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Abstract. We present an integrable nonholonomic case of rolling without
sliding of a gyroscopic ball over a sphere. This case was introduced and studied
in detail by Vasilije Demchenko in his 1923 doctoral dissertation defended
at the University of Belgrade, with Anton Bilimović as the advisor. These
results are absolutely unknown to modern researchers. The study is based on
the C. Neumann coordinates and the Voronec principle. By using the involved
technique of elliptic functions, a detailed study of motion is performed. Several
special classes of trajectories are distinguished, including regular and pseudo-
regular precessions. The so-called remarkable trajectories, introduced by Paul
Painlevé and Anton Bilimović, are described in the present case. The historical
context of the results as well as their place in contemporary mechanics are
outlined.
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1. Introduction

We present an integrable nonholonomic case of rolling without sliding of a
gyroscopic ball over a sphere. This case was introduced and studied in detail by
Vasilije Demchenko in his 1923 doctoral dissertation defended at the University
of Belgrade, with Anton Bilimović as the advisor. These results are absolutely
unknown to modern researchers. The study is based on the C. Neumann coordinates
and the Voronec principle. By using the involved technique of elliptic functions,
a detailed study of motion is performed. Several special classes of trajectories
are distinguished, including regular and pseudo-regular precessions. The so-called
remarkable trajectories, introduced by Paul Painlevé and Anton Bilimović, are
described in the present case. The historical context of the results as well as their
place in contemporary science are outlined.

Anton Bilimović (1879–1970) was an outstanding representative of the Russian
scientific elite who ended up in Belgrade as a result of the turmoil induced by
the revolution in Russia. As an already established scientist and a former Rector
of Malorosiisk University in Odessa, Bilimović made a tremendous contribution
to the further development and organization of mathematics and mechanics in
Belgrade, Serbia, and Yugoslavia. A detailed biography of Academician Bilimović
can be found in [41, 42]. A comprehensive study of Anton Bilimović’s scientific
school in Serbia till the mid-1970’s was given in [60]. It is presented there as
an integral part of G. K. Suslov’s school. Namely, Bilimović’s advisor was Peter
Vasilievich Voronec (1871–1923), a distinguished pupil of Gavril Konstantinovich
Suslov (1857–1935). Also, [60] describes the results of Serbian students of the
Bilimović school: Tatomir Andjelić (1903–1993), Rastko Stojanović (1926–1972),
Veljko Vujičić (1929–2020), Božidar Vujanović (1930–2014), and Djordje Djukić
(1943–2019). In his editorial concluding remarks in [60], Andjelić also listed works
of Viacheslav Zhardecki (1896–1962) and Djordje Mušicki (1921–2018) as parts of
the school.

Bilimović was not an isolated example of a Russian scientist who came to Bel-
grade at that time. Along with him, a notable scientist and his former scientific
advisor, P. V. Voronec also came to Belgrade. According to one of the most roman-
tic Belgrade urban stories, Peter and his son, Konstantin Voronec (1902–1974), met
for the last time as recruited soldiers of different units of “Whites”. Feeling that the
civil war was not developing in favor of the “Whites” and that it was coming to an
end, they agreed to meet in Belgrade, on the condition that the one who came first
would wait for the other one every day at noon in front of the National Theatre.
Peter, the father, reached Belgrade the first. Waiting for his son day after day,
he lost patience and decided to go back and search for Konstantin. He requested
Bilimović to take over his duty, and wait for Konstantin in Belgrade. Peter and
Konstantin did not manage to find each other. Konstantin crossed Romania on
foot, and came to Belgrade to be met and taken care of by Bilimović. At the same
time, Peter ended up in Ukraine, got ill and died in 1923. The communications
between the two countries were so poor at that time that Konstantin learned about
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his father’s fate only after he had come to Paris in the 1930’s. A comprehensive
description of this dramatic period of the Voronec family was given in [87].

Along with the son, Bilimović also took care of a student of Peter Voronec,
Vasilije Gregorevich Demchenko (1898–1972). In 1923, Demchenko prepared and
defended the doctoral dissertation:

Rolling without sliding of a gyroscopic ball over a sphere, University of
Belgrade, 1923, pp. 94. (in Serbian)
The dissertation was published as a separate book in Belgrade in 1924, see [35].

The work was motivated by and based on the results of his teachers, Peter Voronec
and Anton Bilimović, see [93, 96] and [13]. The dissertation was accepted for
the final doctoral examination on the meeting of the Faculty of Philosophy of the
University of Belgrade, on November 15, 1923, based on the report of the members
of the examination committee: Anton Bilimović, Mihailo Petrović (1868–1943), and
Milutin Milanković (1879–1952). Petrović was a founding father of modern Serbian
mathematics, see for example [43,44,83]. Milanković is best known for developing
his mathematical theories of climate, which, in particular, produced one of the most
significant theories relating Earth motions and long-term climate change, nowadays
called Milanković cycles [79] and [80].

Figure 1. The cover page of [35].
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The dissertation consists of a Preface, six chapters and a Résumé in French.
In the last sentence of the Preface, Demchenko expresses the deepest gratitude to
his teachers, Professors P. Voronec and A. Bilimović.

Demchenko classifies into three categories the material related to nonholonomic
problems of rolling of a surface over another surface accumulated by that moment:
rolling of a ball over a surface, rolling of a surface over a plane, and rolling of a sur-
face over a sphere. The case studied in the dissertation relates to the last category.
It is interesting since it reduces to elliptic quadratures, as was indicated in [96]. In
a sense, this work is also a continuation of works of Bobilev and Zhukovsky, [17]
and [105], who considered special cases of rolling of a gyroscopic ball over the plane.

2. Demchenko’s results: a gyroscopic ball rolling without
sliding over a sphere

2.1. The dissertation chapter by chapter. The subject of the dissertation
is at the interface of differential geometry of curves and surfaces, nonholonomic me-
chanics and the theory of elliptic functions and integrals. It is written in a clear and
illuminating fashion, demonstrating the author’s full expertise in each of these fields
and mastery in their synergy. The study is detailed and very well rounded. The ob-
tained results are complete, numerous, interesting, transparent and rigorous. The
exposition is elegant, with a well-thought-our organization which connects various
chapters and subchapters into a fully focused and convergent material. There is an
excelent balance between the details and the global line of the presentation. Let
us also observe that the dissertation is written in clean and smooth Serbian, with
a few instances of constructions which could be seen as more natural in Russian
than in Serbian.

Chapter 1, Kinematics of a rigid body rolling over a fixed surface, consists of
three subchapters. Section 1.1 Motion over the surface of a Darboux trihedral;
Section 1.2 Kinematic elements of a rolling rigid body, in Neumann coordinates;
Section 1.3 The case of rolling without sliding.

Chapter 2, The equations of motion of a rigid body, in a moving frame with an
arbitrary motion with respect to the rigid body, has four subchapters. Section 2.1
The equations of motion of a free rigid body in a moving frame; Section 2.2 The
equations of motion of a non-free rigid body; Section 2.3 Applications to rolling
without sliding; Section 2.4 Particular cases.

Chapter 3, Voronec Principle, has three subchapters. Section 3.1 A principle
similar to Hamiltonian which is applicable to nonholonomic systems; Section 3.2
Application to rolling without sliding over a fixed surface; Section 3.3 Rolling of
gyroscopic bodies.

Chapter 4, Reducing to quadratures, consists of the following subchapters:
Section 4.1 Bobilev problem and its generalization; Section 4.2 Kinematic elements
and expressions for the kinetic energy; 4.3 Differential equations of motion and first
integrals; Section 4.4 Calculation of coordinates 𝑢 and 𝑣; Section 4.5 Calculation
of cyclic coordinates 𝑢1, 𝑣1, and 𝜗; Section 4.6 A particular solution.

Chapter 5, Solution in the finite form, has the following subchapters: Sec-
tion 5.1 Inversion of the elliptic integral. Discriminant; Section 5.2 Arguments
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𝑎0, 𝑏0, 𝑎, 𝑏; Section 5.21 Calculation of 𝑣; Section 5.22 Calculation of 𝑠, 𝜏 ; Section
5.3 Arguments 𝑎1 and 𝑏1; Section 5.31 Calculation of 𝑣1; Section 5.32 Calculation of
𝜗; Section 5.4 Elliptic and mechanical constants; Section 5.5 Discussion of elliptic
arguments; Section 5.51 Discussion of functions Φ,Φ1,Φ

′,Φ′
1; Section 5.6 Discus-

sion of the obtained formulae; Section 5.7 The general interpretation of motion;
Section 5.8 Special cases of motion.

Chapter 6, The special cases of motion, is the last one. It consists of: Section
6.1 Constants 𝑠0, 𝑛0 and 𝑥′. The characteristic curve of degree 3; Section 6.2
Approximate calculation of motion; Section 6.3 Regular precession. Perturbation
of motion; Section 6.4 Pseudo-regular precession; Section 6.5 Rolling of a ball over a
sphere; Section 6.6 Stationary motion. Perturbed motion; Section 6.7 Remarkable
trajectories.

The first three chapters are more general and introductory. The second part,
consisting of chapters 4–6, is more specific, contains the original solution to the
posed problem and a detailed analysis of the obtained solution. This second part
occupies the major part of the text.

2.2. Rolling without slipping of a body over a surface in the Neu-
mann variables. Chapter 1 introduces very convenient coordinates of C. Neu-
mann, [81], in the study of rolling of one surface over another. Suppose that a
body T bounded by its surface S is rolling over a surface S1. Let 𝑂1x1y1z1 be the
coordinate frame fixed in space and let 𝑂xyz be the frame attached to the body
with the same orientation1. Let

𝑥1 = 𝑥1(𝑢1, 𝑣1), 𝑦1 = 𝑦1(𝑢1, 𝑣1), 𝑧1 = 𝑧1(𝑢1, 𝑣1),(2.1)
𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑧 = 𝑧(𝑢, 𝑣)(2.2)

be the parameterizations of S1 and S in the corresponding coordinates of the given
frames, where 𝑢1, 𝑣1 are the Gauss coordinates defined along the principle curvature
lines of S1 and, similarly, 𝑢, 𝑣 are the Gauss coordinates of S.

Let 𝑀 be their point of contact and n1 and n the unit vectors normal to
S1 and S respectively, such that the frames 𝑀u1v1n1 and 𝑀uvn are positively
oriented. Here u1,v1,u,v are unit tangent vectors to the point of contact 𝑀 of the
coordinate lines 𝑢1, 𝑣1 of S1 and the coordinate lines 𝑢, 𝑣 of S, respectively. Then
the Neumann coordinates of T are: the Gauss coordinates 𝑢, 𝑣, 𝑢1, 𝑣1 at 𝑀 and the
angle 𝜗 between v1 and u.

Given the moving frames 𝑂xyz, 𝑀u1v1n1, and 𝑀uvn, the following angular
velocities are defined:

𝜔 : of 𝑂xyz with respect to 𝑂1x1y1z1, i.e., the angular velocity of the body T,

𝜔1 : of 𝑂xyz with respect to 𝑀uvn,

𝜔2 : of 𝑀uvn with respect to 𝑀u1v1n1,

𝜔3 : of 𝑀u1v1n1 with respect to 𝑂1x1y1z1,

related by 𝜔 = 𝜔1 + 𝜔2 + 𝜔3.

1 As positive orientation Demchenko used what would nowadays be negative orientation.
This is the reason the signs in several equations differ from the signs we used to have.
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The nonholonomic constraint that the body T rolls without slipping over the
surface S1 is usually given by the condition that the current point of contact 𝑀
considered in rest in the moving frame also has zero velocity in the space frame2.
Here, the velocity of the point 𝑀 is different from zero. Namely, Demchenko
considers the point of contact𝑀 as a function of time in the coordinates 𝑢1(𝑡), 𝑣1(𝑡),
as a “trace” of the body T over S1. The corresponding “trace” on S is given by the
functions 𝑢(𝑡), 𝑣(𝑡). Let v1, v be the vectors of absolute and relative velocities of
𝑀 , i.e., the time derivatives of (2.1) and (2.2), respectively. Then they are related
by the expression v1 = v+m3. The condition that the body T rolls without slipping
over the surface S1 is then given by

(2.4) v1 = v.

The condition (2.4) is equivalent to (2.3).
Denote by 𝑠, 𝜏, 𝑛,mu,mv,mn the projections of the angular velocity 𝜔 and m

on the axes u,v,n. It is clear that mn = 0. In Section 1.2, the formulae (8–10)
are derived which express 𝑠, 𝜏, 𝑛,mu,mv as homogenous linear functions of the time
derivatives of the Neumann coordinates �̇�, �̇�, �̇�1, �̇�1, �̇�, and vice versa. For further
reference we will provide the equations:

𝑠 = −𝐷′′
√
𝐺
�̇� − 𝐷′′

1√
𝐺1

�̇�1 sin𝜗− 𝐷1√
𝐸1

�̇�1 cos𝜗,

𝜏 =
𝐷√
𝐸
�̇�− 𝐷1√

𝐸1

�̇�1 sin𝜗+
𝐷′′

1√
𝐺1

�̇�1 cos𝜗,(2.5)

𝑛 = −�̇�+
1

2
√
𝐸1𝐺1

(︁𝜕𝐸1

𝜕𝑣1
�̇�1 −

𝜕𝐺1

𝜕𝑢1
�̇�1

)︁
+

1

2
√
𝐸𝐺

(︁𝜕𝐸
𝜕𝑣

�̇�− 𝜕𝐺

𝜕𝑢
�̇�
)︁
,

for which Demchenko refers to [95]. Here and further 𝐸,𝐹,𝐺, 𝐷,𝐷′, 𝐷′′ are the
coefficients of the first and the second fundamental forms of S. Similarly, 𝐸1, 𝐹1, 𝐺1,
𝐷1, 𝐷

′
1, 𝐷

′′
1 are the coefficients of the first and the second fundamental forms of

S1. The choice of the Gauss coordinates gives 𝐹 = 0, 𝐷′ = 0 and, similarly,
𝐹1 = 0, 𝐷′

1 = 0.
The condition (2.4) gives the differential constraints mu = 0 and mv = 0 for

rolling without sliding as expressed in (1) of Section 1.7:

(2.6)
√︀
𝐸1�̇�1 = −

√
𝐸�̇� sin𝜗+

√
𝐺�̇� cos𝜗,

√︀
𝐺1�̇�1 =

√
𝐸�̇� cos𝜗+

√
𝐺�̇� sin𝜗.

The equations of motion of rolling without slipping of the rigid body T over
the surface S1 are derived in two different equivalent ways. In Chapter 2 they are
derived by using the general laws of mechanics, while in Chapter 3 they are derived
by using the Voronec principle.

Let 𝑚 be the mass of the body and w the velocity of the point 𝑂. It is assumed
that the mass center of the body T is at the point 𝑂 and that the axes 𝑂x, 𝑂y, and

2 In the usual vector notation with the standard orientation, the no-slipping condition is
given in the form which is not used in the dissertation:

(2.3) 𝜔 ×
−−→
𝑂𝑀 +

𝑑

𝑑𝑡

−−→
𝑂1𝑂 = 0.

3 The velocity m is usually expressed as the left hand side of (2.3).
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𝑂z are the principal axes of the body. Let 𝑝, 𝑞, 𝑟 be the components of the angular
velocity 𝜔 and 𝐴,𝐵,𝐶 be the components of the inertia tensor, and wx,wy,wz

be the components of the velocity w in the moving frame 𝑂xyz. Then the kinetic
energy of the body is given by

(2.7) 𝑇 =
𝑚

2

(︀
w2

x +w2
y +w2

z

)︀
+

1

2

(︀
𝐴𝑝2 +𝐵𝑞𝑞 + 𝐶𝑟2

)︀
.

Denote the momentum of the body T by M and the angular momentum with
respect to the point 𝑀 by G(𝑀). We have general laws of mechanics written in the
fixed reference frame 𝑂1x1y1z1:

(2.8) Ṁ = F, Ġ(𝑀) + [v1,M] = L(𝑀),

where [· , ·] is the vector product4, F is the sum of all forces, and L(𝑀) is the torque
of all forces applied to the body T with respect to 𝑀 . Note that the forces of
reactions of constraints do not induce torque with respect to 𝑀 .

From the equations (2.8) written in the moving frames, (2.6) and (2.5), by using
quite interesting manipulations with different projections of the angular velocities
𝜔, 𝜔1, 𝜔2, 𝜔3 and derivations of the kinetic energy 𝑇 and the kinetic energy written
in terms of mu,wv,mn, 𝑠, 𝜏, 𝑛,

(2.9) 𝑇 (mu,wv,mn, 𝑠, 𝜏, 𝑛) = 𝑇 (wx,wy,wz, 𝑝, 𝑞, 𝑟),

the system of eight differential equations in eight unknown functions of time:
𝑢, 𝑣, 𝑢1, 𝑣1, 𝜗, 𝑠, 𝜏, 𝑛 (or, equivalently, 𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, �̇�, �̇�, �̇�) is derived.

2.3. The Voronec principle. In Chapter 3, Section 3.1, Demchenko recalls
the derivation of the Voronec principle for nonholonomic systems [93]. Consider the
nonholonomic system with the kinetic energy 𝑇 = 𝑇 (𝑡, 𝑞𝑠, 𝑞𝑠) (𝑠 = 1, . . . , 𝑛+𝑘), the
generalized forces 𝑄𝑠 that correspond to the coordinates 𝑞𝑠, and the time-dependent
nonhomogeneous nonholonomic constraints

(2.10) 𝑞𝑛+𝜈 =

𝑛∑︁
𝑖=1

𝑎𝜈𝑖(𝑞, 𝑡)𝑞𝑖 + 𝑎𝜈(𝑞, 𝑡) (𝜈 = 1, 2, . . . , 𝑘).

Let Θ be the kinetic energy 𝑇 after imposing the constraints (2.10) and let 𝐾𝜈

be the partial derivative of the kinetic energy 𝑇 with respect to 𝑞𝜈 restricted to the
constrained subspace defined by (2.10):

Θ(𝑡, 𝑞1, . . . , 𝑞𝑛+𝑘, 𝑞1, . . . , 𝑞𝑛) = 𝑇 (𝑡, 𝑞1, . . . , 𝑞𝑛+𝑘, 𝑞1, . . . , 𝑞𝑛+𝑘),

𝐾𝜈(𝑡, 𝑞1, . . . , 𝑞𝑛+𝑘, 𝑞1, . . . , 𝑞𝑛)=
𝜕𝑇

𝜕𝑞𝑛+𝜈
(𝑡, 𝑞1, . . . , 𝑞𝑛+𝑘, 𝑞1, . . . , 𝑞𝑛+𝑘) (𝜈 = 1, . . . , 𝑘).

Based on the Lagrange-d’Alembert principle, following Voronec [93], the equa-
tions of motion of the given noholonomic system are derived in the form without
Lagrange multipliers:

𝑑

𝑑𝑡

𝜕Θ

𝜕𝑞𝑖
=
𝜕Θ

𝜕𝑞𝑖
+𝑄𝑖 +

𝑘∑︁
𝜈=1

𝑎𝜈𝑖

(︁ 𝜕Θ

𝜕𝑞𝑛+𝜈
+𝑄𝑛+𝜈

)︁
(2.11)

4 Here, since [x,y] = z, the sign differs from the usual one.
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+

𝑘∑︁
𝜈=1

𝐾𝜈

(︂ 𝑛∑︁
𝑗=1

𝐴
(𝜈)
𝑖𝑗 𝑞𝑗 +𝐴

(𝜈)
𝑗

)︂
(𝑖 = 1, . . . , 𝑛),

where the components 𝐴(𝜈)
𝑖𝑗 and 𝐴(𝜈)

𝑖 are functions of the time 𝑡 and the coordinates
𝑞1, . . . , 𝑞𝑛+𝑘 given by

𝐴
(𝜈)
𝑖𝑗 =

(︂
𝜕𝑎𝜈𝑖
𝜕𝑞𝑗

+

𝑘∑︁
𝜇=1

𝑎𝜇𝑗
𝜕𝑎𝜈𝑖
𝜕𝑞𝑛+𝜇

)︂
−
(︂
𝜕𝑎𝜈𝑗
𝜕𝑞𝑖

+

𝑘∑︁
𝜇=1

𝑎𝜇𝑖
𝜕𝑎𝜈𝑗
𝜕𝑞𝑛+𝜇

)︂
,

𝐴
(𝜈)
𝑖 =

(︂
𝜕𝑎𝜈𝑖
𝜕𝑡

+

𝑘∑︁
𝜇=1

𝑎𝜇
𝜕𝑎𝜈𝑖
𝜕𝑞𝑛+𝜇

)︂
−

(︂
𝜕𝑎𝜈
𝜕𝑞𝑖

+

𝑘∑︁
𝜇=1

𝑎𝜇𝑖
𝜕𝑎𝜈
𝜕𝑞𝑛+𝜇

)︂
.

It is interesting that the equations can be written in a compact form by using
a formal integral expression referred to as the Voronec principle:

(2.12)
∫︁ 𝑡2

𝑡1

[︂
𝛿Θ+

𝑛+𝑘∑︁
𝑖=1

𝑄𝑖𝛿𝑞𝑖 +

𝑘∑︁
𝜈=1

𝐾𝜈

(︁ 𝑑
𝑑𝑡
𝛿𝑞𝑛+𝜈 − 𝛿𝑞𝑛+𝜈

)︁]︂
𝑑𝑡 = 0,

where virtual displacements 𝛿𝑞1, . . . , 𝛿𝑞𝑛 are arbitrary and equal to zero at the
endpoints of a trajectory 𝑞(𝑡) (for 𝑡 = 𝑡1 and 𝑡 = 𝑡2), while 𝛿𝑞𝑛+1, . . . , 𝛿𝑞𝑛+𝑘 are
determined from the homogeneous constraints

(2.13) 𝛿𝑞𝑛+𝜈 =

𝑛∑︁
𝑖=1

𝑎𝜈𝑖𝛿𝑞𝑖 (𝜈 = 1, 2, . . . , 𝑘).

Here 𝑑
𝑑𝑡𝛿𝑞𝑛+𝜈 −𝛿𝑞𝑛+𝜈 are calculated according to the expressions (2.10), (2.13) and

using the rule:
𝑑

𝑑𝑡
𝛿𝑞𝑖 − 𝛿𝑞𝑖 = 0 (𝑖 = 1, 2, . . . , 𝑛).

In the case where all the considered objects do not depend on the variables
𝑞𝑛+𝜈 , the system is known as the Chaplygin system and the equations (2.11) as
the Chaplygin equations. This is the reason Bilimović used the notion Chaplygin–
Voronec equations (see [2]).

2.4. The Voronec principle and rolling of a body over a surface. In
Section 3.2, following [96], Demchenko applied the Voronec principle to the above
problem of rolling without slipping of a body over a surface. The nonholonomic
constraints are given by (2.6). One can choose �̇�1 and �̇�1 as dependent velocities.
The corresponding generalized impulses 𝐾1 and 𝐾2 are defined as

𝐾1(𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, �̇�, �̇�, �̇�) =
𝜕𝑇

𝜕�̇�1
, 𝐾2(𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, �̇�, �̇�, �̇�) =

𝜕𝑇

𝜕�̇�1
,

where 𝑇 = 𝑇 (𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, �̇�, �̇�, �̇�, �̇�1, �̇�1) is the kinetic energy (2.7) in the Neu-
mann variables and the constraints (2.6) are imposed after the taking of partial
derivatives.

From now on, Θ denotes the kinetic energy (2.9) as a function of the angular
velocities 𝑠, 𝜏, 𝑛 taking into account the constraints mu = 0,wv = 0,mn = 0, while
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Θ̄(𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, �̇�, �̇�, �̇�) denotes the kinetic energy 𝑇 (𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, �̇�, �̇�, �̇�, �̇�1, �̇�1) af-
ter imposing the constraints (2.6). Then

𝐾1 =𝑀
√︀
𝐸1

[︀
(𝜖𝑠− 𝜌𝑢𝑛) cos𝜗+ (𝜖𝜏 − 𝜌𝑣𝑛) sin𝜗

]︀
+

1

2
√
𝐸1𝐺1

𝜕𝐸1

𝜕𝑣1

𝜕Θ

𝜕𝑛
− 𝐷1√

𝐸1

(︁𝜕Θ
𝜕𝑠

cos𝜗+
𝜕Θ

𝜕𝜏
sin𝜗

)︁
,

𝐾2 =𝑀
√︀
𝐺1

[︀
(𝜖𝑠− 𝜌𝑢𝑛) sin𝜗− (𝜖𝜏 − 𝜌𝑣𝑛) cos𝜗

]︀
+

1

2
√
𝐸1𝐺1

𝜕𝐺1

𝜕𝑢1

𝜕Θ

𝜕𝑛
+

𝐷′′
1√
𝐺1

(︁𝜕Θ
𝜕𝜏

cos𝜗− 𝜕Θ

𝜕𝑠
sin𝜗

)︁
.

Here 𝜌𝑢, 𝜌𝑣, 𝜖 are the coordinates of
−−→
𝑂𝑀 in the coordinate system 𝑀uvn. In these

expressions, 𝑠, 𝜏, 𝑛 should be expressed as functions of �̇�, �̇�, �̇� by using (2.5) and the
constraints (2.6).

Bearing in mind that virtual displacements satisfy

(2.14)

√︀
𝐸1𝛿𝑢1 = −

√
𝐸𝛿𝑢 sin𝜗+

√
𝐺𝛿𝑣 cos𝜗,√︀

𝐺1𝛿𝑣1 =
√
𝐸𝛿𝑢 cos𝜗+

√
𝐺𝛿𝑣 sin𝜗,

the coefficients in (2.12) of terms that contain 𝐾1 and 𝐾2 have the form
1√
𝐸1

[︀√
𝐸(𝑛𝛿𝑢− �̇�𝑛′) cos𝜗+

√
𝐺(𝑛𝛿𝑣 − �̇�𝑛′) sin𝜗

]︀
,

1√
𝐺1

[︀√
𝐸(𝑛𝛿𝑢− �̇�𝑛′) sin𝜗−

√
𝐺(𝑛𝛿𝑣 − �̇�𝑛′) cos𝜗

]︀
,

where

𝑛′ = −𝛿𝜗+
1

2
√
𝐺𝐸

(︁𝜕𝐸
𝜕𝑣

𝛿𝑢− 𝜕𝐺

𝜕𝑢
𝛿𝑣

)︁
+

1

2
√
𝐺1𝐸1

(︁𝜕𝐸1

𝜕𝑣1
𝛿𝑢1 −

𝜕𝐺1

𝜕𝑢1
𝛿𝑣1

)︁
.

If one denotes

𝐾 ′
1 =

𝐾1√
𝐸1

cos𝜗+
𝐾2√
𝐺1

sin𝜗, 𝐾 ′
2 =

𝐾1√
𝐸1

sin𝜗− 𝐾2√
𝐺1

cos𝜗,

the Voronec principle (2.12) can be written in the form∫︁ 𝑡

𝑡1

[︀
𝛿Θ̄ + 𝛿𝑈 +𝐾 ′

1

√
𝐸(𝑛𝛿𝑢− �̇�𝑛′) +𝐾 ′

2

√
𝐺(𝑛𝛿𝑣 − �̇�𝑛′)

]︀
𝑑𝑡.

Here 𝑈(𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1) is a force function (negative potential energy).
By using the expression for 𝑛′, (2.14), and setting the terms that contain in-

dependent variations 𝛿𝑢, 𝛿𝑣, 𝛿𝜗 to zero, one gets the equations of motion in the
form

𝑑

𝑑𝑡

Θ̄

𝜕�̇�
− 𝜕(Θ̄ + 𝑈)

𝜕𝑢
=

√
𝐸
[︁
− 𝜕(Θ̄ + 𝑈)

𝜕𝑢1

sin𝜗√
𝐸1

+
𝜕(Θ̄ + 𝑈)

𝜕𝑣1

cos𝜗√
𝐺1

−𝐾 ′
1�̇�

]︁
− (Δ2𝐾

′
1 +Δ1𝐾

′
2)
√
𝐸𝐺�̇�,

𝑑

𝑑𝑡

Θ̄

𝜕�̇�
− 𝜕(Θ̄ + 𝑈)

𝜕𝑣
=

√
𝐺
[︁𝜕(Θ̄ + 𝑈)

𝜕𝑢1

cos𝜗√
𝐸1

+
𝜕(Θ̄ + 𝑈)

𝜕𝑣1

sin𝜗√
𝐺1

−𝐾 ′
2�̇�

]︁
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+ (Δ2𝐾
′
1 +Δ1𝐾

′
2)
√
𝐸𝐺�̇�,

𝑑

𝑑𝑡

Θ̄

𝜕�̇�
− 𝜕(Θ̄ + 𝑈)

𝜕𝜗
= 𝐾 ′

1

√
𝐸�̇�+𝐾 ′

2

√
𝐺�̇�,

where

2Δ1 =
1√
𝐺

𝜕 ln𝐸

𝜕𝑣
− sin𝜗√

𝐺1

𝜕 ln𝐸1

𝜕𝑣1
− cos𝜗√

𝐸1

𝜕 ln𝐺1

𝜕𝑢1
,

2Δ2 =
1√
𝐸

𝜕 ln𝐺

𝜕𝑢
− sin𝜗√

𝐸1

𝜕 ln𝐺1

𝜕𝑢1
− cos𝜗√

𝐺1

𝜕 ln𝐸1

𝜕𝑣1
.

These three differential equations of the second order, together with the two con-
straints (2.6) give a system of eight equations with eight unknown variables 𝑢, 𝑣, 𝜗,
𝑢1, 𝑣1, �̇�, �̇�, �̇�.

Let us mention that on the occasion of the centennial of the seminal work of
Voronec [96], Russian Journal of Nonlinear Dynamics published a Russian trans-
lation of the German original, prefaced with a short, but succinct text by A. S.
Sumbatov. Sumbatov indicated that Voronec had been working on his principle
for about 10 years. He also listed people who had successfully continued the work
of Voronec: Ya. Shtaerman (1915), A. Bilimović (1916), and Yu. P. Bychkov
(1965–67, 2004). Let us also mention the work of Bilimović [14], where he indi-
cated the advantages of the Voronec equations with respect to other approaches to
nonholonomic mechanics.

2.5. Rolling of a body with a gyroscope. The next step for Demchenko is
to consider rolling of a body T with a gyroscope inside the body (Chapter 3, Section
3.3). He assumes that the axis of the gyroscope coincides with one of the principal
axes of the body (𝑂z) and that the mass center of the body and of the gyroscope
is the point 𝑂. It is also assumed that the forces applied to the gyroscope do not
induce torque about the axis of the gyroscope. Thus, the gyroscope will rotate with
a constant angular velocity �̃� around the axis 𝑂z.

The kinetic energy of the system body + gyroscope takes the form (see (2.7)
and (2.9))5

𝑇 = 𝑇 +
1

2
𝐶�̃�2 = 𝑇 +

1

2
𝐶�̃�2,

where
𝑇 =

𝑚

2

(︀
w2

x +w2
y +w2

z

)︀
+

1

2

(︀
𝐴𝑝2 +𝐵𝑞2 + 𝐶𝑟2

)︀
,

𝑝, 𝑞, 𝑟 are the components of the angular velocity of the body T, 𝐴,𝐵 are x and y
components of the inertia tensor of the system body + gyroscope, 𝐶 and 𝐶 are the
moments of inertia with respect to the axis 𝑂z of the body and the gyroscope in
the body frame 𝑂xyz, 𝑚 is the mass of the system body + gyroscope, and 𝑇 equals
𝑇 written in the variables mu,wv,mn, 𝑠, 𝜏, 𝑛 (more details are given in Chapter 4,
Section 4.2, see the equation (2.19) given below).

5 In the presentation of the PhD thesis we completely followed the notation of the PhD
thesis [35] except in denoting the mass, kinetic energies and the total angular momentum by 𝑚,
𝑇 , 𝑇 , 𝑇 and G̃(𝑀), respectively.
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The angular momentum of the system body + gyroscope with respect to the
point 𝑀 is G̃(𝑀) = G(𝑀) + 𝜅, where G(𝑀) is the angular momentum of the
system with the gyroscope when the z-component �̃� of the angular velocity of the
gyroscope is set to zero, and 𝜅 = 𝑘z, 𝑘 = 𝐶�̃�. Due to the presence of the gyroscope,
the second equation in (2.8) (also written in the fixed reference frame 𝑂1x1y1z1)
takes the form

(2.15) ˙̃G(𝑀) + [v,M] = L(𝑀),

where M is the momentum of the system body + gyroscope and L(𝑀) is the torque
of all forces. Here, the constraint (2.4) is imposed.

The projections of the total angular momentum G̃(𝑀) to the axis of 𝑀uvn are
𝜕𝑇

𝜕𝑠
+ 𝑘𝛼′′,

𝜕𝑇

𝜕𝜏
+ 𝑘𝛽′′,

𝜕𝑇

𝜕𝑛
+ 𝑘𝛾′′,

where 𝛼′′, 𝛽′′, 𝛾′′ are cosines of the angles between z and u,v,n.
It is assumed that the forces in the system are potential and given by a force

function 𝑈 . Let 𝑠1, 𝜏1, 𝑛1 and vu, vv, vn be the components of 𝜔1 and v in the frame
𝑀uvn. Using the law of change of angular momentum (2.15) and the kinematic
equations 𝑑𝛼′′

𝑑𝑡 = 𝜏1𝛾
′′ − 𝑛1𝛽

′′ (similar for 𝛽′′ and 𝛾′′), the equations are written in
the form:

𝑑

𝑑𝑡

𝜕Θ

𝜕𝑠
+ (𝜏 − 𝜏1)

𝜕Θ

𝜕𝑛
− (𝑛− 𝑛1)

𝜕Θ

𝜕𝜏
+ vv

𝜕𝑇

𝜕mn
− vn

𝜕𝑇

𝜕mv
=
𝜕 ¯̇𝑈

𝜕𝑠
+ 𝑘(𝑛𝛽′′ − 𝜏𝛾′′),

𝑑

𝑑𝑡

𝜕Θ

𝜕𝜏
+ (𝑛− 𝑛1)

𝜕Θ

𝜕𝑛
− (𝑠− 𝑠1)

𝜕Θ

𝜕𝑛
+ vn

𝜕𝑇

𝜕mu
− vu

𝜕𝑇

𝜕mn
=
𝜕 ¯̇𝑈

𝜕𝜏
+ 𝑘(𝑠𝛾′′ − 𝑛𝛼′′),

𝑑

𝑑𝑡

𝜕Θ

𝜕𝑛
+ (𝑠− 𝑠1)

𝜕Θ

𝜕𝜏
− (𝜏 − 𝜏1)

𝜕Θ

𝜕𝑠
+ vu

𝜕𝑇

𝜕mv
− vv

𝜕𝑇

𝜕mu
=
𝜕 ¯̇𝑈

𝜕𝑛
+ 𝑘(𝜏𝛼′′ − 𝑠𝛽′′),

where 𝜕 ¯̇𝑈
𝜕𝑠 , 𝜕 ¯̇𝑈

𝜕𝜏 , 𝜕 ¯̇𝑈
𝜕𝑛 are the derivatives of 𝑈 along the vector fields that define the

quasi-velocities 𝑠, 𝜏, 𝑛.
The problem reduces to the integration of eight differential equations on eight

unknown functions of time: 𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, 𝑠, 𝜏, 𝑛 (or, equivalently, 𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1,
�̇�, �̇�, �̇�). The explicit forms of all the mentioned variables and functions in terms of
C. Neumann variables are given in Chapters 1 and 2.

The problem simplifies under the additional assumptions that the surface of
the body is of revolution, that the axis of the gyroscope coincides with the axis of
revolution and that the central ellipsoid of inertia is an ellipsoid of revolution with
the axis of revolution coinciding with the axis of the gyroscope.

2.6. The Bobilev–Zhukovsky problem and its generalization. If one
considers rolling over the plane and the gyroscopic body is a ball with the mass
center coinciding with its geometric center, the problem can be resolved in quadra-
tures. There are two cases where these quadratures are elliptic. These cases were
studied by Bobilev [17] and Zhukovsky [105]. In the Bobilev case the central el-
lipsoid of inertia is rotationally symmetric and the gyroscope axis coincides with
the axis of symmetry, while in the Zhukovsky case the additional condition is that
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the moment of the ball with respect to the axis of the gyroscope is equal to the sum
of the moments of the system ball + gyroscope with respect to the axes orthogonal
to the axis of the gyroscope. In Chapter 4 Demchenko used the same condition as
Zhukovsky and considered rolling of a gyroscopic ball over a sphere.

Let a ball of radius 𝑅2 with a rotational inertia ellipsoid roll without sliding
over a fixed sphere of radius 𝑅1. The ball contains a gyroscope whose axis is fixed
with respect to the ball and coincides with the axis of symmetry of the inertia
ellipsoid of the ball. It is assumed that the mass center of the moving ball, the
mass center of the gyroscope and the geometric center of the moving ball are at
the origin of the moving frame 𝑂xyz fixed to the ball such that 𝑂z is the axis of
the gyroscope. Let 𝐴1, 𝐴1, 𝐶1, 𝐴2, 𝐴2, 𝐶2 denote the principal central moments of
inertia of the ball and the gyroscope with respect to the frames 𝑂xyz attached to
the ball and the frame 𝑂𝜉𝜂𝜁 rigidly connected to the gyroscope, such that 𝑂𝜁 = 𝑂z.
In the given notation, the Zhukovsky condition reads

(2.16) 𝐶1 = 𝐴1 +𝐴2.

The complements of a latitude and a longitude of the contact point 𝑀 are
chosen for the Gauss coordinates 𝑢, 𝑣 on the moving ball and 𝑢1, 𝑣1 on the fixed
sphere. The angle 𝜗 is as before the angle between 𝑢 and 𝑣1 coordinate lines. Let
𝑥, 𝑦, 𝑧 and 𝑥1, 𝑦1, 𝑧1 be the coordinates of the point 𝑀 in the moving 𝑂xyz and
the fixed frame 𝑂1x1y1z1, respectively. One has

𝑥 = 𝑅2 sin𝑢 cos 𝑣 𝑦 = 𝑅2 sin𝑢 sin 𝑣 𝑧 = 𝑅2 cos𝑢

𝑥1 = 𝑅1 sin𝑢1 cos 𝑣1 𝑦1 = 𝑅1 sin𝑢1 sin 𝑣1 𝑧1 = 𝑅1 cos𝑢1.

Now, the nonholonomic constraints (2.6) read

(2.17)
�̇�1 = −𝜇′�̇� sin𝜗+ 𝜇′�̇� cos𝜗 sin𝑢,

�̇�1 sin𝑢1 = 𝜇′�̇� cos𝜗+ 𝜇′�̇� sin𝜗 sin𝑢,

where 𝜇′ = 𝑅2

𝑅1
.

Let, as above, 𝑠, 𝜏, 𝑛 denote the coordinates of angular velocity of the ball in
the moving reference frame 𝑀uvn. After substitution of the constraints (2.17) into
(2.5), the expressions for 𝑠 and 𝜏 are simplified:

(2.18) 𝑠 = 𝜇 sin𝑢�̇�, 𝜏 = −𝜇�̇�, 𝑛 = −�̇�− cos𝑢�̇� − cos𝑢1�̇�1,

where

𝜇 = 1 +
𝑅2

𝑅1
= 1 + 𝜇′.

Let 𝑝1, 𝑞1, 𝑟1 denote the projections of angular velocity of the ball to the axes of
the frame 𝑂xyz and let 𝑝2, 𝑞2, 𝑟2 denote the projections of angular velocity of the
gyroscope to the axes of the frame 𝑂𝜉𝜂𝜁. It is assumed that the torque of active
forces for the gyroscope axis is zero. Since the torque of reaction of constraints for
the gyroscope axis is also zero, one concludes

𝐶2𝑟2 = 𝑘 = const and 𝑝21 + 𝑞21 = 𝑝22 + 𝑞22 .
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The kinetic energy of the system ball + gyroscope is then given by (see (2.7))

𝑇 =
1

2

(︀
𝐴1𝑝

2
1 +𝐴1𝑞

2
1 + 𝐶1𝑟

2
1

)︀
+

1

2

(︀
𝐴2𝑝

2
2 +𝐴2𝑞

2
2 + 𝐶2𝑟

2
2

)︀
+

1

2
𝑚w2(2.19)

=
1

2

(︀
𝐴𝑝21 +𝐴𝑞21 + 𝐶𝑟21

)︀
+

1

2
𝑘𝑟2 +

1

2
𝑚w2,

where M is the mass of the system ball + gyroscope, w is the velocity of the point
𝑂, and 𝐴 = 𝐴1 +𝐴2, 𝐶 = 𝐶1.

Since 𝑝21 + 𝑞21 + 𝑟21 = 𝑠2 + 𝜏2 + 𝑛2 and for the ball we have the identity

w2 = 𝑅2
2(𝑠

2 + 𝜏2),

from the Zhukovsky condition (2.16), the kinetic energy of the system expressed as
a function of 𝑠, 𝜏, 𝑛 takes the form

(2.20) 𝑇 = 1
2 (𝑃 (𝑠

2 + 𝜏2) +𝐴𝑛2) + 1
2𝑘𝑟2,

where 𝑃 = 𝐼 +𝐴 and 𝐼 = M𝑅2
2.

The equations of motion can be obtained from a general law of change of the
angular momentum (2.15). Since in the considered system [v,M] = 0 and L(𝑀) = 0,
one concludes that the total angular momentum is constant in the fixed reference
frame 𝑂1x1y1z1:

G̃(𝑀) = const.
Let Γ denote its magnitude. One can choose the axis 𝑂1z1, such that G̃(𝑀) = Γz1.
The cosines 𝛼′′

1 , 𝛽
′′
1 , 𝛾

′′
1 of the angles between z1 and u,v,n in the Neumann variables

are
𝛼′′
1 = sin𝑢1 sin𝜗, 𝛽′′

1 = − sin𝑢1 cos𝜗, 𝛾′′1 = − cos𝑢1.

Thus, the projections of G̃(𝑀) to the axes of the moving frame 𝑀uvn are given by

Γ sin𝑢1 sin𝜗 = 𝑃𝑠− 𝑘 sin𝑢

−Γ sin𝑢1 cos𝜗 = 𝑃𝜏(2.21)
−Γ cos𝑢1 = 𝐴𝑛+ 𝑘 cos𝑢.

It is interesting to mention that the equations of motion are obtained in the form

𝑃 �̇�− 𝜇′𝐴 𝑛�̇�− 𝑃𝜏(𝑛+ cos𝑢�̇�) = 𝑘𝜇�̇� cos𝑢,

𝑃𝜏 − 𝜇′𝐴 𝑛 sin𝑢�̇� + 𝑃 𝑠(𝑛+ cos𝑢�̇�) = 𝑘(𝑛 sin𝑢+ 𝜇�̇� sin𝑢 cos𝑢),(2.22)
𝐴�̇� = 𝑘𝜇 sin𝑢�̇�,

by derivation of (2.21) and the kinetic energy integral (2.20).
Finally, the problem reduces to the problem of solving the system of eight

equations (2.22), (2.18), and (2.17) in the variables 𝑢, 𝑣, 𝜗, 𝑢1, 𝑣1, 𝑠, 𝜏, 𝑛.

2.7. Solving the system in terms of elliptic functions and elliptic
integrals. Demchenko introduces a new variable 𝑥 = cos𝑢 and derives an elliptic
equation on 𝑥:

(2.23)
(︁𝑑𝑥
𝑑𝑡

)︁2

= 𝑋(𝑥),
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where 𝑋(𝑥) is a degree four polynomial in 𝑥. Namely, integrating the last of the
equations (2.22), he obtains

(2.24) 𝐴𝑛 = −𝑘𝜇𝑥+ 𝐶5 = −𝑘𝜇(𝑥− 𝑥0),

where 𝐶5 = 𝑘𝜇𝑥0 is a constant, as well as 𝑥0. In order to get 𝑠, he eliminates 𝜏
from the first integrals, the area integral

𝑃 2(𝑠2 + 𝜏2) +𝐴2𝑛2 + 𝑘2 − 2𝑘(𝑃𝑠 sin𝑢−𝐴𝑛 cos𝑢) = Γ2,

and the kinetic energy integral

(2.25) 𝑃 (𝑠2 + 𝜏2) +𝐴𝑛2 = 2ℎ.

He gets

(2.26) 𝑏2𝑠 sin𝑢 = 𝑘𝜇(−𝑏0𝑥2 + 2𝑏1𝑥0𝑥− Γ̄),

where

𝑏0 = 𝐼𝜇+ 2𝐴, 𝑏1 = 𝐼𝜇+𝐴, 𝑏2 = 2𝑃𝐴, and Γ̄ =
𝐼𝐶2

5 +𝐴(Γ2 − 𝑘2)− 2ℎ𝑃𝐴

𝜇𝑘2
.

Note that the inequalities

𝑏0 > 𝑏1 > 𝑃 = 𝐴+ 1

are valid since 𝜇 > 1. From the kinetic energy integral (2.25), it follows

𝑏22𝜏
2 = −2𝑏2𝐴

2𝑛2 + 2𝑏2𝐴ℎ− 𝑏22𝑠
2.

By multiplying both sides by sin2 𝑢 and by applying the formulae (2.24) and (2.26)
one finally gets

(2.27) 𝑏22𝜏
2 sin2 𝑢 = 𝜇2𝑘2𝑋,

where

𝑋 = 2𝑏2(ℎ
′ − 𝑥+ 𝑥0)(ℎ

′ + 𝑥− 𝑥0)(1− 𝑥2)− (−𝑏0𝑥2 + 2𝑏1𝑥0𝑥− Γ̄)2,

with

ℎ′ =

√
2ℎ𝐴

𝜇𝑘
.

By substituting 𝜏 from the second of the equations (2.18) into (2.27), one comes to
(2.23).

By using the first integrals of energy and area, Demchenko expresses the angular
velocities 𝑠, 𝜏, 𝑛 and also 𝑢1 and 𝜗 as functions of 𝑥. He needs two additional elliptic
integrations

(2.28) 𝑑𝑣 =
𝜑(𝑥)𝑑𝑥

(1− 𝑥2)
√
𝑋
, 𝑑𝑣1 =

𝐹 (𝑥)𝑑𝑥

𝜃(𝑥)
√
𝑋
,

where 𝜑, 𝐹, 𝜃 are quadratic polynomials in 𝑥. The polynomial 𝑋 can be presented
in the form:

𝑋(𝑥) = (1− 𝑥2)𝜓(𝑥)− 𝜑(𝑥)2 = 𝑎0(𝑥− 𝑥𝐼)(𝑥− 𝑥𝐼𝐼)(𝑥− 𝑥𝐼𝐼𝐼)(𝑥− 𝑥𝐼𝑉 ),

where 𝜓 is also a quadratic polynomial in 𝑥 and 𝑎0 is a negative constant.
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Elliptic functions and addition theorems. Using the theory of elliptic
functions heavily and skillfully, as presented in [61], Demchenko inverses the inte-
grals (2.23) and (2.28). He uses the Weierstrass elliptic functions, ℘(𝑧), 𝜁(𝑧), and
𝜎(𝑧). The basic definitions and important identities can be found, for example,
in [1], to list a source more modern than [61]. The addition theorem for elliptic
functions, in particular for the Weierstrass function, played an important role.

Theorem 2.1 (Addition theorem). The Weierstrass function satisfies the fol-
lowing addition relation:

℘(𝑢+ 𝜁) + ℘(𝑢) + ℘(𝜁) =
1

4

(︁℘′(𝑢)− ℘′(𝜁)

℘(𝑢)− ℘(𝜁)

)︁2

.

Some other typical identities are:

℘′(𝜁)
℘′(𝑢)− ℘′(𝜁)

℘(𝑢)− ℘(𝜁)
= ℘′′(𝜁)− 2(℘(𝑢)− ℘(𝜁))(℘(𝑢+ 𝜁)− ℘(𝜁)),

℘(𝑢)− ℘(𝑣) = −𝜎(𝑢− 𝑣)𝜎(𝑢+ 𝑣)

𝜎(𝑢)2𝜎(𝑣)2
,

℘′(𝑢)

℘(𝑢)− ℘(𝑣)
= 𝜁(𝑢− 𝑣) + 𝜁(𝑢+ 𝑣)− 2𝜁(𝑢).

Along with addition formulae for elliptic functions, Demchenko also used the
Abel theorem for elliptic function, stating that the sum of zeros of an elliptic
function equals the sum of poles (modulo the lattice which defines the underlying
elliptic curve).

Inversion of elliptic integrals. In order to integrate the equation (2.23),
Demchenko used an approach explained in [61], which is based on simultaneous
parameterizations of the square of the polynomial 𝑋 of degree four in 𝑥 and the
variable 𝑥 in terms of elliptic functions of the same argument 𝑢. To that end, let
us denote

2𝑦 =
℘′(𝑢)− ℘′(𝜁)

℘(𝑢)− ℘(𝜁)
.

Using the Addition Theorem 2.1 and formulae (2.23) and (2.28), one gets

𝑦2 − 3℘(𝜁) = (℘(𝑢)− ℘(𝜁)) + (℘(𝑢+ 𝜁)− ℘(𝜁)),

and
℘′′(𝜁)− 2𝑦℘′(𝜁) = 2(℘(𝑢)− ℘(𝜁))(℘(𝑢+ 𝜁)− ℘(𝜁)).

Let us introduce the polynomial 𝑌 of degree four in 𝑦 as:

𝑌 = (𝑦 − 3℘(𝜁))2 + 2(2𝑦℘′(𝜁)− ℘′′(𝜁).

From the above formula it follows that

𝑌 = (℘(𝑢+ 𝜁)− ℘(𝑢))2.

Thus: √
𝑌 = ℘(𝑢+ 𝜁)− ℘(𝑢) and

𝑌 = 𝑦4 − 6𝑦2℘(𝜁) + 4𝑦℘′(𝜁) + 9℘(𝜁)− 2℘′′(𝜁).
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One can apply the above considerations to an arbitrary polynomial 𝑋 of degree
four in 𝑥:

𝑋(𝑥) = 𝑎0𝑥
4 + 4𝑎1𝑥

3 + 6𝑎2𝑥
2 + 4𝑎3𝑥+ 𝑎4.

To eliminate the second term with 𝑥3, one substitutes the variable 𝑥 = 𝑦 + ℎ,
i.e. 𝑥 = 𝑦 − 𝑎1/𝑎0. One gets

℘(𝜁) =
𝑎1

2 − 𝑎0𝑎2
𝑎02

, ℘′(𝜁) =
𝑎0

2𝑎3 − 3𝑎0𝑎1𝑎2 + 2𝑎31
𝑎30

and
𝑥 = −𝑎1

𝑎0
+

1

2

℘′(𝑢)− ℘′(𝜁)

℘(𝑢)− ℘(𝜁)
,

√
𝑋 =

√
𝑎0(−℘(𝑢+ 𝜁) + ℘(𝑢)).

From Addition Theorem 2.1, it also follows that

−℘(𝑢+ 𝜁) + ℘(𝑢) =
1

2

𝑑

𝑑𝑢

℘′(𝑢)− ℘′(𝜁)

℘(𝑢)− ℘(𝜁)
,

and √
𝑋 =

√
𝑎0
𝑑𝑥

𝑑𝑢
.

Finally,
𝑢

√
𝑎0

=

∫︁
𝑑𝑥√
𝑋
.

2.8. Back to the Demchenko case. In general, the polynomial 𝑋 can have
zero, two, or four real roots. The first case would not produce any real motion and
Demchenko did not consider it.

In the case of four real roots, ordered 𝑥𝐼 > 𝑥𝐼𝑉 > 𝑥𝐼𝐼𝐼 > 𝑥𝐼𝐼 , the motion is
possible for 𝑥 ∈ (𝑥𝐼 , 𝑥𝐼𝑉 ) or 𝑥 ∈ (𝑥𝐼𝐼𝐼 , 𝑥𝐼𝐼). Without losing generality, Demchenko
works with the first case: 𝑥 ∈ (𝑥𝐼 , 𝑥𝐼𝑉 ). In the case of two real roots, he again
denotes them as 𝑥𝐼 > 𝑥𝐼𝑉 . The trajectory of the point 𝑀 on the mobile sphere
goes between the parallels 𝑢𝐼 and 𝑢𝐼𝑉 , which it touches alternately. The distance
between two consecutive points of contact is constant. Demchenko distinguishes
three cases:

1) The polynomial 𝜑(𝑥) has no roots in the interval (𝑥𝐼 , 𝑥𝐼𝑉 ). The situation
in this case is presented as curve 𝐴, see Figure 2.

2) The polynomial 𝜑(𝑥) has one root in the interval (𝑥𝐼 , 𝑥𝐼𝑉 ). The situation
in this case is presented as curve 𝐵, see Figure 3.

3) The polynomial 𝜑(𝑥) has two roots in the interval (𝑥𝐼 , 𝑥𝐼𝑉 ). The situation
in this case is presented as curves 𝐶, 𝐶1 and 𝐶2, see Figures 4 and 5.

The trajectories of the point 𝑀 on the fixed sphere are similar, where the
number of roots of the polynomial 𝐹 (𝑥) in the interval (𝑥𝐼 , 𝑥𝐼𝑉 ) now discriminates
cases 𝐴, 𝐵, and 𝐶.

There are special cases of curves if 𝑥𝐼 or 𝑥𝐼𝑉 coincides with one of the roots
of the polynomial 𝜓(𝑥) or is equal to ±1. If 𝑥𝐼 or 𝑥𝐼𝑉 coincides with one of the
roots of the polynomial 𝜓(𝑥), then the curves on the movable and fixed sphere have
the form 𝐷: 𝐷1, see Figure 6, 𝐷2 see Figure 7, and 𝐷3, see Figure 8. If, however,
𝑥𝐼 = 1 or 𝑥𝐼𝑉 = −1, the curves representing the motion of the point 𝑀 on the
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Figure 2. Demchenko: Figure 4, p. 53: curve 𝐴.

Figure 3. Figure 5, p. 53: curve 𝐵.

Figure 4. Demchenko: Figure 6, p. 53: curve 𝐶1.

Figure 5. Demchenko: Figure 7, p. 53: curve 𝐶2.

movable sphere are presented as 𝐸1, see Figure 9, and 𝐸2, see Figure 10. In these
cases the curves on the fixed sphere do not possess singularities.

2.9. Special Solutions. The last chapter is devoted to particular cases and
particular solutions. These considerations reduce to more elementary situations
than the general ones or to approximate formulae. Demchenko heavily used the
capital four-volume treatise of dynamics of the top by Felix Klein and Arnold
Sommerfeld [70]. Demchenko establishes four classes of particular motion. In each
class, he also resolves the issue of stability.

The classes are:
1) Regular precessions: they are possible. The curves which 𝑀 describes on

both fixed and movable spheres coincide with parallels. The precession is
stable if

𝜕2𝑋

𝜕𝑥𝐼2
< 0,
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Figure 6. Demchenko: Figure 8, p. 56: curve 𝐷1.

Figure 7. Demchenko: Figure 9, p. 56: curve 𝐷2.

Figure 8. Demchenko: Figure 10, p. 57: curve 𝐷3.

Figure 9. Demchenko: Figure 11, p. 57: curve 𝐸1.

and unstable if
𝜕2𝑋

𝜕𝑥𝐼2
> 0.

In the cases
𝜕2𝑋

𝜕𝑥𝐼2
= 0,

the stable situation corresponds to

𝜕3𝑋

𝜕𝑥𝐼3
= 0,



DEMCHENKO’S NONHOLONOMIC CASE OF A GYROSCOPIC BALL 275

Figure 10. Demchenko: Figure 12, p. 58: curve 𝐸2.

and the unstable situation corresponds to
𝜕3𝑋

𝜕𝑥𝐼3
̸= 0.

2) Pseudo-regular precessions are possible if the rotations of the gyroscope
are much bigger than the initial rotations 𝑠0, 𝜏0 of the gyroscopic ball.
These precessions are always stable.

3) Stationary motions are possible. The trajectories of the point 𝑀 consist
of a single point both on movable and fixed spheres. The angular velocity
of the ball is constant and the orientation of the axis of the gyroscope is
constant. Such motion is always stable.

4) Rolling of an ordinary ball, when the gyroscope stays at rest.
The last Subchapter 6.7 is devoted to the remarkable trajectories, the notion

introduced by Painlevé [84] and Bilimović [13]. These are trajectories independent
of the initial energy. A detailed analysis shows that in the dynamics of a gyroscopic
ball rolling without sliding over a sphere such remarkable trajectories exist. These
are regular precessions when the axis of the gyroscope rests parallel to the fixed
vector of the moment of the gyroscopic ball with respect to the point 𝑀 .

3. V. S. Zhardecki, K. P. Voronec, the Paris period and fluid mechanics

A few months before Demchenko, another immigrant from Russia, Viacheslav
Sigmundovich Zhardecki (1896–1962) defended his thesis [103] also on rigid body
dynamics, having Anton Bilimović as the advisor and Milutin Milanković as a
co-signatory of the report. The Zhardecki family belongs to the Polish nobility.
Viacheslav knew Bilimović from their time in Odessa and at the Novorossisk Uni-
versity. In Belgrade he was also influenced by Milanković, a notable geoscientist
and mathematician. Thus, later on, Zhardecki shifted his interests more toward
geoscience and obtained remarkable results, see, for example, [63–65]. In 1943,
during the German occupation of Belgrade, Zhardecki refused to serve at the re-
formed University. As a consequence, he was retired at the age of 48. He managed
to move to Austria in 1944 and in 1946–47 he served as Acting Director of the
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Institute of Physics and Astronomy in Graz. During that period he got experimen-
tal confirmation of his theory of formation of continents and moved further to the
US, see [16]. His son, Oleg, who became a scientist himself left interesting notes
about his family and the dramatic time of their emigration from Russia, see [104].

After defending his thesis, V. Demchenko taught mathematics in Subotica, a
city 200 km north of Belgrade. His father, Grigorij Vasilievich Demchenko was a
Professor of Law School there, and served as Dean of the School 1929–30. Both
the father and the son were delegates of the Congress of Russians from Abroad in
Paris in 1926, as representatives of the Yugoslav Committee, [48,86]. The same
year, Bilimović and Demchenko reacted together to the paper [89] of the notable
Bulgarian scientist Ivan Cenov and indicated three papers of P. Voronec [93–95],
three papers of Bilimović [9,11,13] and the doctoral thesis of Demchenko [35] as
relevant and a source of the results close to those presented in [89]. Their remark
was published in a Liouvile’s journal editorial comment [85].

Around that time, Vasilije moved to Paris. Vasilije Demchenko, now as Basile
Demtchenko, defended his second doctoral dissertation in mathematical sciences
in Paris in 1928. He switched his field from nonholonimic to fluid mechanics.
The thesis was entitled “I. Sur les cavitations solitaires dans un liquid infini. II.
Sur l’influence des bords sur mouvement d’un corps solide dans une liquide” [36]
It was defended on June 2 with the committee consisting of three major French
mathematicians, Paul Painlevé (1863–1933), Henri Villat (1879–1972), and Paul
Montel (1876–1975). The thesis was completed under the direction of Painlevé
and was dedicated to Peter Voronec, the teacher: “À mon cher et regretté Maitre,
Pierre Voronetz.” Demchenko’s work in Paris was also associated with the group of
the renowned expert in hydro and aerodynamics, D. P. Ryabushinsky (1882–1962),
see [2]. Some of the notable works of Demchenko include [37–39].

Vasilije Demchenko was an invited speaker at the International Congresses
of Mathematicians [62] in Bologna 1928 and Zurich 1932. Two members of his
Belgrade thesis committee, Bilimović and Petrović, were also invited speakers at
the same Congresses. In addition, Petrović was also an invited speaker in Rome
1908, Cambridge 1912, and Toronto 1924. (Demchenko’s advisor from Paris, P.
Painlevé was a plenary speaker in Heidelberg 1904.)

There is an interesting parallel between Demchenko and Konstantin Voronec,
the above mentioned son of P. Voronec. Konstantin defended his doctoral dis-
sertation in Belgrade in 1930 [97], having the same committee as Demchenko’s
thesis, Bilimović, Milanković, Petrović. The Voronec thesis was very much influ-
enced by Demchenko’s thesis. After the defense, Konstantin also moved to Paris
and switched to fluid mechanics too. He also defended his second doctoral thesis
in Paris [98, 99] see [48, 87]. In his second thesis, Voronec was again influenced
by Demchenko, this time by [37]. Demchenko and Voronec worked together in an
institute for fluid mechanics within the French Ministry of Air (Minister̀e de l’Air)
in Paris. They also published a joint monograph in 1939 [40].
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4. Demchenko’s PhD thesis and contemporary nonholonomic
mechanics

The doctoral dissertation of Tatomir Andjelić can be seen as one of the impor-
tant links between the works of Voronec, Bilimović, and Demchenko and contem-
porary science, [2]. The thesis was completed just before the Second Word War,
but was defended after the war, in 1946. That was one more example of the prin-
ciple adopted by many notable Serbian scientists who did not participate in the
university matters during the German occupation. Although formally Bilimović
did not serve as a committee member, Andjelić made it clear that the problem was
posed by Bilimović and written under his guidance. He studied application of the
Voronec principle to the problem of motion of a nonholonomic system placed in an
incompressible fluid.

An important reference in nonholonomic mechanics after the Second World War
is the monograph by Neimark and Fufaev [82]. There is a whole chapter devoted
to the Voronec and Chaplygin equations. Among others, the monograph referred
to several contributions of members of the Bilimović school [3,8–12,90,91].

Let us note that the Chaplygin systems have a natural geometrical frame-
work – the nonholonomic constraints define connections on principal bundles (see
Koiler [71]). On the other hand, Bloch, Krishnaprasad, Marsden, and Murray [15]
incorporated nonholonomic systems into the geometrical framework of the Ehres-
mann connections. It was pointed out in Bakša [6] that the equations used in [15]
are literally the same as the original Voronec equations [93]. The same year de Leon
also referred to the Voronec equations in [76]. Now we can say that the Voronec
equations, together with the Chaplygin equations and the equations of nonholo-
nomic systems written in terms of quasi-velocities, known as the Euler–Poincaré–
Chetayev–Hamel equations, form the central tools in the study of nonholonomic
systems (e.g., see [15,45,46,82,102]).

Consider a Lagrangian nonholonomic system (𝑄,𝐿,𝒟) where the constraints
define a nonintegrable distribution 𝒟 of the tangent bundle 𝑇𝑄, i.e., the constraints
are homogeneous and do not depend on time, and the Lagrangian is the difference
of the kinetic and the potential energy 𝐿(𝑞, 𝑞) = 𝑇 (𝑞, 𝑞)− 𝑉 (𝑞).

Further, we assume that 𝑄 has a structure of the fiber bundle 𝜋 : 𝑄 → 𝑆 over
the base space 𝑆 and that 𝒟 is transverse to the fibers of 𝜋:

𝑇𝑞𝑄 = 𝒟𝑞 ⊕ 𝒱𝑞, 𝒱𝑞 = ker 𝑑𝜋(𝑞).

The space 𝒱𝑞 is called the vertical space at 𝑞. The distribution 𝒟 can be seen
as the kernel of a vector-valued one form 𝐴 on 𝑄, which defines the Ehresmann
connection, which satisfies

(i) 𝐴𝑞 : 𝑇𝑞𝑄→ 𝒱𝑞 is a linear mapping, 𝑞 ∈ 𝑄;
(ii) 𝐴 is a projection: 𝐴(𝑋𝑞) = 𝑋𝑞, for all 𝑋𝑞 ∈ 𝒱𝑞.

The distribution 𝒟 is called the horizontal space of the Ehresmann connection
𝐴. By𝑋ℎ and𝑋𝑣 we denote the horizontal and the vertical component of the vector
field 𝑋 ∈ X(𝑄). The curvature 𝐵 of the connection 𝐴 is a vertical vector-valued
two-form defined by

𝐵(𝑋,𝑌 ) = −𝐴([𝑋ℎ, 𝑌 ℎ]).
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In the local coordinates, we have

𝜋 : (𝑞1, . . . , 𝑞𝑛, 𝑞𝑛+1, . . . , 𝑞𝑛+𝑘) ↦−→ (𝑞1, . . . , 𝑞𝑛),

𝐴 =

𝑘∑︁
𝜈=1

𝜔𝜈 𝜕

𝜕𝑞𝑛+𝜈
, 𝜔𝜈 = 𝑑𝑞𝑛+𝜈 −

𝑛∑︁
𝑖=1

𝑎𝜈𝑖𝑑𝑞𝑖,

𝑋ℎ =

(︂ 𝑛+𝜈∑︁
𝑙=1

𝑋𝑙
𝜕

𝜕𝑞𝑙

)︂ℎ

=

𝑛∑︁
𝑖=1

𝑋𝑖
𝜕

𝜕𝑞𝑖
+

𝑘∑︁
𝜈=1

𝑛∑︁
𝑖=1

𝑎𝜈𝑖𝑋𝑖
𝜕

𝜕𝑞𝑛+𝜈
,

𝑋𝑣 =

(︂ 𝑛+𝜈∑︁
𝑙=1

𝑋𝑙
𝜕

𝜕𝑞𝑙

)︂𝑣

=

𝑘∑︁
𝜈=1

(︂
𝑋𝑛+𝜈 −

𝑛∑︁
𝑖=1

𝑎𝜈𝑖𝑋𝑖

)︂
𝜕

𝜕𝑞𝑛+𝜈
,

𝐵

(︂
𝜕

𝜕𝑞𝑖
,
𝜕

𝜕𝑞𝑗

)︂
=

𝑘∑︁
𝜈=1

𝐵𝜈
𝑖𝑗

𝜕

𝜕𝑞𝑛+𝜈
, 𝑖, 𝑗 = 1, . . . , 𝑛,

where 𝐵𝜈
𝑖𝑗 = 𝐴

(𝜈)
𝑖𝑗 in the Voronec equations (2.11). Also, in the case when the

generalized forces 𝑄𝑠, 𝑠 = 1, . . . , 𝑛+ 𝑘 are potential: 𝑄𝑠 = −𝜕𝑉 /𝜕𝑞𝑠, the Voronec
equations (2.11) take the form:

(4.1)
𝑑

𝑑𝑡

𝜕𝐿𝑐

𝜕𝑞𝑖
=
𝜕𝐿𝑐

𝜕𝑞𝑖
+

𝑘∑︁
𝜈=1

𝑎𝜈𝑖
𝜕𝐿𝑐

𝜕𝑞𝑛+𝜈
+

𝑘∑︁
𝜈=1

𝑛∑︁
𝑗=1

𝜕𝐿

𝜕𝑞𝑛+𝜈
𝐵𝜈

𝑖𝑗𝑞𝑗 (𝑖 = 1, . . . , 𝑛),

where 𝐿𝑐 = 𝐿(𝑞, 𝑞ℎ) is the constrained Lagrangian, i.e., 𝐿𝑐 = Θ−𝑉 in Demchenko’s
notation. The Voronec principle (2.12) for the equations (4.1) in an invariant form
can be expressed as (see [15]):

(4.2) 𝛿𝐿𝑐 = F𝐿(𝐵(𝑞, 𝛿𝑞))

for all virtual displacements

𝛿𝑞 =

𝑛+𝑘∑︁
𝑠=1

𝛿𝑞𝑠
𝜕

𝜕𝑞𝑠
∈ 𝒟𝑞.

Here 𝛿𝐿𝑐 is the variational derivative of the constrained Lagrangian along the vari-
ation 𝛿𝑞 and F𝐿 is the fiber derivative of 𝐿:

𝛿𝐿𝑐 =

𝑛+𝑘∑︁
𝑠=1

(︁𝜕𝐿𝑐

𝜕𝑞𝑠
− 𝑑

𝑑𝑡

𝜕𝐿𝑐

𝜕𝑞𝑠

)︁
𝛿𝑞𝑠, F𝐿(𝐵(𝑞, 𝛿𝑞)) =

𝑘∑︁
𝜈=1

𝜕𝐿

𝜕𝑞𝑛+𝜈
𝐵𝜈(𝑞, 𝛿𝑞),

In the case when the constraints are nonhomogeneous and time dependent
(2.10), the coefficients 𝐴(𝜈)

𝑖𝑗 , 𝐴(𝜈)
𝑖 can also be interpreted as the component of the

curvature of the Ehresmann connection of the fiber bundle 𝜋 : 𝑄×R → 𝑆 ×R (see
Bakša [6]).

Assume that the fibration 𝜋 : 𝑄 → 𝑆 is determined by a free action of a Lie
group𝐺 on𝑄 (𝑆 = 𝑄/𝐺) and that the constraint distribution 𝒟 and the Lagrangian
𝐿 = 𝑇−𝑉 are 𝐺–invariant. Then 𝐴 is a principal connection and the nonholonomic
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system (4.2) is 𝐺–invariant and reduces to the tangent bundle of the base manifold
𝑆. The equations take the form

(4.3) 𝛿𝐿red =

𝑛∑︁
𝑖=1

(︁𝜕𝐿red

𝜕𝑥𝑖
− 𝑑

𝑑𝑡

𝜕𝐿red

𝜕�̇�𝑖

)︁
𝛿𝑥𝑖 = 𝐽𝐾(�̇�, 𝛿𝑥) for all 𝛿𝑥 ∈ 𝑇𝑥𝑆,

where the reduced Lagrangian 𝐿red is obtained from the constrained Lagrangian
𝐿𝑐 by the identification 𝑇𝑆 = 𝒟/𝐺, and 𝐽𝐾(𝑋,𝑌 ) is induced by the right hand
side of (4.2).

The system (𝑄,𝐿,𝒟, 𝐺) is referred to as a 𝐺–Chaplygin system, as a general-
ization of the classical Chaplygin systems with Abelian symmetries [5,32,34,59,
71,82,88].

Demchenko noticed that Voronec had derived his principle in order to relate
the nonholonomic systems to the Hamiltonian variational principle of least action
(see [35, pages 16–19]). Obviously, Voronec and his followers were aware of the fact
that the equations were not variational, or, in modern terminology, that they were
not Hamiltonian. However, as it was pointed out by Chaplygin [34], some systems
have an invariant measure, which puts them rather close to Hamiltonian systems.
The existence of an invariant measure for various nonholomic problems has been
well studied (e.g., see [50–52, 54, 67, 72, 92, 101]). A closely related problem is
the Hamiltonization of nonholonomic systems (e.g., see [7, 18, 20, 22, 26, 28, 32,
34, 46, 46, 53, 88]). Chaplygin was also one of the first who considered a time
reparameterization in order to transform nonholonomic systems to the Hamiltonian
form [34]. In the case of integrability, the dynamics over regular invariant 𝑚–
dimensional tori, in the original time, has the form

(4.4) �̇�1 = 𝜔1/Φ(𝜙1, . . . , 𝜙𝑚), . . . , �̇�𝑚 = 𝜔𝑚/Φ(𝜙1, . . . , 𝜙𝑚), Φ > 0.

Also, after [33], one of the most famous solvable problems in nonholonomic me-
chanics, describing the rolling without slipping of a balanced ball over a horizontal
surface, is referred to as the Chaplygin ball, see [4,23,26,73]. On the other hand,
the rolling without slipping of the Chaplygin ball over a sphere generically is not
integrable. The only known integrable case is given by Borisov and Fedorov [21].
Let 𝑅2, 𝑚, and I = diag(𝐼1, 𝐼2, 𝐼3) be the radius, mass and the inertia operator of
the ball B, and let 𝑅1 be the radius of the fixed sphere S. There are three possible
configurations:

(i) rolling of B over the outer surface of S;
(ii) rolling of B over the inner surface of S (𝑅1 > 𝑅2);
(iii) rolling of B over the outer surface of S, but S is within B (𝑅1 < 𝑅2, in

this case, the rolling ball B is actually a spherical shell).

Let

𝜖 =
𝑅1

𝑅1 ±𝑅2
,

where we take “+” for the case (i) and “−” in the cases (ii) and (iii) and let
𝐷 = 𝑚𝑅2

2. The equations of motion in the frame attached to the ball can be
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written in the form

(4.5) Ġ = G× 𝜔, �̇� = 𝜖𝛾 × 𝜔,

where G = I𝜔 +𝐷𝜔 −𝐷(𝜔, 𝛾)𝛾 = I𝜔 −𝐷(𝜔, 𝛾)𝛾 is the angular momentum of the
ball with respect to the point of contact, and 𝛾 is the unit normal to the sphere S at
the contact point. Here I = I+𝐷E, E = diag(1, 1, 1). When 𝑅1 tends to infinity, 𝜖
tends to 1, 𝛾 tends to the unit vector that is constant in the fixed reference frame.
This way we obtain the equations of motion of the Chaplygin ball rolling over the
plane orthogonal to 𝛾.

In the space R6(𝜔, 𝛾) the system has an invariant measure with the density

(4.6) 𝜇(𝛾) =
√︀
(𝛾 −𝐷I−1𝛾, 𝛾),

the expression given by Chaplygin for 𝜖 = 1 [33], and by Yaroshchuk for 𝜖 ̸= 1 [100].
Also, the system (4.5) always has three integrals

𝐹1 = (𝛾, 𝛾) = 1, 𝐹2 = 1
2 (G, 𝜔), 𝐹3 = (G,G).

For 𝜖 = 1, there is a fourth first integral 𝐹4 = (G, 𝛾). The problem is integrable
by the Euler–Jacobi theorem (see [4, 73]): the phase space is almost everywhere
foliated by two-dimensional invariant tori with quasi-periodic, non-uniform motion
(4.4) (see Chaplygin [33]). Moreover, Borisov and Mamaev proved that the system
(4.5) is Hamiltonizable with respect to a certain nonlinear Poisson bracket on R6

( [22], see also [7,20,26,28]).
Remarkably, for 𝜖 = −1 (the case (iii) with 𝑅2 = 2𝑅1) Borisov and Fedorov

(see [21]) found an integrable case with the following fourth first integral

𝐹4 = (𝐼2 + 𝐼3 − 𝐼1 +𝐷)G1𝛾1 + (𝐼3 + 𝐼1 − 𝐼2 +𝐷)G2𝛾2 + (𝐼1 + 𝐼2 − 𝐼3 +𝐷)G3𝛾3.

The system is integrated on an invariant hypersurface 𝐹−1
4 (0) [25]. Its topological

analysis is given in [27].
One can consider the additional nonholonomic constraint (𝜔, 𝛾) = 0 describing

the no-twisting condition: the ball B does not rotate around the normal at the
contact point (the so called rubber Chaplygin ball). Then the momentum with
respect to the contact point can be expressed as G = I𝜔 + 𝐷𝜔 = I𝜔, and the
equations take the form

Ġ = G× 𝜔 + 𝜆𝛾, �̇� = 𝜖𝛾 × 𝜔, (𝜔, 𝛾) = 0,

where the Lagrange multiplier 𝜆 = −(G, I−1(G × 𝜔))/(𝛾, I−1𝛾) is determined by
differentiation of the constraint (𝜔, 𝛾) = 0. The system has an invariant measure
with the density 𝜇𝜖(𝛾) = (I−1𝛾, 𝛾)

1
2𝜖 (see [46] for 𝜖 = 1 and [47] for 𝜖 ̸= 1). Apart

from the integrability of the rolling over a horizontal plane (𝜖 = 1) [46], as in
the case of non-rubber rolling, Borisov and Mamaev proved the integrability for
𝜖 = −1 [24]. Note that for 𝜖 = 1, the above equations coincide with the equations
of nonholonomic rigid body motion studied by Veselov and Veselova [92].

The problem is Hamiltonizable for all 𝜖 [46,47]. On the other hand, the rubber
rolling of the ball where the mass center does not coincide with the geometrical cen-
ter over a horizontal plane provides an example of the system having the following
interesting property (see [19]). The appropriate phase space is foliated on invariant



DEMCHENKO’S NONHOLONOMIC CASE OF A GYROSCOPIC BALL 281

tori, such that the foliation is isomorphic to the foliation of the integrable Euler
case of the rigid body motion about a fixed point, but the system itself does not
have an analytic invariant measure and is not Hamiltonizable.

The gyroscopic generalizations of the mentioned Chaplygin ball problems are
also well studied. Markeev proved that the addition of a gyroscope to the Chaplygin
ball problem of rolling of a dynamically non-symmetric ball without slipping over
a plane remains integrable [77]. As in Demchenko’s thesis described in Sections
2.5 and 2.6, the addition of a gyroscope is equivalent to the addition of a constant
angular momentum 𝜅, directed as the axis of the gyroscope, to G (with the new
inertia operator described in Sections 2.5 and 2.6). In the above notations, we
can write the equations of the Chaplygin ball with the gyroscope rolling without
slipping over the

Ġ = (G+ 𝜅)× 𝜔, �̇� = 𝜖𝛾 × 𝜔.

When 𝜖 = 1, we have the Markeev integrable case [77]. The system has an invariant
measure with the same density (4.6) and four first integrals

𝐹1 = (𝛾, 𝛾) = 1, 𝐹2 = 1
2 (G, 𝜔), 𝐹3 = (G+ 𝜅,G+ 𝜅), 𝐹4 = (G+ 𝜅, 𝛾).

The analysis of the bifurcation diagram and the topology of the phase space of the
Chaplygin ball with the gyroscope case is studied in [78] and [106], respectively.

The functions 𝐹1, 𝐹2, and 𝐹3 are integrals for all 𝜖. When the ball is dy-
namically symmetric with the gyroscope directed along the axis of the symmetry,
it is the Bobylev–Zhukovsky case for 𝜖 = 1 [17, 105], while when 𝜖 ̸= 1 and the
Zhukovsky condition (2.16) on the moments of inertia of the ball and the gyro-
scope are satisfied, we obtain the Demchenko integrable case. The integrability
without the Zhukovsky condition for the dynamically symmetric ball can be found
in Borisov and Mamaev [23]. Existence of an integrable case for a dynamically
nonsymmetric ball with a gyroscope rolling over a sphere is still an open problem.

The Voronec approach to the problem of rolling bodies given in [95,96] can
be found also in the recent papers [31,74,75]. In [74,75], the problem of rolling
without sliding of a rotationally symmetric body on a fixed sphere is studied. It
is assumed that the resultant of active forces is directed from the center of masses
of the body to the center of a sphere. The problem reduces to a linear differential
equation of second order. In a special case of motion of the nonhomogeneous
dynamically symmetric ball, they proved the existence of Liouvillian solutions.
In [31] the problem of rolling without slipping of a body with a gyroscope on a
moving sphere is considered. It is assumed that the central ellipsoid of the system
body + gyroscope is an ellipsoid of revolution. In a special case when the body is
a sphere, the motion of the contact point is determined by quadratures. Analysis
of trajectories of the contact point is given. This analysis, including pictures,
given in [31] is very similar to the analysis presented by Demchenko in [35], see
Figures 2–10.

Another line of current research is the application of the Voronec equations
(4.1), (4.2) and their reductions in the case of symmetries (4.3) to the study
of their multi-dimensional versions, describing motions of the 𝑛–dimensional ball
rolling without slipping (and twisting) over a hyperplane or a sphere in R𝑛 (see
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[49, 50, 52, 55–58, 66, 68, 69]). These examples, together with the classical one,
form a rich pool of nonholonomic systems. They motivate further study of the
geometry and dynamics of nonholonomic systems, including their integrabilty and
Hamiltonization.

There are very recent papers which are built on the results of Bilimović, e.g.
[29,30]. We hope that the current paper will further draw attention to the heritage
of the Bilimović scientific school and their contribution to nonholonomic mechanical
problems. Demchenko’s integrable case and his comprehensive analysis provided
in his doctoral thesis seem to be completely forgotten nowadays although still very
modern and deserve to be known by a wider community.
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Vujičić had passed away.

This research has been partially supported by the Mathematical Institute of
the Serbian Academy of Sciences and Arts and the Ministry of Education, Science,
and Technological Development of Serbia. The authors are grateful to the referee
for the useful remarks and suggestions and to Academician Vladan Djordjević for
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3. T. Angelitch, Über die bewegung starrer körper mit nicht-holonomen bindungen in einer
inkompressiblen flüssigkeit, Proceedings of the Inter. Congr. of Mathematicians, Amsterdam,
1954.

4. V. I. Arnold, V.V. Kozlov, A. I. Neishtadt, Mathematical Aspects of Classical and Celestial
Mechanics, Encylopaedia of Mathematical Sciences 3, Springer-Verlag, Berlin, 1989.
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Puiseux method for algebraic ordinary differential equations, Bull. Am. Math. Soc., New Ser.
57(2) (2020), 293–299.

45. K. Ehlers, J. Koiller, Cartan meets Chaplygin, Theor. Appl. Mech. 46(1) (2019), 15–46.
46. K. Ehlers, J. Koiller, R. Montgomery, P. Rios, Nonholonomic systems via moving frames:

Cartan’s equivalence and Chaplygin Hamiltonization, In: J. E. Marsden, T. S. Ratiu (eds),
The Breadth of Symplectic and Poisson Geometry, Prog. Math. 232, Birkhäuser Boston,
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ДЕМЧЕНКОВ НЕХОЛОНОМНИ СЛУЧАJ КОТРЉАЊА БЕЗ
КЛИЗАЊА ГИРОСКОПСКЕ ЛОПТЕ ПО СФЕРИ НА ОСНОВУ

ЊЕГОВЕ БЕОГРАДСКЕ ДОКТОРСКЕ ДИСЕРТАЦИJЕ ИЗ 1923.

Резиме. Представљамо интеграбилни нехолономски случаj котрљања без
клизања гироскопске лопте по сфери. Оваj случаj jе добио и детаљно проучио
Василиjе Демченко у своjоj докторскоj дисертациjи под руководством Антона
Билимовића, одбрањеноj на Универзитету у Београду 1923. Ови резултати су
непознати савременим истраживачима. Рад се заснива на Ноjмановим коорди-
натама и Вороњецовом принципу. Коришћењем напредне технике елиптичних
функциjа дата jе детаљна анализа кретања. Издвоjено jе неколико посебних
класа траjекториjа, укључуjући правилну и псеудо-регуларну прецесиjу. Опи-
сане су и такозване изванредне траjекториjе, коjе су увели Пол Пенлеве и Ан-
тон Билимовић. Историjски контекст и значаj резултата у савременоj механици
су детаљно представљени.
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