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STABILITY OF PINNED–ROTATIONALLY
RESTRAINED ARCHES

László Péter Kiss

Abstract. The article aims to find the buckling loads for pinned–rotationally
restrained shallow circular arches in terms of the rotational end stiffness, ge-
ometry and material distribution. The loading is a concentrated vertical force
placed at the crown. A geometrically nonlinear model is presented which re-
lates not only the axial force but also the bending moment to the membrane
strain. The nonlinear load-strain relationship is established between the strain
and load parameters. This equation is then solved and evaluated analytically.
It turns out that the stiffness of the end-restraint has, in general, a significant
effect on the lowest buckling load. At the same time, some geometries are not
affected by this. As the stiffness becomes zero, the arch is pinned-pinned and
as the stiffness tends to infinity, the arch behaves as if it were pinned-fixed
and has the best load-bearing abilities.

1. Introduction

Although the buckling of straight columns has long been known, such members
are still under extensive investigations with relevant new findings [1, 11, 16–19].
At the same time, various other structural elements, like slender arches, must also
be checked for buckling to prevent unexpected failure. Within this topic, there
are books available containing the basics and more [4,6,24]. Furthermore, paper
[15] analytically focuses on the static stability of pinned arches by means of a
variational principle. The model in [30] assumes imperfect shallow arches and
presents solutions for remote, unconnected equilibrium branches. Article [10] is
devoted to elastically supported steel arches. Both simulations and experiments
are described and compared. An integral equation procedure is described and
solved with the analog equation method in [28] for arches with a geometrically non-
uniform cross-section. The stability of three-pinned arches is tackled analytically
in [22] with linear and nonlinear models being compared. In [23] a novel numerical
method is developed for the nonlinear stability analysis of various curved elements.
The model also accounts for the foundation position and stiffness. The behavior of
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various nonhomogeneous structural elements is also the subject of ongoing research
[2,3,7–9,29].

Moreover, articles [5,12,20,21,25–27] should also be mentioned. These works
commonly use the Euler–Bernoulli hypothesis with geometrical nonlinearities in-
corporated to find out the circumstances, conditions and characteristics for the
buckling of shallow arches under diverse conditions. These include various support
and load conditions, uniform and varying cross-section geometries, and also the
material distribution is nonhomogeneous in some cases.

This article aims to investigate the planar stability of pinned–rotationally re-
strained shallow arches. The elastic support is modeled by a linear torsional spring.
As for the kinematics, the one-dimensional model uses the Euler-Bernoulli hypoth-
esis. The strains are small and the rigid body rotations are moderately large. The
geometrically nonlinear model incorporates nonhomogeneous material distributions
along the thickness of the arch. Static equilibrium equations are derived and solved
in closed-form. The effect of the spring stiffness and, geometrical-material distri-
bution on the (critical) buckling load is investigated. As the spring stiffness is set
to zero, the arch becomes pinned-pinned, and as the stiffness tends to infinity, the
arch behaves as if it were pinned-fixed.

2. Basic equations

The considered one-dimensional arch with included angle 𝜃 = 2𝜗, radius 𝜌𝑜 is
supported by an ideal pin at the left end and by a rotationally restrained pin with
spring constant 𝑘𝛾 at the right end. The 𝐸-weighted centerline with the supports
and radial dead load 𝑃𝜁 are shown in Figure 1. The local base is also shown in
this figure with axis 𝜂 being the principal axis of the cross-section, 𝜉 = 𝑠 noting
the tangential direction and 𝜁, furthermore, lies in the plane of the centerline.
Derivations taken with respect to the arc coordinate 𝑠 and the angle coordinate 𝜙
are noted in short throughout the article by

d𝑛(. . .)

d𝑠𝑛
=

1

𝜌𝑛𝑜

d𝑛(. . .)

d𝜙𝑛
= (. . .)(𝑛), 𝑛 ∈ Z.

Figure 1. The one-dimensional arch model
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With the classical Euler-Bernoulli hypothesis [13], the axial strain at an arbi-
trary point and that on the centerline are assumed to be

(2.1) 𝜀𝜉 =
𝜌𝑜

𝜌𝑜 + 𝜁
(𝜀𝑜𝜉 + 𝜁𝜅𝑜) + 0.5𝜓𝑜𝜂; 𝜀𝑚 = 𝜀𝜉|𝜁=0 = 𝜀𝑜𝜉 + 0.5𝜓2

𝑜𝜂

with
𝜀𝑜𝜉 =

d𝑢𝑜
d𝑠

+
𝑤𝑜

𝜌𝑜
, 𝜓𝑜𝜂 =

𝑢𝑜
𝜌𝑜

− d𝑤𝑜

d𝑠
.

The latter is the cross-sectional rigid body rotation and its first derivative is the 𝜅𝑜
curvature. The membrane strain is nonlinear through the infinitesimal rotations.

Possibly, there is cross-sectional inhomogeneity, meaning that the material pa-
rameters – like the elasticity modulus 𝐸 – can be the function of the 𝜂, 𝜁 coordinates:
𝐸(𝜂, 𝜁) = 𝐸(−𝜂, 𝜁). As the material is linearly elastic, isotropic the constitutive
equation yields

(2.2) 𝑁 =

∫︁
𝐴

𝐸𝜀𝜉d𝐴 ≈ 𝐴𝑒𝜀𝑚 − 𝐼𝑒𝜂
𝜌𝑜
𝜅𝑜,

(2.3) 𝑀 =

∫︁
𝐴

𝐸𝜀𝜉𝜁 d𝐴 = −𝐼𝑒𝜂
(︁d2𝑤𝑜

d𝑠2
+
𝑤𝑜

𝜌2𝑜

)︁
for the axial force and the bending moment. Here,

(2.4) 𝐴𝑒 =

∫︁
𝐴

𝐸(𝜂, 𝜁) 𝐼𝑒𝜂 =

∫︁
𝐴

𝜁2𝐸(𝜂, 𝜁)d𝐴

are called the 𝐸-weighted area and moment of inertia.
From now on, an * symbol denotes that a quantity is considered in the post-

buckling equilibrium and 𝑏 is the increment, i.e., the change between the pre- and
post-buckling states. With this decomposition, the following relations hold for the
various kinematical quantities [12]:

𝜓*
𝑜𝜂 = 𝜓𝑜𝜂 + 𝜓𝑜𝜂𝑏, 𝜓𝑜𝜂𝑏 =

𝑢𝑜𝑏
𝜌𝑜

− d𝑤𝑜𝑏

d𝑠
, 𝜀𝑜𝜉𝑏 =

d𝑢𝑜𝑏
d𝑠

+
𝑤𝑜𝑏

𝜌𝑜
,

(2.5) 𝜀𝜉𝑏 =
𝜌𝑜

𝜌𝑜 + 𝜁
(𝜀𝑜𝜉𝑏 + 𝜁𝜅𝑜𝑏) + 𝜓𝑜𝜂𝜓𝑜𝜂𝑏; 𝜀𝑚𝑏 = 𝜀𝑜𝜉𝑏 + 𝜓𝑜𝜂𝑏𝜓𝑜𝜂.

With (2.2), (2.3), (2.4), and (2.5) the total and incremental parts of the axial force
and bending moment are

𝑁* =

∫︁
𝐴

𝐸𝜀*𝜉d𝐴 = 𝑁 +𝑁𝑏, 𝑁𝑏 = 𝐴𝑒𝜀𝑚𝑏 −
𝐼𝑒𝜂
𝜌𝑜
𝜅𝑜𝑏,

𝑀* =

∫︁
𝐴

𝐸𝜀*𝜉𝜁 d𝐴 =𝑀 +𝑀𝑏, 𝑀𝑏 = −𝐼𝑒𝜂
(︁d2𝑤𝑜𝑏

d𝑠2
+
𝑤𝑜𝑏

𝜌2𝑜

)︁
.

We introduce notations

𝐴𝑒𝜌
2
𝑜/𝐼𝑒𝜂 = (𝜌𝑜/𝑟)

2 = 𝑚, 𝑟 =
√︁
𝐼𝑒𝜂/𝐴𝑒 ,

which are referred to as the 𝐸-weighted radius of gyration 𝑟 and the modified
slenderness ratio of the arch 𝑚.
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3. Pre- and post-buckling equilibrium

Similarly to [14], from the principle of virtual work for the pre-buckling static
equilibrium, the following equations must be satisfied

(3.1)

d𝑁

d𝑠
+

1

𝜌𝑜

[︁d𝑀
d𝑠

−
(︁
𝑁 +

𝑀

𝜌𝑜

)︁
𝜓𝑜𝜂

]︁
= 0,

d

d𝑠

[︁d𝑀
d𝑠

−
(︁
𝑁 +

𝑀

𝜌𝑜

)︁
𝜓𝑜𝜂

]︁
− 𝑁

𝜌𝑜
= 0,

while the associated boundary conditions for a pinned–rotationally restrained arch
are

𝑤𝑜|±𝜗 =𝑀 |−𝜗 = (𝑀 + 𝑘𝛾𝜓𝑜𝜂)|𝜗 = 0.

Furthermore, the discontinuity condition[︁d𝑀
d𝑠

−
(︁
𝑁 +

𝑀

𝜌𝑜

)︁
𝜓𝑜𝜂

]︁
+0

−
[︁d𝑀
d𝑠

−
(︁
𝑁 +

𝑀

𝜌𝑜

)︁
𝜓𝑜𝜂

]︁
−0

− 𝑃𝜁 = 0

must also be satisfied.
Equilibrium equations (3.1) with the use of Equations (2.1)–(2.4) can be given

[12] by

(3.2)
d

d𝑠
(𝐴𝑒𝜀𝑚) = 0 → 𝜀𝑚 = constant

and

(3.3) 𝑊 (4)
𝑜 + (𝜒2 + 1)𝑊 (2)

𝑜 + 𝜒2𝑊𝑜 = 𝜒2 − 1, 𝜒2 = 1−𝑚𝜀𝑚,

with the dimensionless radial displacement 𝑊𝑜 = 𝑤𝑜/𝜌𝑜. It is, therefore, found
that the membrane strain is constant under the action of a central concentrated
load. As for (3.3), the general solution is

𝑊𝑜(𝜙) =
𝜒2 − 1

𝜒2
+𝐴1 cos𝜙+𝐴2 sin𝜙− 𝐴3

𝜒2
cos𝜒𝜙− 𝐴4

𝜒2
sin𝜒𝜙

in the range 𝜙 ∈ [−𝜗; 0] and is

𝑊𝑜(𝜙) =
𝜒2 − 1

𝜒2
+𝐵1 cos𝜙+𝐵2 sin𝜙− 𝐵3

𝜒2
cos𝜒𝜙− 𝐵4

𝜒2
sin𝜒𝜙

in 𝜙 ∈ [0;𝜗]. The former constants 𝐴𝑖;𝐵𝑖 can be given using the boundary, con-
tinuity and discontinuity conditions, which yield a homogeneous system of linear
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equations for the unknowns:

(3.4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos𝜗 − sin𝜗 − cos𝜒𝜗
𝜒2

sin𝜒𝜗
𝜒2 0

−𝜒 sin𝜗 −𝜒 cos𝜗 sin𝜒𝜗 cos𝜒𝜗 0
1 0 − 1

𝜒2 0 −1

0 −𝜒 0 1 0
−1 0 1 0 1
0 1 0 −𝜒 0
0 0 0 0 cos𝜗
0 0 0 0 𝒮𝜒 sin𝜗− cos𝜗

0 0 0 0
0 0 0 0
−1 0 1

𝜒2 0

0 𝜒 0 −1
1 0 −1 0
0 −1 0 𝜒

cos𝜗 sin𝜗 − cos𝜒𝜗
𝜒2 − sin𝜒𝜗

𝜒2

𝒮𝜒 sin𝜗− cos𝜗 −𝒮𝜒 cos𝜗− sin𝜗 cos𝜒𝜗− 𝒮 sin𝜒𝜗 𝒮 cos𝜒𝜗+ sin𝜒𝜗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1

𝐴2

𝐴3

𝐴4

𝐵1

𝐵2

𝐵3

𝐵4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜒2−1
𝜒2

0
0
0
0

−2𝒫
𝜗

−𝜒2−1
𝜒2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The new notations 𝒮 = 𝜌𝑜𝑘𝛾/𝐼𝑒𝜂 and 𝒫 = −𝑃𝜁𝜌
2
𝑜𝜗/2𝐼𝑒𝜂 are for the dimension-

less spring stiffness and the dimensionless load. Clearly, if 𝒮 = 0 / 𝒮 → ∞ the
results are the same as for a pinned-pinned / pinned-fixed arch [13].

Recalling now equilibrium equation (3.2), because the membrane strain is con-
stant, the mathematical average of the strain, i.e., the strain itself, is given by

𝜀𝑚 =
1

2𝜗

∫︁ 𝜗

−𝜗

𝜀𝑚d𝜙 =
1

2𝜗

∫︁ 𝜗

−𝜗

(︁
𝜀𝑜𝜉 +

1

2
𝜓2
𝑜𝜂

)︁
d𝜙.

After carrying out these integrations, the resultant is a quadratic formula, which is
the nonlinear connection between the load and strain

(3.5) 𝐶2𝒫2 + 𝐶1𝒫 + 𝐶0 = 0, 𝐶𝑗(𝑚,𝜗, 𝜒,𝒮) ∈ R, 𝑗 = 0, 1, 2

and it must hold for any parameter set.
The principle of virtual work for the buckled configuration yields [14] coupled

differential equations
d𝑁𝑏

d𝑠
+

1

𝜌𝑜

d𝑀𝑏

d𝑠
− 1

𝜌𝑜

(︁
𝑁 +

𝑀

𝜌𝑜

)︁
𝜓𝑜𝜂𝑏 −

1

𝜌𝑜

(︁
𝑁𝑏 +

𝑀𝑏

𝜌𝑜

)︁
𝜓𝑜𝜂𝑏 = 0,(3.6)

d2𝑀𝑏

d𝑠2
− 𝑁𝑏

𝜌𝑜
− d

d𝑠

[︁(︁
𝑁 +𝑁𝑏 +

𝑀 +𝑀𝑏

𝜌𝑜

)︁
𝜓𝑜𝜂𝑏 +

(︁
𝑁𝑏 +

𝑀𝑏

𝜌𝑜

)︁
𝜓𝑜𝜂

]︁
= 0.
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The boundary conditions are

𝑤𝑜𝑏|±𝜗 =𝑀𝑏|−𝜗 = (𝑀𝑏 + 𝑘𝛾𝜓𝑜𝜂𝑏)|𝜗 = 0.

Moreover, as there is no increment in the load, all the typical fields are continuous
throughout the arch. Equations (3.6) can be manipulated [14] so that

(3.7)
d

d𝑠
(𝐴𝑒𝜀𝑚𝑏) = 0 → 𝜀𝑚𝑏 = constant

and

(3.8) 𝑊
(4)
𝑜𝑏 + (𝜒2 + 1)𝑊

(2)
𝑜𝑏 + 𝜒2𝑊𝑜𝑏 = 𝑚𝜀𝑚𝑏[1− (𝑊 (2)

𝑜 +𝑊𝑜)].

The solution to (3.8) assumes

𝑊𝑜𝑏(𝜙) = 𝐷1 cos𝜙+𝐷2 sin𝜙+𝐷3 sin𝜒𝜙+𝐷4 cos𝜒𝜙

− 𝑚𝜀𝑚𝑏

2𝜒3

(︁ 2

𝜒
+𝑋3𝜙 sin𝜒𝜙−𝑋4𝜙 cos𝜒𝜙

)︁
,

with 𝑋𝑖 being 𝐴𝑖 if 𝜙 ∈ [−𝜗; 0] and 𝐵𝑖 if 𝜙 ∈ [0;𝜗] – these are known from (3.4).
The new coefficients 𝐷𝑗 can be expressed in closed-form from the boundary and
continuity conditions.

With the strain increment being constant, equilibrium equation (3.7) yields
another quadratic relation between the dimensionless load 𝒫 and the strain param-
eter 𝜒:

(3.9) 𝜀𝑚𝑏 =
1

2𝜗

∫︁ 𝜗

−𝜗

(𝜀𝑚𝑏 + 𝜓𝑜𝜂𝜓𝑜𝜂𝑏)d𝜙 = 𝐹2𝒫2 + 𝐹1𝒫 + 𝐹0.

Solving Eqs. (3.5)–(3.9) simultaneously for the two unknowns 𝒫, 𝜒makes it possible
to tackle the stability issue.

It must be noted that, in a special case, when 𝒮 = 0 (the arch is pinned-pinned)
and the pre-buckling deformations are symmetric to axis 𝜁(𝜙 = 0), it is possible for
bifurcation buckling to occur. It means that with zero strain increment, the arch
buckles to an infinitesimally close equilibrium configuration [5]. Hence, equation
(3.8) becomes homogeneous and since it is paired with homogeneous boundary
conditions, the following characteristic equation can be established:

(1− 𝜒)2(1 + 𝜒)2 sin𝜒𝜗 cos𝜒𝜗 cos𝜗 sin𝜗 = 0.

The lowest true solution for the strain (actually, the critical strain for bifurcation
buckling) follows from the term sin𝜒𝜗 and is

(3.10) 𝜀𝑚 =
𝜗2 − 𝜋2

𝑚𝜗
.

Plugging (3.10) back to (3.5) makes it possible to evaluate the buckling loads for
bifurcation buckling.

In relation to pinned-pinned arches, it is proven in [13] that for smaller central
angles, limit point buckling can be expected as there is either no bifurcation point
or it is on an unstable equilibrium branch. Then, increasing 𝜗, the bifurcation
point moves to the primary stable branch so that type of buckling occurs first (at
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a lower strain). As for pinned-fixed and pinned–rotationally restrained members,
clearly, there is only limit point buckling.

4. Computational results

The detailed investigations are carried out in terms of various parameters like
the dimensionless spring stiffness 𝒮 ∈ [0;∞], semi-vertex angle 𝜗 ∈ [0; 0.4𝜋], quo-
tient of the arch length and radius of gyration 𝑆/𝑟 ∈ [75; 150]. In the following
figures, always the lowest buckling loads are plotted.

Figure 2. Variation of the critical load ratio in terms of the spring
stiffness if (a) 𝜗 = 0.4; (b) 𝜗 = 0.8; (c) 𝜗 = 1.2

It is first shown how the critical load ratio 𝒫(𝒮 ≠ 0)/𝒫(𝒮 = 0) varies with 𝒮
and 𝜗. Three semi-vertex angles are selected this time: 0.4, 0.8 and 1.2. According
to the computational results, the curves in Figure 2 are independent of 𝑆/𝑟. The
dashed lines represent the limit solution (𝒮 → ∞)/(𝒮 = 0). Moreover, as 𝜗 is
increased, the load ratio visibly increases. Furthermore, convergence in 𝒮 is quite
quick – it can be said that, in this respect, arches with spring stiffness above 40
behave like pinned-fixed members. This finding is independent of both 𝑆/𝑟 and 𝜗.

In Figures 3 and 5, four values of 𝒮 are selected (0; 2; 5; 1010) to show the effect
of the stiffness of the rotational end restraint in terms of 𝑆/𝑟 and 𝜗. In Figure 3, it
is clear that the softest support condition is the pinned-pinned one with the related
lowest buckling loads. However, in a small central angle range – 𝜗 ∈ [0.28; 0.32] –
the buckling load is actually independent of the support stiffness. Otherwise, the
effect of 𝒮 is greatest when the angle is greatest. It is clear that the spring stiffness
has considerable effects. Similar findings are valid for 𝑆/𝑟 = {100; 150} in Figures 4
and 5. For the pinned-pinned case, the buckling loads tend to decrease after a while
but for other supports, there is a monotonous increase. The curves shift to the left
with 𝑆/𝑟 increased.
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Figure 3. Critical loads for 𝑆/𝑟 = 75

Figure 4. Critical loads for 𝑆/𝑟 = 100

Figure 5. Critical loads for 𝑆/𝑟 = 150

Fixing the end-restraint stiffness to 5, Figure 6 shows how 𝑆/𝑟 affects the
buckling loads. For smaller central angles, the buckling load increases together
with 𝑆/𝑟 and the solutions are quite distinct. However, around 𝜗 ≃ 0.6 the curves
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coincide with a good accuracy and tend to the same limit. Therefore, it can be
concluded that starting from 𝜗 ⩾ 0.6, the buckling load in independent of 𝑆/𝑟.

Figure 6. The effect of 𝑆/𝑟 when 𝒮 = 5

Finally, Figures 7 and 8 depict the in-plane static behavior of arches. The
dimensionless load 𝒫 is plotted against the strain ratio – this latter is the ac-
tual strain divided by the critical (buckling) strain for pinned-fixed members:
𝜀𝑚(𝒮)/𝜀𝑚(𝒮 = 1010). Two angles are selected (𝜗 = 0.15; 0.3) with 𝑆/𝑟 set to
100. In Figure 7, it is clearly visible that while the critical strain is lowest for
the pinned-fixed case, it holds the greatest buckling load. One branch in all these
curves starts from the origin, while the other branch starts from a different level –
this latter value increases with 𝒮. At the upper point where the tangent becomes
zero, there is buckling.

Figure 7. Load-strain relationships for 𝑆/𝑟 = 100 and 𝜗 = 0.15

Meanwhile, in Figure 8 (𝜗 = 0.3), the behavior is much more complicated. For
the pinned-fixed case, there is only one upper limit point (it holds the greatest
buckling load), and for other spring stiffnesses, this number is two. Also, the
buckling loads are quite close to each other – compare it with Figure 4. It turns
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out that for pinned-pinned supports only, the critical behavior is characterized by
bifurcation buckling as this bifurcation point is closer to the origin as the limit
point – see the marker.

Figure 8. Load-strain relationships for 𝑆/𝑟 = 100 and 𝜗 = 0.3

5. Conclusions

The in-plane stability of pinned–rotationally restrained shallow arches under
a concentrated load was investigated. The rotational restraint was modeled by a
linear torsional spring. The model is applicable if the material distribution is non-
homogeneous and it changes along the cross-section. The classical Euler–Bernoulli
hypothesis was used for the kinematical relations. The geometrically nonlinear
model assumes infinitesimal strains and moderately large rotations. From the prin-
ciple of virtual work, it was found that the membrane strain is constant not only
in the pre-, but also in the post-buckling equilibrium state. The nonlinear rela-
tionships between the membrane strain parameter and the dimensionless load were
given in closed form. It was found that when the spring stiffness is zero, the arch
behaves as if it were pinned-pinned, while as this stiffness tends to infinity, the arch
is actually pinned-fixed. The analytical results were evaluated in terms of various
parameters, like the spring stiffness and geometry. The buckling loads were always
the greatest for pinned-fixed and lowest for pinned-pinned arches. However, in a
small range in the arch angle, the critical loads were actually independent of the
spring stiffness.
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СТАБИЛНОСТ ПРОСТО-ОГРАНИЧЕНО ОБРТНО
ОСЛОЊЕНИХ ЛУЧНИХ НОСАЧА

Резиме. Оваj рад има за циљ oдређивање критичне силе извиjања плитких
лучних носача, коjи имаjу jедан краj просто ослоњен док jе други краj везан
за еластичну ротациону опругу, а у функциjи крутости ротационе опруге, гео-
метриjе и дистрибуциjе материjала. Оптерећење jе дато у виду концентрисане
вертикалне силе коjа деjствуjе на врху носача. Дат jе геометриjски нелинеарни
модел коjи повезуjе не само аксиjалну силу већ и момент савиjања са дефор-
мациjама мембране. Успостављена jе нелинеарна веза између деформациjе и
параметара оптерећења. Ова jедначина jе потом решена аналитички. Показа-
но jе да крутост еластичног ослонца има значаjан утицаj на наjнижу вредност
критичне силе извиjања. У исто време показуjе се да нема значаjног утицаjа
овог параметра на геометриjу. За нулту вредност крутости ротационе опру-
ге лучни носач постаjе обострано просто ослоњен док за случаj када вредност
крутости тежи бесконачности носач се понаша као да jе на jедном краjу просто
ослоњен а на другом уклештен и има наjбољу носивост.
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