Analytical solutions for the effective viscoelastic properties of composite materials with different shapes of inclusions


Minh-Quan Thai, Sy-Tuan Nguyen, Thanh-Sang Nguyen, Phu-Son Mai




This paper aims to model the effect of different shapes of inclusions on the homogenized viscoelastic properties of composite materials made of a viscoelastic matrix and inclusion particles. The viscoelastic behavior of the matrix phase is modeled by the Generalized Maxwell rheology. The effective properties are firstly derived by combining the homogenization theory of elasticity and the correspondence principle. Then, the effective rheological properties in time space are explicitly derived without using the complex inverse Laplace--Carson transformation (LC). Closed-form solutions for the effective bulk and shear rheological viscoelastic properties, the relaxation and creep moduli as well as the Poisson ratio are obtained for the isotropic case with random orientation distribution and different shapes of inclusions: spherical, oblate and elongate inclusions. The developed approach is validated against the exact solutions obtained by the classical inverse LC method. It is observed that the homogenized viscoelastic moduli are highly sensitive to different shapes of inclusions.