐿𝜏

=
𝜕𝐿

𝜕𝑡
𝜏 +

𝜕𝐿

𝜕𝑢
𝜉 +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑡 𝑢

Δ𝑎𝐷
𝛼
𝑡 𝑢+

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑡 𝑢

Δ𝑎𝒟𝛾
𝑡 𝑢+

𝜕𝐿

𝜕𝑧
Δ𝑧 + 𝐿𝜏.

Since Δ𝑎𝐷
𝛼
𝑡 𝑢 = 𝛿𝑎𝐷

𝛼
𝑡 𝑢 + (𝑎𝐷

𝛼
𝑡 𝑢)̇𝜏 =𝑎 𝐷

𝛼
𝑡 𝛿𝑢 + (𝑎𝐷

𝛼
𝑡 𝑢)̇𝜏 and a similar expression

holds for Δ𝑎𝒟𝛾
𝑡 𝑢, we obtain

(Δ𝑧)̇− 𝜕𝐿

𝜕𝑧
Δ𝑧 =

𝜕𝐿

𝜕𝑡
𝜏 +

𝜕𝐿

𝜕𝑢
𝜉 +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑡 𝑢

[𝑎𝐷
𝛼
𝑡 (𝜉 − �̇�𝜏) + (𝑎𝐷

𝛼
𝑡 𝑢)̇𝜏 +𝑅(𝑎, 𝑡)]

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑡 𝑢

[𝑎𝒟𝛾
𝑡 𝑢(𝜉 − �̇�𝜏) + (𝑎𝒟𝛾

𝑡 𝑢)̇𝜏 +𝑅(𝑎, 𝑡)] + 𝐿𝜏.

Multiplying by 𝜆(𝑡) and integrating, we obtain

[𝜆(𝑡)Δ𝑧(𝑡)−Δ𝑧(𝑎)𝜆(𝑎)]

=

∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁𝜕𝐿
𝜕𝑠
𝜏 +

𝜕𝐿

𝜕𝑢
𝜉 +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

[𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏) + (𝑎𝐷

𝛼
𝑠 𝑢)̇ 𝜏 +𝑅(𝑎, 𝑠)]

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

[𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏) + (𝑎𝒟𝛾

𝑠𝑢)̇𝜏 +𝑅(𝑎, 𝑠)] + 𝐿𝜏
]︁
𝑑𝑠, 𝑡 ∈ [𝑎, 𝑇 ].
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An initial value 𝑧(𝑎) = 𝑢0 implies Δ𝑧(𝑎) = 0, so that Δ𝑧(𝑡) = 0 leads to

(2.9)
∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁𝜕𝐿
𝜕𝑠
𝜏 +

𝜕𝐿

𝜕𝑢
𝜉 +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑡 𝑢

[𝑎𝐷
𝛼
𝑡 (𝜉 − �̇�𝜏) + (𝑎𝐷

𝛼
𝑡 𝑢)̇𝜏 +𝑅(𝑎, 𝑡)]

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑡 𝑢

[𝑎𝒟𝛾
𝑡 𝑢(𝜉 − �̇�𝜏) + (𝑎𝒟𝛾

𝑡 𝑢)̇𝜏 +𝑅(𝑎, 𝑡)] + 𝐿𝜏
]︁
𝑑𝑠 = 0, 𝑡 ∈ [𝑎, 𝑇 ].

Relation (2.8) follows from (2.9) since∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁𝜕𝐿
𝜕𝑠
𝜏 +

𝜕𝐿

𝜕𝑢
𝜉 +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

[𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏) + (𝑎𝐷

𝛼
𝑠 𝑢)̇𝜏 +𝑅(𝑎, 𝑠)]

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

[𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏) + (𝑎𝒟𝛾

𝑠𝑢)̇𝜏 +𝑅(𝑎, 𝑠)] + 𝐿𝜏
]︁
𝑑𝑠 = 0, 𝑡 ∈ [𝑎, 𝑇 ].

Next, we show that (2.8) is also a sufficient condition for 𝜏 and 𝜉 to be the
infinitesimal generators for the local group of symmetries for which 𝑧(𝑡) = 𝑧(𝑡), 𝑡 ∈
[𝑎, 𝑇 ]. Starting with 𝑡 = 𝑡+ 𝜂𝜏 , and �̄�(𝑡) = 𝑢(𝑡) + 𝜂𝜉, (2.7), we obtain

(2.10) 𝑧(𝑡, 𝜂) = 𝑧(𝑡) + Δ𝑧(𝑡)𝜂, 𝑡 ∈ [𝑎, 𝑇 ].

Multiplying (2.8) by 𝜆, integrating respect to 𝑡 from 𝑡 = 𝑎 and using Δ𝑧(𝑎) = 0,
it follows that Δ𝑧(𝑡) = 0. Substituting this result in (2.10), we obtain 𝑧(𝑡) = 𝑧(𝑡),
𝑡 ∈ [𝑎, 𝑇 ]. □

Remark 2.2. If 𝐿 does not contain fractional derivatives but contains the first
derivative of 𝑢, that is, �̇�(𝑡) = 𝑑𝑧

𝑑𝑡 = 𝐿(𝑡, 𝑢, �̇�, 𝑧), then (2.8) becomes

(2.11) 𝜏
𝜕𝐿

𝜕𝑡
+ 𝜉

𝜕𝐿

𝜕𝑢
+ ((𝜉 − �̇�𝜏 )̇ + �̈�𝜏)

𝜕𝐿

𝜕�̇�
+ 𝐿𝜏 = 0.

This result is in agreement with [21].

3. Nöther’s theorem

We determine now the conservation law (CL) for the Euler–Lagrange equa-
tion (1.9).

Theorem 3.1. Suppose that 𝜏, 𝜉 define a symmetry group for (1.3). Then, the
Euler–Lagrange equation (1.9) has the first integral:

𝜆𝐿𝜏 +

∫︁ 𝑡

𝑎

[︁
− (𝜉 − �̇�𝜏)

{︁
𝑠
𝐷𝛼

𝑇

(︁
𝜆

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

)︁
+ 𝑠𝒟𝛾

𝑇

(︁
𝜆

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

)︁}︁
(3.1)

+ 𝜆
{︁ 𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏) +

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

𝑎𝒟𝛾
𝑡 𝑢(𝜉 − �̇�𝜏)

}︁
+𝑅(𝑎, 𝑠)

(︁ 𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

)︁
+ 𝐿𝜏

]︁
𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡.

Proof. Condition Δ𝑧(𝑡) = 0, 𝑡 ∈ [𝑎, 𝑇 ], given by (2.9), may be written as∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁𝜕𝐿
𝜕𝑠
𝜏 +

𝜕𝐿

𝜕𝑢
𝜉 +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

[𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏) + (𝑎𝐷

𝛼
𝑠 𝑢)̇𝜏 +𝑅(𝑎, 𝑠)] + �̇�𝜏

𝜕𝐿

𝜕𝑢
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− �̇�𝜏
𝜕𝐿

𝜕𝑢
+

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

[𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏) + (𝑎𝒟𝛾

𝑠𝑢)̇𝜏 +𝑅(𝑎, 𝑠)] + 𝐿𝜏
]︁
𝑑𝑠 = 0.

Using (2.4), we obtain∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁
𝜏
(︁𝜕𝐿
𝜕𝑠

+ �̇�
𝜕𝐿

𝜕𝑢
+

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

(𝑎𝐷
𝛼
𝑠 𝑢)̇ +

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

(𝑎𝒟𝛾
𝑠𝑢)̇ +

𝜕𝐿

𝜕𝑧
�̇�𝜏 − 𝜕𝐿

𝜕𝑧
�̇�𝜏

)︁
+
𝜕𝐿

𝜕𝑢
(𝜉 − �̇�𝜏) +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

[𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏)] +

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏)

+𝑅
(︁ 𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

)︁
+ 𝐿𝜏

]︁
𝑑𝑠 = 0,

or ∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁ 𝑑
𝑑𝑠

(𝐿𝜏) +
𝜕𝐿

𝜕𝑢
(𝜉 − �̇�𝜏) +

𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏) +

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏)

− 𝜕𝐿

𝜕𝑧
�̇�𝜏 +𝑅(𝑎, 𝑠)

(︁ 𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

)︁]︁
= 0.

Since 𝑑
𝑑𝑡𝜆(𝑡) = 𝜆(𝑡)𝜕𝐿𝜕𝑧 �̇� (see (1.10)), we obtain 𝜆(𝑡) 𝑑

𝑑𝑡 (𝐿𝜏) − 𝜆(𝑡)𝜕𝐿𝜕𝑧 �̇�𝜏 = 𝑑
𝑑𝑡 (𝜆𝜏𝐿)

so that the last equation becomes∫︁ 𝑡

𝑎

𝑑

𝑑𝑠
(𝜆𝐿𝜏) + 𝜆(𝑠)

[︁𝜕𝐿
𝜕𝑢

(𝜉 − �̇�𝜏) +
𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏)

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏) +𝑅(𝑎, 𝑠)

(︁ 𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

)︁]︁
= 0,

or

𝜆(𝑡)𝐿(𝑡)𝜏(𝑡) +

∫︁ 𝑡

𝑎

𝜆(𝑠)
[︁𝜕𝐿
𝜕𝑢

(𝜉 − �̇�𝜏) +
𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

𝑎𝐷
𝛼
𝑠 (𝜉 − �̇�𝜏) +

𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

𝑎𝒟𝛾
𝑠𝑢(𝜉 − �̇�𝜏)

+𝑅(𝑎, 𝑠)
(︁ 𝜕𝐿

𝜕𝑎𝐷𝛼
𝑠 𝑢

+
𝜕𝐿

𝜕𝑎𝒟𝛾
𝑠𝑢

)︁]︁
𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡.

By the Euler–Lagrange equation (1.9), we can replace the term 𝜆𝜕𝐿
𝜕𝑢 with the ex-

pression
−[𝑠𝐷

𝛼
𝑇 (𝜆(𝑡)𝜕3𝐿) + 𝑠𝒟𝛾

𝑇 (𝜆(𝑡)𝜕4𝐿)]

so that (3.1) follows. □

Remark 3.1. If the Lagrangian depends on the integer order derivatives only
(as in Remark 2.2) and 𝜕𝐿

𝜕𝑎𝒟𝛾
𝑡 𝑢

= 0, then the CL (3.1) becomes

𝜆(𝑡)𝐿(𝑡)𝜏(𝑡) +

∫︁ 𝑡

𝑎

[︁
(𝜉 − �̇�𝜏)(𝜆

𝜕𝐿

𝜕�̇�
)̇ + 𝜆

𝜕𝐿

𝜕�̇�
(𝜉 − �̇�𝜏 )̇

]︁
𝑑𝑠(3.2)

= 𝜆(𝑡)𝐿(𝑡)𝜏(𝑡) + 𝜆
𝜕𝐿

𝜕�̇�
(𝜉 − �̇�𝜏)

= 𝜆
[︁(︁
𝐿− 𝜕𝐿

𝜕�̇�
�̇�
)︁
𝜏 +

𝜕𝐿

𝜕�̇�
𝜉
]︁
= 𝑐𝑜𝑛𝑠𝑡.

Again, it is in agreement with [21] and [22].
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4. Approximations

In this section we elaborate on a procedure that generates an approximation
of the HVP, fully presented in [1]. The procedure utilizes classical (integer order)
derivatives of the order 𝑁 ∈ N. The infinitesimal criteria as well as the conservation
law CL𝑁 for the mentioned approximate problem invoked in [1] are presented. The
convergence of CL𝑁 to CL, 𝑁 → ∞, in the weak sense, proved in [1], is displayed.

For the sake of simplicity, we assume that 𝜏(𝑎, 𝑢(𝑎)) = 0, so that the term
𝑅(𝑎, 𝑡) (given by (2.5)) vanishes. Let (𝑐, 𝑑) be an open interval in R containing
[𝑎, 𝑇 ], such that the close ball 𝐵(𝑡, 𝑇 − 𝑎) lies in (𝑐, 𝑑). Let 𝑓 be an analytic
function in (𝑐, 𝑑) and 𝛼 ∈ (0, 1). Then, (see [31, Lemma 15.3])

(4.1) 𝑎𝐷
𝛼
𝑡 𝑓(𝑡) =

∞∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
𝑓 (𝑖)(𝑡), 𝑡 ∈ 𝐵(𝑡, 𝑇 − 𝑎) ⊂ (𝑐, 𝑑),

with
(︀
𝛼
𝑖

)︀
= (−1)𝑖−1𝛼Γ(𝑖−𝛼)

Γ(1−𝛼)Γ(𝑖+1) . In this section we further assume that:

a) 𝐿 ∈ 𝐶∞([𝑎, 𝑇 ]× R× R× R);
b) Solution 𝑢 to the problem (1.8) is analytic in (𝑐, 𝑑);
c) 𝜕(𝑖)3 𝐿(𝑇, 𝑏0, 𝑝, 𝑧0) = 0, 𝑝 ∈ R, 𝑖 ∈ N.

Consider

(4.2) �̇�(𝑡) = 𝐿𝑁 (𝑡, 𝑢(𝑡), 𝑢′(𝑡), . . . , 𝑢(𝑁)(𝑡), 𝑧(𝑡)), 𝑡 ∈ [𝑎, 𝑇 ], 𝑧(𝑎) = 𝑧0,

where

𝐿𝑁 (𝑡, 𝑢(𝑡), 𝑢′(𝑡), . . . , 𝑢(𝑁)(𝑡), 𝑧(𝑡)) = 𝐿

(︂
𝑡, 𝑢(𝑡),

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
𝑢(𝑖)(𝑡), 𝑧(𝑡)

)︂
i.e. 𝐿𝑁 is obtained from 𝐿 in (1.8) replacing 𝑎𝐷

𝛼
𝑡 𝑢 by its approximation (4.1).

Then,
𝜕𝐿𝑁

𝜕𝑡
= 𝜕1𝐿𝑁 ,(4.3)

𝜕𝐿𝑁

𝜕𝑢
= 𝜕2𝐿𝑁 +

(︂
𝛼

0

)︂
(𝑡− 𝑎)−𝛼

Γ(1− 𝛼)
𝜕3𝐿𝑁 ,

𝜕𝐿𝑁

𝜕𝑢(𝑖)
=

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
𝜕3𝐿𝑁 ,

where 𝜕𝑖𝐿𝑁 is obtained from 𝜕𝑖𝐿, 𝑖 = 1, 2, 3, 4, replacing 𝑎𝐷
𝛼
𝑡 𝑢 by its approximation

(4.1). Denote by HVP𝑁 the corresponding problem for (4.2): Find 𝑢 ∈ 𝒰 such that
the solution to (4.2) takes its extreme value at 𝑇 .

We recall some basic facts from the abstract functional analysis. Let 𝒜((𝑐, 𝑑))
be the space of real analytic functions with the family of semi-norms

(4.4) 𝑝[𝑚,𝑛](𝜙) = sup
𝑡∈[𝑚,𝑛]

|𝜙(𝑡)|, 𝜙 ∈ 𝒜((𝑐, 𝑑)).

where [𝑚,𝑛] run through all closed sub-intervals of (𝑐, 𝑑). (For the sake of complete-
ness, we note that it is a Fréchet space.) Every function 𝑓 ∈ 𝐶([𝑎, 𝑇 ]) extended by
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zero in (𝑐, 𝑑)∖ [𝑎, 𝑇 ] defines an element of the topological dual 𝒜′((𝑐, 𝑑)) by

(4.5) 𝜙 ↦→ ⟨𝑓, 𝜙⟩ =
∫︁ 𝑇

𝑎

𝑓(𝑡)𝜙(𝑡)𝑑𝑡, 𝜙 ∈ 𝒜((𝑐, 𝑑)).

We need the following simple result (cf. [13,15]).

Proposition 4.1. Let 𝐹 ∈ 𝐶∞([𝑎, 𝑇 ]), such that 𝐹 (𝑖)(𝑇 ) = 0, for 𝑖 ∈ N0, and
𝐹 ≡ 0, on (𝑐, 𝑑)∖ [𝑎, 𝑇 ]. Let 𝑡𝐷

𝛼
𝑇𝐹 be extended by zero in (𝑐, 𝑑)∖ [𝑎, 𝑇 ]. Then:

i) For every 𝑖 ∈ N, the 𝑖−1-th derivative of 𝑡 ↦→ (𝑡−𝑎)𝑖−𝛼𝐹 (𝑡) is continuous
at 𝑡 = 𝑎 and 𝑡 = 𝑇 . Also it is integrable in (𝑐, 𝑑) and supported by [𝑎, 𝑇 ].

ii) Function

(4.6) 𝑡 ↦→ 𝑆𝑁 (𝑡) =

{︃∑︀𝑁
𝑖=0

(︀
− 𝑑

𝑑𝑡

)︀𝑖 (︁
𝐹 ·

(︀
𝛼
𝑖

)︀ (𝑡−𝑎)𝑖−𝛼

Γ(𝑖+1−𝛼)

)︁
, 𝑡 ∈ [𝑎, 𝑇 ]

0, 𝑡 ∈ (𝑐, 𝑑)∖ [𝑎, 𝑇 ]

is integrable in (𝑐, 𝑑) and supported by [𝑎, 𝑇 ].
iii) 𝑆𝑁 ∈ 𝒜′((𝑐, 𝑑)), 𝑁 ∈ N and, in the sense of weak topology,

(4.7) 𝑡𝐷
𝛼
𝑇𝐹 =

∞∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖
(︂
𝐹 ·

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︂
.

We will use now

(4.8) 𝜆𝑁 (𝑡) = exp

(︂
−

∫︁ 𝑡

0

𝜕𝑧𝐿𝑁 (𝜏)𝑑𝜏

)︂
, 𝑡 ∈ [0, 𝑇 ],

Clearly, it converges uniformly to 𝜆 over [𝑎, 𝑇 ].
We fix 𝑁 ∈ N. Then, 𝜕3𝐿𝑁 , . . . , 𝜕𝑁+2𝐿𝑁 ∈ 𝐶∞([𝑎, 𝑇 ] × R × R × R). The

Euler–Lagrange equation for HVP𝑁 (4.2) reads (see [32, Theorem 4]):

(4.9) 𝜆𝑁 (𝑡)
𝜕𝐿𝑁

𝜕𝑢
+

∞∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖(︁
𝜆𝑁 (𝑡)

𝜕𝐿𝑁

𝜕𝑢(𝑖)

)︁
= 0,

where 𝜆𝑁 is given by (4.8). Due to (4.3), this is equivalent to

(4.10) 𝜆𝑁 (𝑡)
𝜕𝐿𝑁

𝜕𝑢
+

∞∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖
(︂
𝜆𝑁 (𝑡)𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︂
= 0.

Denote by 𝜏𝑁 and 𝜉𝑁 infinitesimal generators of the local symmetry group for
HVP𝑁 . We will assume in this section:

(4.11) 𝜏, 𝜉, 𝜏𝑁 , 𝜉𝑁 ∈ 𝒜((𝑐, 𝑑)), 𝑁 ∈ N;

(4.12) 𝜏𝑁 → 𝜏, 𝜉𝑁 → 𝜉𝑁 uniformly on every compact set of (𝑐, 𝑑).

These assumptions imply that one can use the series expansions (4.1) for the quoted
infinitesimal generators. Now, we will recall some assertions from [13]. Moreover,
in the Appendix of [1], it is proved that 𝑣𝑁 = 𝜏𝑁

𝜕
𝜕𝑡 + 𝜉𝑁

𝜕
𝜕𝑢 generates a local

one-parameter symmetry group of HVP𝑁 (4.2) if and only if:
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(4.13)
𝜕𝐿𝑁

𝜕𝑡
𝜏𝑁 +

𝜕𝐿𝑁

𝜕𝑢
𝜉𝑁 +

𝑁∑︁
𝑖=1

𝜕𝐿𝑁

𝜕𝑢(𝑖)
((𝜉𝑁 − �̇�𝜏𝑁 )(𝑖) + 𝑢(𝑖+1)𝜏𝑁 )

+ 𝐿𝑁𝜏𝑁 = 0, 𝑡 ∈ [𝑎, 𝑇 ],

which is due to (4.3) equivalent to the following infinitesimal criteria 𝐼𝐶𝑁 (see
also [13, Theorem 2.4]):

𝜕𝐿𝑁

𝜕𝑡
𝜏𝑁 +

𝜕𝐿𝑁

𝜕𝑢
𝜉𝑁 +

[︃
𝑁∑︁
𝑖=1

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖)

+
𝑑

𝑑𝑡

(︂ 𝑁∑︁
𝑖=1

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)𝑢(𝑖)

)︂
𝜏𝑁

]︃
𝜕3𝐿𝑁 + 𝐿𝑁𝜏𝑁 = 0.

Note that the infinitesimal criterion 𝐼𝐶 given by (2.8) is the same as the one given
in [13, Theorem 5].

It is shown in [13, Theorem 19], that assumptions i), ii) and iii) for 𝐿 as well
as assumptions (4.11) and (4.12) for 𝜏𝑁 and 𝜉𝑁 imply

𝐼𝐶𝑁 → 𝐼𝐶, uniformly on [𝑎, 𝑇 ], 𝑁 → ∞.

In [1], the following is proved:

Proposition 4.2. Let 𝑃𝑁 denote the Euler–Lagrange equation for HVP𝑁

(4.2), given by (4.9), and 𝑃 denote the Euler–Lagrange equation of HVP (1.8),
given by (1.9). Then, 𝑃𝑁 → 𝑃 , as 𝑁 → ∞, in the weak sense.

Also, in [1], the convergence of the conservation law 𝐶𝐿𝑁 for the HVP𝑁 given
by (4.2), (𝑁 ∈ N) to 𝐶𝐿 of the original fractional problem in the weak sense, as
𝑁 → ∞, is proved. We elaborate on the mentioned statement as well as the proof.

Proposition 4.3. Assumptions on infinitesimal generators (4.11) and (4.12)
imply the weak convergence

𝐶𝐿𝑁 → 𝐶𝐿, 𝑁 → ∞.

Proof. First, we derive the conservation law for CL𝑁 , 𝑁 ∈ N for the approx-
imate problem (4.2). We obtain from (4.13):

(4.14)
𝜕𝐿𝑁

𝜕𝑡
𝜏𝑁 ± 𝜕2𝐿𝑁 �̇�𝜏𝑁 + 𝜕3𝐿𝑁

𝑑

𝑑𝑡

(︂ 𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
𝑢(𝑖)

)︂
𝜏𝑁 ± 𝜕4𝐿𝑁 �̇�𝜏𝑁

+ 𝜕2𝐿𝑁𝜉𝑁 + 𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖) + 𝐿𝑁𝜏𝑁 = 0, 𝑡 ∈ [𝑎, 𝑇 ]

⇔ �̇�𝑁𝜏𝑁 + 𝐿𝑁𝜏𝑁 − 𝜕2𝐿�̇�𝜏𝑁 − 𝜕4𝐿𝑁 �̇�𝜏𝑁 + 𝜕2𝐿𝑁𝜉𝑁

+ 𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖) = 0, 𝑡 ∈ [𝑎, 𝑇 ],
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where we use �̇�𝑁 = 𝜕1𝐿𝑁 + 𝜕2𝐿𝑁 �̇� + 𝜕3𝐿𝑁
𝑑
𝑑𝑡

(︀∑︀𝑁
𝑖=0

(︀
𝛼
𝑖

)︀ (𝑡−𝑎)𝑖−𝛼

Γ(𝑖+1−𝛼)𝑢
(𝑖)
)︀
+ 𝜕4𝐿𝑁 �̇�.

Multiplying (4.14) by 𝜆𝑁 (see (4.8)) and using �̇� = 𝐿𝑁 , we obtain

𝜆𝑁 �̇�𝑁𝜏𝑁 + 𝜆𝑁𝐿𝑁𝜏𝑁 − 𝐿𝑁𝜕4𝐿𝑁𝜆𝜏𝑁 + 𝜆𝑁 (𝜉𝑁 − �̇�𝜏𝑁 )𝜕2𝐿𝑁

+ 𝜆𝑁𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖)

± (𝜉𝑁 − �̇�𝜏𝑁 )

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖
(︂
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︂
= 0.

Using 𝑑
𝑑𝑡 (𝜆𝑁𝐿𝑁𝜏𝑁 ) = �̇�𝑁𝐿𝑁𝜏𝑁 + 𝜆𝑁 �̇�𝑁𝜏𝑁 + 𝜆𝑁𝐿𝑁𝜏𝑁 and �̇�𝑁 = −𝜕4𝐿𝑁𝜆𝑁 , we

continue to obtain

(4.15)
𝑑

𝑑𝑡
(𝜆𝑁𝐿𝑁𝜏𝑁 )

+ (𝜉𝑁 − �̇�𝜏𝑁 )

[︂
𝜆𝑁𝜕2𝐿𝑁 +

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁]︂

+ 𝜆𝑁𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖)

− (𝜉𝑁 − �̇�𝜏𝑁 )

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁
= 0

⇔ 𝑑

𝑑𝑡
(𝜆𝑁𝐿𝑁𝜏𝑁 ) + 𝜆𝑁𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖)

− (𝜉𝑁 − �̇�𝜏𝑁 )

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑡

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑡− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁
= 0

⇔ 𝑑

𝑑𝑡

[︂
𝜆𝑁𝐿𝑁𝜏𝑁 +

∫︁ 𝑡

𝑎

{︂
𝜆𝑁𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖)

− (𝜉𝑁 − �̇�𝜏𝑁 )

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁}︂
𝑑𝑠

]︂
= 0.

Above we use the fact that the Euler–Lagrange equation (4.10) is satisfied so that
the expression in brackets in the first line of (4.15) vanishes. Thus, we obtain the
conservation law 𝐶𝐿𝑁 for the HVP𝑁 (4.2), for fixed 𝑁 ∈ N formulated as:

𝜆𝑁𝐿𝑁𝜏𝑁 +

∫︁ 𝑡

𝑎

{︂
𝜆𝑁𝜕3𝐿𝑁

𝑁∑︁
𝑖=0

(︂
𝛼

𝑖

)︂
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)
(𝜉𝑁 − �̇�𝜏𝑁 )(𝑖)

− (𝜉𝑁 − �̇�𝜏𝑁 )

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁}︂
𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡
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Next, we prove the weak convergence 𝐶𝐿𝑁 → 𝐶𝐿 (where we considered partial
derivatives of 𝐿 extended to zero outside [𝑎, 𝑇 ]). Let 𝜙 ∈ 𝒜((𝑐, 𝑑)). Then,

(4.16)
⟨∫︁ 𝑡

𝑎

(𝜉𝑁 − �̇�𝜏𝑁 )

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︃
𝛼

𝑖

)︃
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁
𝑑𝑠, 𝜙

⟩

=

∫︁ 𝑇

𝑎

𝑑𝑡

(︂∫︁ 𝑡

𝑎

𝑑𝑠(𝜉𝑁 (𝑠)− �̇�(𝑠)𝜏𝑁 (𝑠))

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︃
𝛼

𝑖

)︃
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁)︂
𝜙(𝑡)

=

∫︁ 𝑇

𝑎

𝑑𝑠

∫︁ 𝑇

𝑠

𝑑𝑡

(︂
(𝜉𝑁 (𝑠)− �̇�(𝑠)𝜏𝑁 (𝑠))

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︃
𝛼

𝑖

)︃
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁
𝜙(𝑡)

)︂

=

∫︁ 𝑇

𝑎

𝑑𝑠(𝜉𝑁 (𝑠)− �̇�(𝑠)𝜏𝑁 (𝑠))

𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖(︁
𝜆𝑁𝜕3𝐿𝑁

(︃
𝛼

𝑖

)︃
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︁
𝜓(𝑠) = 𝐽𝑁 ,

with 𝜓(𝑠) =
∫︀ 𝑇

𝑠
𝜙(𝑡)𝑑𝑡, where 𝜓 ∈ 𝒜((𝑐, 𝑑)) and we used Fubini’s theorem. Next

we put 𝜓𝑁 = (𝜉𝑁 − �̇�𝜏𝑁 )𝜓 and obtain 𝜓𝑁 ∈ 𝒜((𝑐, 𝑑)) since, by assumptions,
𝑢, 𝜏𝑁 , 𝜉𝑁 ∈ 𝒜((𝑐, 𝑑)). Thus

𝐽𝑁 =

⟨ 𝑁∑︁
𝑖=0

(︁
− 𝑑

𝑑𝑠

)︁𝑖
(︂
𝜆𝑁𝜕3𝐿𝑁

(︂
𝛼

𝑖

)︂
(𝑠− 𝑎)𝑖−𝛼

Γ(𝑖+ 1− 𝛼)

)︂
, 𝜓𝑁

⟩
.

Since 𝜓𝑁 → (𝜉 − �̇�𝜏)𝜓 as 𝑁 → ∞, uniformly on compact sets of (𝑐, 𝑑), respec-
tively on [𝑎, 𝑇 ], we obtain, by Montel’s theorem, that (𝜉 − �̇�𝜏)𝜓 ∈ 𝒜((𝑐, 𝑑)). Also
using the uniform convergence of 𝜆𝑁 → 𝜆,𝑁 → ∞, we have

lim
𝑁
𝐽𝑁 = ⟨𝑡𝐷𝛼

𝑇 (𝜆𝑁𝜕3𝐿), (𝜉 − �̇�𝜏)𝜓⟩ =
⟨

𝑡𝐷
𝛼
𝑇 (𝜆𝜕3𝐿), (𝜉 − �̇�𝜏)

∫︁ 𝑇

𝑠

𝜙(𝑡)𝑑𝑡

⟩
=

∫︁ 𝑇

𝑎

𝑑𝑠𝑡𝐷
𝛼
𝑇 (𝜆𝜕3𝐿)(𝜉 − �̇�𝜏)

∫︁ 𝑇

𝑠

𝜙(𝑡)𝑑𝑡 =

∫︁ 𝑇

𝑎

𝑑𝑡

∫︁ 𝑡

𝑎

(𝜉 − �̇�𝜏)𝑡𝐷
𝛼
𝑇 (𝜆𝜕3𝐿)𝜙(𝑡)

=

⟨∫︁ 𝑡

𝑎

(𝜉 − �̇�𝜏)𝑡𝐷
𝛼
𝑇 (𝜆𝜕3𝐿), 𝜙

⟩
,

where we apply Fubini’s Theorem. This completes the proof. □

5. Examples

In this section we list the examples given in [1] which support the previously
invoked theory.

1. We consider the case treated in [22],

(5.1)
�̇� = 1

2 (�̇�
2 − 𝜔2𝑢2)− 𝑘𝑧, 𝑘 = 𝑐𝑜𝑛𝑠𝑡 ⩾ 0, 𝜔 = 𝑐𝑜𝑛𝑠𝑡.

𝑧(0) = 0, 𝑡 ∈ [0, 𝑇 ], 𝑇 > 0,

and 𝑢(0) = 0, �̇�(𝑇 ) = 0. Here (1.10) leads to 𝜆 = exp(𝑘𝑡) and the Euler–Lagrange
equation becomes

(5.2) exp(𝑘𝑡)𝑢𝜔2 + [exp(𝑘𝑡)�̇�]̇ = 0 ⇔ �̈�+ 𝑘�̇�+ 𝜔2𝑢 = 0.
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Let the transformation generators be given as 𝜏 = 𝐴 = 𝑐𝑜𝑛𝑠𝑡., 𝜉 = 0. Then the
invariance condition (2.11) is satisfied. The conservation law (3.2) is

(5.3) exp(𝑘𝑡)[ 12 (�̇�(𝑡)
2 + 𝜔2𝑢(𝑡)) + 𝑘𝑧(𝑡)] = 𝑐𝑜𝑛𝑠𝑡.

Expression (5.3) is a conserved quantity for the system (5.1) and (5.2), since it has
both dependent variables 𝑢 and 𝑧. If we use (5.1) to determine 𝑧 as

𝑧(𝑡) =
1

2

∫︁ 𝑡

0

exp(𝑘𝜏)(�̇�(𝜏)2 − 𝜔2𝑢(𝜏)2)𝑑𝜏,

then (5.3) becomes

1

2
exp(𝑘𝑡)

[︂
(�̇�(𝑡)2 + 𝜔2𝑢(𝑡)) + 𝑘

∫︁ 𝑡

0

exp(𝑘𝜏)(�̇�(𝜏)2 − 𝜔2𝑢(𝜏)2)𝑑𝜏

]︂
= 𝑐𝑜𝑛𝑠𝑡.

Finally, note that

�̇�(𝑡)𝑢(𝑡) =

∫︁ 𝑡

0

exp(𝑘𝜏)(�̇�(𝜏)2 − 𝜔2𝑢(𝜏)2)𝑑𝜏, 𝑡 ∈ [0, 𝑇 ],

so that

(5.4) 1
2 exp(𝑘𝑡)[(�̇�(𝑡)

2 + 𝜔2𝑢(𝑡)) + 𝑘�̇�𝑢] = 𝑐𝑜𝑛𝑠𝑡.

is in agreement with [2, p. 64], where conservation law (5.4) was obtained by a
different method.

2. Consider a problem of finding a function 𝑢 over [0, 1], 𝑢(0) = 0, �̇�(0) = 1
such that 𝑧(1) is an extreme (see [12]) for the case when

(5.5) �̇�(𝑡)= 0𝐷
𝛼
𝑡 𝑢(𝑡)

2

2
−𝜔2𝑢(𝑡)

2

2
−𝑘0𝐷𝛽

𝑡 𝑧(𝑡), 𝛼, 𝛽 ∈ (0, 1], 𝜔 ∈ R, 𝑘 > 0, 𝑡 ∈ [0, 1].

The Euler–Lagrange equation for (5.5) is

𝐸1−𝛽(−𝑘(1− 𝑡)1−𝛽)𝜔2𝑢(𝑡)− 𝑡𝐷
𝛼
𝑇 (𝐸1−𝛽(−𝑘(1− 𝑡)1−𝛽)0𝐷

𝛼
𝑡 𝑢(𝑡)) = 0,(5.6)

𝛼, 𝛽 ∈ (0, 1], 𝜔 ∈ R, 𝑘 > 0, 𝑡 ∈ [0, 1],

where 𝐸𝛾 is the Mittag-Leffler function [33]. Let 𝛽 = 0 in (5.5). Then,

�̇�(𝑡) =
0𝐷

𝛼
𝑡 𝑢(𝑡)

2

2
− 𝜔2𝑢(𝑡)

2

2
− 𝑘𝑧(𝑡), 𝛼, 𝛽 ∈ (0, 1], 𝜔 ∈ R, 𝑘 > 0, 𝑡 ∈ [0, 1].

and the Euler–Lagrange equation becomes

exp(−𝑘(1− 𝑡))𝜔2𝑢(𝑡)− 𝑡𝐷
𝛼
1 (exp(−𝑘(1− 𝑡))�̇�(𝑡)) = 0,(5.7)

𝛽 ∈ (0, 1], 𝜔 ∈ R, 𝑘 > 0, 𝑡 ∈ [0, 1].

Assume that the infinitesimal generators are 𝜏 = 𝐴, 𝜉 = 0. Then, condition (2.8)
is satisfied since 𝑢(0) = 0 implies 𝑑

𝑑𝑡 0
𝐷𝛼

𝑡 𝑢(𝑡) = 0𝐷
𝛼
𝑡 �̇�(𝑡). Conservation law (3.1)

becomes

exp 𝑘𝑡
[︁
0𝐷

𝛼
𝑡 𝑢(𝑡)

2

2
− 𝜔2𝑢(𝑡)

2

2
− 𝑘𝑧(𝑡)

]︁
+

∫︁ 𝑡

0

�̇�(𝑡) 𝑡𝐷
𝛼
1 [exp(𝑘𝑡)0𝐷

𝛼
𝑡 𝑢(𝑡)]

− exp(𝑘𝑡)0𝐷
𝛼
𝑡 𝑢(𝑡)[0𝐷

𝛼
𝑡 �̇�(𝑡)] = 𝑐𝑜𝑛𝑠𝑡, 𝑡 ∈ [0, 1].
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6. Conclusions

In this review article, the results obtained and presented in [1] are elaborated.
Noether’s theorem for the Herglotz variational principle when the Lagrangian con-
tains fractional derivatives of real and complex orders is presented. Conditions for
the invariance of the action integral invoked in [1] are also elaborated as well as
the conservation law generated by invariance conditions. Also, approximations of
the EL equation and the conservation law invoked in [1] are reviewed. In the ap-
proximation scheme, based on the approximation of the fractional derivative, the
systems of differential equations containing integer order derivatives for the corre-
sponding EL equation, as well as the conservation law are obtained. It is shown
that those converge in the weak sense to the corresponding original fractional EL
equation, as well as the conservation law, respectively. Two examples supporting
the theory presented are elaborated.
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НЕТЕРИНА ТЕОРЕМА ЗА ВАРИJАЦИОНЕ ПРОБЛЕМЕ
ХЕРГЛОЦОВОГ ТИПА СА ФРАКЦИОНИМ ИЗВОДИМА

КОМПЛЕКСНОГ РЕДА

Резиме. Ово jе прегледни рад коjи елаборира резултате добиjене у [1], где
jе формулисан вариjациони принцип Херглоцовог типа са Лагранжианом коjи
зависи од фракционих извода реалног и комплексног реда. Ту су такође одре-
ђени и услови инвариаjнтности поменутог принципа под акциjом локалне групе
симетриjе. Добиjен jе и закон конзервациjе коjи одговара Оjлер-Лагранжовоj
jедначини фракционог реда као и низ апроксимативних система jедначина ко-
jи одговараjу фракционоj Оjлер-Лагранжовоj jедначини, где jе анализирана и
конвергенциjа.

Mathematical Institute (Received 13.09.2021.)
Serbian Academy of Sciences and Arts (Revised 29.10.2021.)
Belgrade (Available online 08.12.2021.)
Serbia
markojan@mi.sanu.ac.rs

Faculty of Technical Sciences
University of Novi Sad
Novi Sad
Serbia
atanackovic@uns.ac.rs

Faculty of Sciences
University of Novi Sad
Novi Sad
Serbia
pilipovic@dmi.uns.ac.rs


	1. Introduction
	2. Local group of symmetries for HVP
	3. Nöther's theorem
	4. Approximations
	5. Examples
	6. Conclusions
	References

