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ABsTrRACT. This paper aims to model the effect of different shapes of inclu-
sions on the homogenized viscoelastic properties of composite materials made
of a viscoelastic matrix and inclusion particles. The viscoelastic behavior of
the matrix phase is modeled by the Generalized Maxwell rheology. The ef-
fective properties are firstly derived by combining the homogenization theory
of elasticity and the correspondence principle. Then, the effective rheolog-
ical properties in time space are explicitly derived without using the com-
plex inverse Laplace—Carson transformation (LC). Closed-form solutions for
the effective bulk and shear rheological viscoelastic properties, the relaxation
and creep moduli as well as the Poisson ratio are obtained for the isotropic
case with random orientation distribution and different shapes of inclusions:
spherical, oblate and elongate inclusions. The developed approach is validated
against the exact solutions obtained by the classical inverse LC method. It
is observed that the homogenized viscoelastic moduli are highly sensitive to
different shapes of inclusions.

1. Introduction

A large number of models are based on the homogenization theory of contin-
uum elasticity and the correspondence principle in order for the effective viscoelastic
properties of composite materials to be estimated [6,8,15-18]. The solutions in
time space (or real space) are usually determined by the inverse Laplace-Carson
(LC) transform. However, for most of the cases, the inverse LC requires numeri-
cal calculations that are normally complex [10, 28, 34]. Besides, such a technique
provides just the effective relaxation or creep moduli, not the effective rheological
properties. Fortunately, it is demonstrated by short and long term analyses that
the effective viscoelastic behavior of a composite made of a rheological viscoelastic
matrix and elastic inclusion can be approximated by an effective rheology, with
a very high accuracy, without using the inverse LC transform [5,22]. However,
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these studies are limited to simple inclusion shapes such as spherical, cuboidal or
penny-shaped inclusions. They can be extended to a complex inclusion shape.
The case of a 2D periodic medium containing rectangular or elliptical inclusions
is considered [32]|. It is well-known that the shape of inclusions can strongly af-

fect the effective properties of elastic materials [4,13,14,25,26,29,30,33]. These
characteristics are also observed for viscoelastic materials [1,9,35]. The inclusions’
shape effect is also analyzed in several numerical studies [2,19]. This work provides

closed-form solutions for effective viscoelastic properties of composite materials con-
taining different shapes of inclusions: spherical, oblate and elongate inclusions. It
is organized as follows. First, the theoretical basis of the homogenization technique
for viscoelastic composite materials and closed-form solutions for the effective vis-
coelastic rheological moduli are developed in Section 2. Then, in Section 3, the
developed solutions are validated against the “exact” solutions obtained by the
classical inverse LC transform. Finally, the effects of the inclusion shape on the re-
laxation and creep moduli as well as the effective rheological properties are discussed
in Section 4. Concluding remarks are given in Section 5. Complex mathematical
calculations are given in Appendix A to D.

Nomenclature

* Laplace—Carson transform

0 and co  Short term and long term parameters, respectively
e and v Elastic and viscous properties, respectively

hom Homogenized (effective) properties

Time and Laplace—Carson variables, respectively
Microscopic stress tensor

Macroscopic stress tensor

Microscopic strain tensor

Macroscopic strain tensor

Second-order identity tensor

Volume fraction of inclusions
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2. The homogenization method for viscoelastic composite materials

2.1. Effective properties in LC space.

2.1.1. Effective stiffness tensors. We consider a viscoelastic composite material
that is a mixture of a generalized Maxwell (GM) viscoelastic matrix (Figure 1) and
elastic inclusions or void inclusions that are assumed to have a spheroidal shape.
In LC space, the Mori—-Tanaka homogenization scheme is appropriate for such a
matrix-inclusion system [3,20]. The homogenized apparent stiffness tensor in LC



ANALYTICAL SOLUTIONS FOR THE EFFECTIVE VISCOELASTIC PROPERTIES... 91

space is

(2.1) Chom* = [(1 - )C* +¢Cr : A*] : [(1 — @)L + pA™] ™

where C* is the apparent stiffness tensor of the matrix phase, ¢ and C; the volume
fraction and the elastic stiffness tensor of the elastic inclusions, A* the apparent

strain concentration tensor of a single inclusion surrounded by an infinite matrix
[12] and T the fourth order identity tensor.

Cs

FIGURE 1. The generalized Maxwell rheology with an n + 1 element.

It is well-known that the homogenized relaxation and creep properties in time
domain can be obtained by the classical inverse LC transform method. However,
the latter is complex and analytical solutions can be obtained for several limited
simple examples where a limited number of Maxwell chains are involved to describe
the matrix behavior [31]. To avoid such a problem, we assume that the effective vis-
coelastic behavior of the particulate medium can also be modeled by the GM rheol-
ogy (Figure 1). Previous studies have shown that such an assumption is appropriate
for a mixture of a viscoelastic matrix and elastic or void inclusions [21-24,32]. By
approximating the homogenized effective viscoelastic behavior by an effective GM
rheology, it is possible to define the effective rheological properties in detail as in
Appendix A. Using the homogenization estimation (2.1), the effective instantaneous
and long term stiffness tensors CE°™ and Cho™ can be derived as follows

(2.2) CE™ = [(1 — )Co + ¢C; : Ag] : Dy

(23) €™ = [(1 — ¢)Coo + ¢C1 + Anc] - D

with

(2.4) Do = [(1 = @)L+ pAo] ™ Doo = [(1— @)l + pAs] ™

where the short- and long-term tensors with index 0 and oo are defined in Appen-
dix A. Now, to determine the viscous term CI™  let us consider the derivation
versus the Laplace variable of Ch°™* that was given by equation (2.1)

dChom = dC* dA*
=|(1- : (1 =)l A*]7L
a (1-9) i + ¢C; dp} [(1— )L+ pA]
) pdA*

1= )€ +Cr A [ - T+ oA F [ - o+ on”] )

Then setting the limit at p — 0 (using equations (A.2) and (A.4) from Appendix
A for the limits of C* and A*), we obtain

Chom — [(1 = ©)Cy + ¢C1 : Ay] : Do — [(1 = 0)Coo + ©Cr : Asg] : (Do : A, : Do)
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which can be recast in the form

(2.5) Chom — (1 — )Cp : Dy + @Cr : Ay : Do (T — A : Do)
where for such a simplification, we noted
(2.6) D, = ([ —pC,': Cop : Do : Ay) : Do

By decomposing the first term C, of equation (2.5) (see equation (A.3) in
Appendix A, we obtain:

n n

@7  Cem=Y O = (1-¢) Y (Cu D)

i=1 i=1
+ 0> (Cr: Ay : Doo(I— pAs : Do)
=1

where we assume that the concentration tensor A, can be decomposed as

AU = iAvi
i=1

With respect to equation (2.7), the following estimation for the effective viscous
tensor CI9™ of each Maxwell series can be obtained

(2.8) Chom = (1 —)Cyps : Dy + @Cr : Ay : Doo(I— Ay : D), Vi=1lton

In a similar way, starting from the solutions (2.2) and (2.3), we can estimate the
effective elastic stiffness tensor of each Maxwell series as follows

(2.9)  Chom — (1 — )Cpi: (Co— Coo) ™t : (Cp: Dy — Cop : Do)
+@Cr:Cei: (Co—Coo) ™ i (Ag: Dy — Ay : D), Vi=1=n

2.1.2. Viscoelastic concentration tensors. Using the solutions (2.3), (2.8) and
(2.9) to calculate the effective rheological tensor of the homogenized viscoelastic
composite materials in time domain requires the knowledge of the strain concen-
tration tensors Ag, A, and A,; with i = 1 to n. To determine these tensors, let us
consider a combination of Eshelby’s solution [12] and the correspondence principle
that allows writing the apparent concentration tensor, in LC space, of an ellip-
soidal elastic inclusion located in an infinite viscoelastic matrix with a prescribed
homogeneous macroscopic strain as follows

A*=[1-P*: (C* - Cy)]*

where P* is apparent Hill’s tensor in LC space. Asymptotic responses at p — oo
and p — 0 yield

(2.10) Ag=[—-Py:(Co—Cp]™; Ap=[I-Py:(Coo —Cyp)]!
(2.11) A=Ay [Py (Coo —Cp) + Py : Cpy] : A
where
Py = lim P*; P, = lim P*; i]P’v*IP’*l' @
inl)H;o ) oo*pll}%) ’ . v T U*p%dp
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The detailed expressions of Py, P, and P,; are given in Appendix B.

2.2. The isotropic case with random orientation distribution of spher-
oidal inclusions.

2.2.1. Effective rheological properties. Let us consider a case of viscoelastic
composite materials containing the inclusions randomly oriented which are spher-
oidal isotropic elastic particles and an isotropic viscoelastic GM matrix. The aver-
age overall directions of the viscoelastic concentration tensors can be decomposed
into spherical and deviatoric parts as follows

(Aa) = afT +afK

where « is 0, co or v; the notation (.) stands for an average over the orientation
distribution of the particles; J and K are the spherical and deviatoric parts of the

fourth order identity tensor. The parameters af]a) and ag?) can be calculated from

the components of the concentration tensors A, (see Appendix D). Knowing a(Ja)

and a(I?), the correspondent spherical and deviatoric coefficients d((,a) and d(lg) of
the tensors Dy and D, that are defined by equation (2.4) are
1 () 1

@)’ (@)

qde“r— - S
J K
11—+ pay 1— @+ pay

with a = 0 or co. Then the terms dgoo) and d(Igo) of the viscous tensor D, which is
defined by equation (2.6) are

Ky Hy
where ko, and pi are the long-term bulk and shear elastic moduli of the matrix;
k, and p, are the bulk and shear viscosity of the tensor C, (see also equation (B.3)
in Appendix B. Finally, the effective viscoelastic bulk and shear moduli can be
estimated using equations (2.3), (2.8) and (2.9) as follows

(2.12) Fhom = [(1 = @)kag + ka7

R Foed 2 ) o )
O COY PRLEL B } d§(>=d(l{)[1—¢” K 0K

hom

o™ = [(1 = @)oo + pprak 1Ay
ko™ = (1= @)kuid + phrald5) (1= a7 dG)
B = (1 — @) poid'd) + ppralfdi (1 — paZdi))
K™ = [(1 = @)kes + phraly?1d)

hom

™ = (1= Q)pei + pprai dy, Vi=1ton

with o o
g0 _ kod)) —hoedy™ o) podig) — pocdi
7 kO - koo ' K Ho — Moo
and
o P I ) o)
Ay " = Rej ;o A" = e

kod?) — kood 110d'Y — oo diS)



94 THAI, NGUYEN, NGUYEN, AND MAI

Note that the macroscopic relaxation and creep moduli can be easily computed
from the effective rheological parameters obtained by equation (2.12) by using some
well-known expressions given in Appendix C.

3. Validation of the proposed model

3.1. Comparison with the inverse LC method. To obtain the “exact” re-
sults of the effects of ellipsoidal shapes of the particulate phases on the macroscopic
material response, the analytical inverse LC transform method is used. One key
feature of this method is that the analytical expressions of time-dependent effective
mechanical properties are derived in time space as a function of the properties of
the components, and that these expressions are exact in spherical cases [31]. The
exact results can be extended for the microstructure with ellipsoidal inclusions in
the cases of oblate and elongate inclusions.

In the considered case of a heterogeneous material in which M ellipsoidal in-
clusion phases (phase i) are dispersed in the matrix phase (phase m), the effective
bulk and shear moduli given in detail by the MT scheme [3] depend on the volume
fraction, aspect ratio, bulk and shear moduli of components (see Appendix B).
Moreover, taking the same number of Maxwell chains for the two moduli is not
necessary, but allows simplifying the developments. The bulk and shear moduli of
the matrix phase can then be expressed in time domain by:

N __t N e
R =k S ke T and () =+ > pte T

where k", km, w1yt and pi* are the elastic moduli of the matrix in the Maxwell

chains, 7% and 7™ are its relaxation times defined by 7/™* = 5™ /k™ and
T — ek gm with ™% and " as viscosities of the dashpots. We make the
absumptlon that 7% = 77* = 77 i.e. the relaxation times are identical for k" (t)

and p™(t), and that they are well separated for the consecutive values of i.
The expressions of £™* and p™* are obtained in LC domain as

=k k' ——— = _
0+Z +1/7_m7 /’LO +ZM’L p+1/7_

=1

where p is a variable in LC domain, ¢ is a variable in time domain.

By using the same decomposition method as [31], the following formulae in-
volving polynomials of the variable p can be derived for the effective moduli of the
material:

(oM Blp
(X
(Zi
(2

khom* _ (Zin Ak )
(3.1) (Zz 0 CFp')
(Zv OAH )
(o O (i DY)

where A¥, AY, BF, Bl CF, C“ DF and D! are coefficients depending explicitly
on the parameters k%, k", 7", ug', pi* and the volume fractions ¢, aspect ratio

)
DEpi)’
BM
AR = )
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w; M* and M* are the integer function of the number of Maxwell chains N and
the number of particle phases M.

The expressions of the effective viscoelastic properties k9% (¢) and pho®(t) of
composite materials in time domain are easily delivered by inverting Eq. (3.1)

N N
om —t/7F om —t/TH
KRR (6) = Ko+ Y ke ™ phoR(t) = po+ Y e ™
=1 =1

where k; and p; are the moduli associated with the relaxation times Tik and Ti# .
It should be pointed out that the above exact analytical formulation of the in-
verse LC problem has been obtained in the case of two-phase matrix/inclusions
microstructures and by applying the MT scheme and using a GM with n = 2.

Let us consider an example of a GM rheology with n = 2 whose viscoelastic
properties of the viscoelastic matrix and the elastic inclusions are given in Table 1.
Figure 2 shows the effective shear creep modulus as a function of time for the case
of oblate inclusions with an aspect ratio of w = 0.1.

The relative error between the present approximation and the analytical results
is defined by

E(t) _ Pappx — Pana 100%
ana

where pappx stands for the bulk or shear modulus calculated by the proposed
method and pay,, is the one calculated by the classical inverse LC method. Figure 3
shows the errors between the two methods for the case of oblate inclusions with
an aspect ratio of w = 0.01 to co. A very good agreement between the proposed
analytical solution and the classical inverse Laplace—Carson method is observed.
The highest error is observed at a transient time and is less than 4%. Such an error
is generally acceptable for engineering application.

TABLE 1. Viscoelastic properties of a composite material with
porosity ¢ = 0.42 [31] and inclusions.

Elements 00 1 2 Inclusions
k; (GPa) 255 5.14 141 37.8
w; (GPa) 233 234 1.00 44.3

ki (GPa.days) 5.81 28.72
tyi (GPa.days) 2.26 17.37

3.2. The particular case of void inclusions. The case of void inclusions
corresponds to zero bulk and shear elastic moduli K; = p; = 0; the solutions (2.12)
are simplified to

RES™ = (1= @)kood s e = (1= P)ptocdi
kRO = (1 — @)kyid'); i = (1 — ) pyid'y)

kI = (1 — @)keid s hom — (1 — ) peid'y)
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FiGURE 2. Effective relaxation shear modulus of a viscoelastic
composite material: a comparison between the proposed method
(line curve) and the inverse Laplace-Carson method (symbols) for
the case of oblate inclusions with an aspect ratio w = 0.1 and vol-
ume fraction of inclusion ¢ = 0.1 to 0.4.
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FIGURE 3. Errors between the proposed method and the inverse
Laplace—Carson method for the range of volume fraction of inclu-
sions ¢ = 0.1 to 0.4 and the aspect ratio of the inclusions w = 0.01
to oo.

4. Results and discussion

Figure 4 shows the evolution of the effective viscoelastic properties (normalized
to those of the matrix phase) versus the volume fraction of inclusions with a fixed
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FIGURE 4. Effective viscoelastic properties, normalized to the cor-
respondent properties of the matrix phase, of a particulate medium
containing oblate inclusions with the aspect ratio w = 0.1.
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FI1GURE 5. Effect of the aspect ratio of the inclusions, ¢ = 0.2.
The points represent the numerical simulations.

aspect ratio w = 0.1 and the parameters given in Table 1. We can observe that all
the bulk and shear elastic moduli and viscosities increase with increasing volume
fraction of inclusions because the inclusion is stiffer than the matrix phase. Figure 5
shows the effect of the aspect ratio of the inclusions with a fixed volume fraction
o = 0.2. A strong effect of the inclusion’s shape on the overall viscoelastic properties
of the mixture can also be observed in Figure 5.

Similarly, Figure 6-8 show a strong effect of inclusions’ shape on the effective
relaxation bulk and shear moduli and the correspondent Poisson ratio. For example,
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FIGURE 6. Effect of the inclusion aspect ratio w on the relaxation
bulk modulus, ¢ = 0.2.
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FIGURE 7. Effect of the inclusion aspect ratio w on the relaxation
shear modulus, ¢ = 0.2.

a composite with inclusions’ aspect ratio of w = 0.01 has bulk and shear relaxation
moduli of about 1.5 to 2 times higher than a composite with spherical inclusions.
We can also observe that Poisson’s ratio rapidly decreases for the first 4-5 days,
then much more at the end of the test. This evolution confirms the need of different
time functions for the macroscopic bulk and shear moduli in the model.

Figure 9 shows a comparison between the relaxation and creep Poisson ratios
for a particulate medium with an inclusion volume fraction and aspect ratio fixed
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FI1GURE 8. Effect of the inclusion aspect ratio w on the relaxation
Poisson ratio, ¢ = 0.2.
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FIGURE 9. A comparison between the creep and relaxation Pois-
son ratios calculated by the present method with ¢ = 0.2 and w = 0.1.

at ¢ = 0.2 and w = 0.1. The viscoelastic properties of the matrix phase are given
in Table 1. The creep and relaxation Poisson ratios are close for short term and
long-term behavior. But they are very different at transient time. Figure 10 and
Figure 11 show the effect of the volume fraction of inclusions and the aspect ratio
of the inclusions on the ratio between creep and relaxation Poisson ratios, noted
by 7(t). We observe that () is smaller for a higher volume fraction of inclusions.
The effect of the aspect ratio of the inclusion shown in Figure 11 is less significant
than the effect of the volume fraction of inclusions.
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FIGURE 10. Effect of the volume fraction of inclusions on the ratio
~ between the creep and relaxation Poisson ratios, w = 0.1.
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F1GURE 11. Effect of the aspect ratio of the inclusions on the ratio
~ between the creep and relaxation Poisson ratios, ¢ = 0.2.

5. Conclusions

We have presented in this paper a study on the influence of the aspect ratio
of the inclusions: spherical, oblate and elongate inclusions on the effective rheolog-
ical properties of viscoelastic composite materials made of a generalized Maxwell
matrix and inclusions. Explicit analytical solutions are obtained for the effective
rheological properties as well as the relaxation and creep bulk and shear moduli and
the correspondent Poisson ratio. These results are obtained without considering
the complex inverse LC method and they are perfectly validated against the exact
solutions obtained by the latter. It is of interest to remark that the inverse LC
method provides just the relaxation and creep moduli, while the present method
provides also the effective rheological properties that can be flexibly used when
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modeling structures made of a viscoelastic material under complex loading histo-
ries. The results of the simulation indicate that the aspect ratio of the inclusions
can have a significant effect on the effective rheological viscoelastic properties, the
bulk and shear creep and relaxation moduli and the correspondent Poisson ratio.
The ratio between creep and relaxation Poisson ratio is also strongly influenced by
both the volume fraction and the aspect ratio of the inclusions.

Acknowledgments. This research is funded by the Vietnamese National Foun-
dation for Science and Technology Development (NAFOSTED) under grant number
107.02-2016.12.

Appendix A. Generalized Maxwell model for the matrix phase

The generalized Maxwell (GM) model is schematically expressed by 2n + 1
rheological elements in which the n Maxwell series is parallel with a spring that
characterizes the long term elastic behavior by the asymptotic elastic stiffness tensor
Cs (Figure 1). The elastic stiffness tensor and the viscosity tensor of a Maxwell
series i (with ¢ = 1 +n) are noted by C,; and C,;, respectively. In Laplace—Carson
space, the apparent stiffness tensor of the GM model, noted by C* (the superscript
* stands for the LC transform), can be expressed by:

(A1) C* = Co + zn: (Sei + %Sm)_l
=1

where p is the LC variable; S.; and S,; are the elastic and viscous compliance
tensors that are the inverses of the stiffness tensor C.; and the viscosity tensor C,;,
respectively.

The long term and short term behaviors that correspond to the limit at p — 0
and p — oo (p — 0 corresponds to ¢t — oo and vice versa) can be obtained using
equation (A.1l) as follows:

1
A2 lim C*=Co+0O(=); limC* = Cq + pC, + O(p?
p

p—00 p—0

where the terms noted by O(.) are the negligible terms. We noted also:

n n
(A.3) Co=Co+» Cei; Cy=> Cy
i=1 i=1

The first one, noted by Cy, is the instantaneous elastic stiffness tensor of the matrix
phase. The second one has no physical meaning. It is shown that using the approx-
imations presented by equation (A.2) instead of the exact equation (A.1) allows
avoiding the complex inverse Laplace-Carson method when passing from LC space
to real space [22].

Similar to equation (A.2) which was derived for the matrix phase, short and
long terms of the homogeneous apparent stiffness tensor C*™ * can be expressed by:

1
lim (Chom K (Chom + o= : lim Chom * (Chom + p(chom + O(pQ)
p—00 0 D p—0 0 v
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with
n n
hom __ s~hom hom , hom __ hom
CO - (Coo + E Cei ’ Cv - § (Cmi
i=1 i=1

where Ch°™ is the effective homogeneous instantaneous stiffness tensor (in time
space) and CIo™ the correspondent long term stiffness tensor (that is the effec-
tive elastic stiffness tensor of the last spring); Ch¢™ and CIo™ the effective elastic
stiffness and viscosity tensors of a Maxwell series ¢ (with i = 1+ n).

Alternatively, it will be demonstrated in the next sections that the concentra-
tion tensor A* can also be decomposed to:

p—00

1
(A4) lim A* = Ag + 0(5); lim A" = As +ph, + O(p?)

where Ay and A, are the instantaneous and long-term concentration tensors and
A, is a certain viscous concentration tensor.

Appendix B. Viscoelastic Hill’s tensors for spheroidal inclusions in the
GM viscoelastic matrix

For the case of elastic composite materials containing spheroidal inclusions, it
is well-known that Hill’s tensor is transversely isotropic, i.e. it can be defined by
five independent parameters. Equivalently, for the case of viscoelastic composite
materials containing spheroidal inclusions, apparent Hill’s tensor in LC space can
be expressed, in a matrix form, by five independent transformed parameters as
follows:

Priyy Pligg Pligs 0 0 0
Prigs Pl Pligs 0 0 0
« _ |Pliss Priss Paass 0 0 0
(B.1) P = 0 0 0 2P 51 0 0
0 0 0 0 2P 51 0
0 0 0 0 0 Priyy — Pligg

where the parameters P, can be determined using the classical well-known solu-
tions obtained for equivalent linear elastic materials [7]:

. 3(6w? — 5h — 4w?h)k* + (6w? — 29h + 20w?h)u*
(B~2) P =

16£*
. 3(2w? + h — 4w?h)k* + (2w? + h — 4w?h)p*
P1122 = 16¢*
. 3(2w? — h — 2w?h)k* + (—6 + 8w? + 5h — 8w?h)u*
P333 = 26
. 3(—2 — 2w? + 3h + 3w?h)k* + 2(—4 + 2w? + 3h)u*
Psy3 = &

where k* and p* are the apparent bulk and shear moduli of the solid matrix; w the
aspect ratio of the spheroidal inclusion (the ratio between the maximal dimension
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in the evolution direction of the inclusions and the diameter of its plan), and h a
geometrical function that is determined by:

w( arccos(w) — wv/1 — w?)

(1= w2/ ,  forw<1
_ 21— s h
h=J wlwvw arccos h(w)) Cferws 1
(w? — 1)3/2
2
3’ forw=1

and
€ = (w? — 1) (3" + 4p1°),
Other equivalent expressions of the component of Hill’s tensor for the case
of spheroidal inclusion can be found in [27]. Now, taking the limit at p — oo,

instantaneous Hill’s tensor Py can be determined. It has a similar form to P* given
by equation (B.1), where the components Py, are replaced by the instantaneous

components Pi(jpk)l. The latter can be determined by equation (B.2) where the
apparent bulk and shear moduli £* and p* are replaced by the instantaneous bulk
and shear moduli kg and pg. In the same way, long term Hill’s tensor P, can
be determined by equations (B.1) and (B.2) using the long term bulk and shear
moduli ks and pieo.

To determine viscous Hill’s tensor P,, it is necessary to consider the limit at
p — 0 of the derivative dF, /dp:

n . dP*
(v) _ (vi) _ 1 ijkl
Py = E :Pijkl = lim TJ
i=1
that yields:

3(6w? — 5h — 4w?h)ky; + (6w? — 29k + 20w2h) f1y;

Fith - e — P
pld _ 3(2w? + h — 4w?h)ky; + (2w? + h — 4w?R) 1y B w_P(oo)
1122 16£<x> 1+ 1122
; (—2w? + h + 2w?h) (3ky; + fivi)
Plish = i VP
) _ 3(2w? — h — 2w?h)ky; + (=6 + 8w® 4 5h — 8w’h)py; i P
3333 2500 1+ 3333
plo) _ B(=2 = 2w? + 30 + Bwh)ky; + 2(=4 + 207 + 3h)pi 0P
3131 8500 1+ 3131
where

boo = (W = 1) oo (Bkoo + 4ftos)

and

" 1 de* v ky + 4,
Zl/h::hm (Ti): K +3¢
— p—0 \&* dp Moo 3koo + 4fioo
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with

(B'B) ky, = ZkviQ Moy = Zﬂvi-

That corresponds to:
'1/1' o Nvi Skm + 4,Ulm

By introducing viscoelastic Hill’s tensors, calculated using equations (B.2) to
(B.3), in equations (2.10) and (2.11) to calculate the viscoelastic concentration ten-
sors that are then introduced in equations (2.3), (2.8) and (2.9), we can obtain the
rheological effective viscoelastic properties of the material. It is worth mentioning
that the tensorial calculations related to transversely isotropic viscoelastic Hill’s
tensors can be easily handled in the Walpole base (see Appendix D).

Appendix C. Relaxation and Creep moduli

The relaxation bulk modulus can be derived considering a constant macroscopic
isotropic strain boundary condition E = Eyl, i.e. the displacement condition on
the boundary of the REV is u(z) = Fyl.z, where 1 is the second order identity
tensor. Consequently, the macroscopic stress tensor is isotropic: 3 = 1. The
macroscopic stress strain relation can be expressed as:

(C.1) S =3kmEy+ ) %
=1
. hom
(02) Zl-i-kﬁﬁzz :O7 Vi=1+n

Solving equation (C.2) for X;, with the initial condition ¥;(0) = 3kb°™ Ey, and
introducing the result in equation (C.1), we can obtain:

S = 3E, [k;ggm + ) kR exp (—thl™ /khom)}
i=1
where t is time that has the same unit of the characteristic time defined by: 74; =
kglc')m/khom.
Then the relaxation bulk modulus, which is defined by k™ = ¥ /(3E)), is

" t
fhom (1) = ghom 4 §7 ghom o (— 7).
(t) ; pl— -

Similarly, the relaxation shear modulus can be obtained by considering a con-
stant macroscopic pure shear strain condition as follows:

¢
™ (t) *uﬁé’erZuh(’meXp( TA)-
i
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Finally, the relaxation Poisson ratio is related to the relaxation bulk and shear
moduli by the classical formula of continuum mechanics:
3kBom(1) — 2,0 (1)
Okt (1) + 241 (1)
The creep bulk modulus can be derived considering a constant macroscopic

isotropic stress condition ¥ = ¥y1. The related isotropic macroscopic strain tensor
is E = F1. With such a boundary condition, the stress-strain relationship is:

(C.4) Yo = 3kROME + <Z 3kh0m)

1=1

(C.3) v (t) =

Solving equation (C.4) for E, with the initial condition F(0) = Xq/(3k5°™), we
can obtain:

ZO 1 1 kgom tkhom
) D — 1— - >
i =) (- sh

where k{om = khom 4 3™ | khom ig the instantaneous homogeneous elastic bulk
modulus.

The creep bulk modulus, which is defined by k2™ = ¥4 /(3E), is

1 1 khom tkhom -1
hom 0
k)= [+ g (1 i) o (- )]

Similarly, the creep shear modulus can be obtained by considering a constant
macroscopic pure shear stress condition such as:

1 1 Iuhom tuhom -1
hom 0
He (t) = |: om + om <1 om) €Xp ( - n om .
phe™ g I8 Do b

Similarly to equation (C.3), the creep Poisson ratio is related to the creep bulk
and shear moduli by:

3khom () — 2ahom (¢)

hom
1) = .
Ve () = Ghiom(s) + ahom ()

Appendix D. Tensorial calculations in the Walpole base
In the Walpole base, transversely isotropic Hill’s tensor defined by equation
(B.1) can be decomposed to:
6
P =Y PE;={Pi, Py, Ps, Py, Ps, P}
i=1
where [E; to Eg are six directional tensors of the Walpole base. The detailed ex-
pression of the latter can be found in the handbook [11]. The parameters P; to Ps
are related to the components P;;j; by:
Py = Pi111 + Prioa;  Po = Paass; Py = Pi111 — Pri22;
Py = 2Ps331; Ps = Ps = Pri3s.
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Note that Hill’s tensor depends on five independent parameters because of
the condition Ps = Ps. However, expanding it to six components is convenient
for tensorial calculation. For example, the production of two certain tensors a =
{a1,a9,as3,a4,as5,a¢} and b = {by, by, b3, bs, bs,bs} can be easily realized by:

a:b= {a1b1 + 2a6b5, a2b2 + 2a5b6, (13()3, a4b4, a5b1 + (12[)5, (Igbg + albﬁ}

The inversion of a tensor can be also easily computed by:

with
a = ajas — 2a50a6.

The average overall the directions of a is an isotropic tensor that can be de-
composed into spherical and deviatoric parts such as:

(@) =asJ+axK

where the notation (.) denotes an average overall the directions; J and K the spher-
ical and deviatoric parts of the fourth order identity tensor. The parameters a
and ax are related to the components in the Walpole base by:

1
ajy = g(2a1 + as + 2as5 + 2ag)

2 /1
aK:E(fa1+a2+3a3+3a4—a5—a6)

2
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AHAJINTNYKA PEITIEIbA 3A EQEKTVBHE
BUCKOEJIACTNYHE KAPAKTEPUCTUKE KOMIIOZUTHUX
MATEPMNJAJIA CA PA3BJ/INYUTUM OBJINIIUMA NMHKJIYV3UNJE

PE3UME. Iu/b oBor pajua je j1a Mojeiryje edeKkar pa3InduTux ODJIMKa WHKJIY-
3Uje HA XOMOI'eHW30BaHA BUCKOEJACTUYHA CBOjCTBA KOMIIO3UTHUX MATEPHUjaJa W3-
pabheHUX o1 BUCKOETACTHYHE MATPUIE U WHKJIY3UBHUX YECTUIA. BUCKOEIaCTHIHO
IoHAINAbEe MATPUIHE (ha3e MOJIETNPAHO je YOIITeHOM VaKBeJIOBOM PEOJIOrHjoM.
EdexTuBna cBojcTBa ce mpBO 100HMjajy KOMOMHOBAIREM TEOPHje XOMOTEHUBAIIU]Ee
€JIACTUYHOCTH U IIPUHIINAIIA KOPECIIOHAeHIje. 3aTuM ce e(DEKTUBHA PEOJIOIIKA CBOj-
cTBa y npoctoply BpeMeHa eKCIUTHIIMTHO n3Bo/ie 6e3 yrnorpebe nHBEP3HE KOMILIEK-
cue Jlamnac-Kapconose Tpancdopmaimje (LC). Pemema y 3aTBOpeHOM 00/IUKY 38
edeKTHBHA CBOjCTBA PEOJIOIIKNX BUCKOEJACTHIHIX CBOjCTABA CMUIIAA, MOJIYJIA Pe-
JIaKkcalyje u mmy3ama, Kao U 1lyacoHoB oaHoc, mo0ujajy ce 3a M30TPOIMHU CIydaj ca
CJIY9ajHO OPUjEHTHCAHOM PACIIOIEIOM U PA3JIUIUTUM OOJUINMA UHKIIy3uja: chep-
HUX, CILUIOIITEHUX U U3/yKEHUX MHKJIy3uja. Pa3BUjeHN IPUCTYII ce BpeIHYje ¥ Oll-
HOCY Ha TadHa pellema j1obujena kiacuaaoM napep3HoM LC merogom. ITpumeherno
jé Ia Cy XOMOT'€HU30BaHU BUCKOEJIACTUYIHN MOJIYJIA BEOMA OCET/bUBH HA PA3JINIUTE
0bJIMKE WHKJIY3Hja.
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