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Abstract. This paper considers the problem of modal analysis and finding
the closed-form solution to free vibrations of planar serial frame structures
composed of Euler–Bernoulli beams of variable cross-sectional geometric char-
acteristics in the case of axially functionally graded materials. Each of these
beams is performing coupled axial and bending vibrations, where coupling
occurs due to the boundary conditions at their joints. The numerical proce-
dure for solving the system of partial differential equations, after the separa-
tion of variables, is reduced to solving the two-point boundary value problem
of ordinary linear differential equations with nonlinear coefficients and linear
boundary conditions. In this case, it is possible to transfer the boundary con-
ditions and reduce the problem to the Cauchy initial value problem. Also, it
is possible to analyze the influence of different parameters on the structure
dynamic behavior. The method is applicable in the case of different boundary
conditions at the right and left ends of such structures, as illustrated by an
appropriate numerical example.

1. Introduction

Various engineering structures can be modeled as planar serial frame structures
which consist of a finite number of rigidly connected Euler–Bernoulli beams, with
different boundary conditions at the beginning and end of the beam. Due to the
boundary conditions at the beam joints, coupling occurs between axial and bending
vibrations although their differential equations are not coupled. In studying free
vibrations of such structures it is certainly of interest to provide an applicable
procedure that would be used for determining the natural frequencies, mode shapes,
as well as the response of such systems to initial disturbances.
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Paper [1] considers homogeneous beams of constant cross-sections within the
framework of planar serial frame structures, so that the authors were able to find an-
alytical solutions for appropriate partial differential equations of axial and bending
vibrations and analytical form of the frequency equation, which is relatively easy to
solve numerically. A more complex problem is discussed in [2], where elastic joints
are introduced at the joints of homogeneous beams of the constant cross-section,
while the solutions for equations are compared to the FEM analysis and experimen-
tal data. Paper [3] analyzes the portal frame structure, where mass discretization
was carried out and a model with a finite number of DOFs was created instead of
solving partial differential equations, and the results for such a model were verified
by FEM. Coupled partial differential equations are also analytically solved in [4]
in the case of planar multi-story frame structures. The authors of this paper man-
aged to extend the analytical procedures presented in their papers [5,6] to solving
the vibration problem of embedded rigid bodies to both the beams themselves and
the ends of the structure. The procedure for obtaining analytical solutions for the
governing equations of all sections of the structure depending on time is presented.
In particular, the case of equality of all adjacent natural frequencies is analyzed.

When a cross-section along the beam axis changes, in a general case, there are
no closed-form solutions for the system of differential equations, so they have to
be solved numerically, as will be done in this paper, or a model with a relatively
large number of DOFs has to be created by mass discretization. This conclusion
also applies to the case of nonhomogeneous, axially functionally graded materials
in which the material density and Young’s modulus of elasticity change along the
beam axis.

Crossing and veering phenomena can often occur in planar frame structures
[7–10]. A change in the parameters of frame structures (such as the length of
beams, angles between beams etc.) can lead to the intersect of the curves that show
changes in values of natural frequencies of a frame structure due to the change in
the observed structural parameter (the so-called crossing phenomena). Also, it may
happen that the curves closely converge mutually in the close vicinity of the values
of one structural parameter (the so-called veering phenomena). In this paper, we
examine the possibility of crossing and veering phenomena in the frame structures
here analyzed.

This paper is a continuation of the authors’ research studies reported in pa-
per [11] and doctoral dissertation [12], where they considered, among other things,
individual Euler–Bernoulli beams of axially functionally graded materials, which
are of variable cross-sectional characteristics and have complex boundary condi-
tions at their ends due to fixed bodies or elastic elements. In [11] axial and bend-
ing vibrations were solved separately, because there was no coupling between them,
whereas in [12] such coupling was analyzed including determination of the closed-
form solution. The mentioned procedure related to individual beams is extended
in this paper to planar serial frame structures. This extension is based on the use
of the Symbolic-Numeric Method of Initial Parameters (SNMIP) proposed in [11].
The advantage of the SNMIP in computing natural frequencies over the often used
dynamic stiffness matrix method [13–15] is observed through the fact that the
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SNMIP is not based on the use of frequency equations with transcendental func-
tions. This presents significant numerical simplification because the computation
of natural frequencies from frequency equations with transcendental functions of-
ten requires the application of special numerical procedures such as the well-known
Wittrick–Williams algorithm.

In Chapter 2 a coupled system of appropriate partial differential equations is
derived with contour and initial conditions, and a well-known variable separation
procedure and reduction to ordinary differential equations is conducted. Their
modal analysis is performed in Chapter 3, which also enables the analysis of the
influence of each parameter of the system on circular natural frequencies and mode
shapes. Chapter 4 is dedicated to deriving the orthogonality conditions of mode
shapes and determining the closed-form solution. The numerical example in Chap-
ter 5 is used to illustrate the mentioned procedure in the case of different boundary
conditions.

2. Problem statement

The paper considers planar serial frame structures, presented in Fig. 1, which
consist of 𝑛 Euler-Bernoulli beams of the known lengths 𝐿𝑖 and angles 𝛼𝑖 between
them.
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Figure 1. Planar serial frame structures with different boundary
conditions: a) clamped; b) pinned; c) free

Differential equations of each of the Euler–Bernoulli beams, which are si-
multaneously oscillating in the axial and bending directions, are of the following
form [16,17]:

𝜕

𝜕𝑧𝑖
[𝐹𝑇𝑖

(𝑧𝑖, 𝑡)]− 𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)
𝜕2𝑤𝑖(𝑧𝑖, 𝑡)

𝜕𝑡2
= 0,(2.1)
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𝜕

𝜕𝑧𝑖
[𝐹𝐴𝑖

(𝑧𝑖, 𝑡)]− 𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)
𝜕2𝑢𝑖(𝑧𝑖, 𝑡)

𝜕𝑡2
= 0, 𝑖 = 1, . . . , 𝑛,

where 𝑢𝑖(𝑧𝑖, 𝑡) and 𝑤𝑖(𝑧𝑖, 𝑡) are axial and transverse displacements, the material
density 𝜌𝑖(𝑧𝑖) in axially functionally graded materials is variable along the axis 𝑧𝑖
the cross-sectional area 𝐴𝑖(𝑧𝑖) is also variable, and 𝐹𝐴𝑖(𝑧𝑖, 𝑡) and 𝐹𝑇𝑖(𝑧𝑖, 𝑡) represent
axial and transverse forces:

𝐹𝐴𝑖
(𝑧𝑖, 𝑡) = 𝐸𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)

𝜕𝑢𝑖(𝑧𝑖, 𝑡)

𝜕𝑧𝑖
,

𝐹𝑇𝑖
(𝑧𝑖, 𝑡) =

𝜕𝑀𝐹𝑖
(𝑧𝑖, 𝑡)

𝜕𝑧𝑖
,

where 𝐸𝑖(𝑧𝑖) is variable Young’s modulus of elasticity, with the bending moment
given by the expression

𝑀𝐹𝑖(𝑧𝑖, 𝑡) = −𝐸𝑖(𝑧𝑖)𝐼𝑥𝑖(𝑧𝑖)
𝜕2𝑤𝑖(𝑧𝑖, 𝑡)

𝜕𝑧2𝑖
,

where 𝐼𝑥𝑖(𝑧𝑖) represents the cross-sectional area moment of inertia. Note that
differential equations can also be derived from a corresponding integro-differential
equation, as has already been done in the book by Professor Vujičić [18].

At the beam joints the following boundary conditions exist:

(2.2)

𝑢𝑖+1(0, 𝑡) = 𝑢𝑖(𝐿𝑖, 𝑡) cos𝛼𝑖 − 𝑤𝑖(𝐿𝑖, 𝑡) sin𝛼𝑖

𝑤𝑖+1(0, 𝑡) = 𝑢𝑖(𝐿𝑖, 𝑡) sin𝛼𝑖 + 𝑤𝑖(𝐿𝑖, 𝑡) cos𝛼𝑖

𝜕𝑤𝑖+1(0, 𝑡)

𝜕𝑧𝑖+1
=

𝜕𝑤𝑖(𝐿𝑖, 𝑡)

𝜕𝑧𝑖
𝐹𝐴𝑖+1(0, 𝑡) = 𝐹𝐴𝑖(𝐿𝑖, 𝑡) cos𝛼𝑖 − 𝐹𝑇𝑖(𝐿𝑖, 𝑡) sin𝛼𝑖

𝐹𝑇𝑖+1(0, 𝑡) = 𝐹𝐴𝑖(𝐿𝑖, 𝑡) sin𝛼𝑖 + 𝐹𝑇𝑖(𝐿𝑖, 𝑡) cos𝛼𝑖

𝑀𝐹𝑖+1
(0, 𝑡) = 𝑀𝐹𝑖

(𝐿𝑖, 𝑡)

At the left end of this complex structure, depending on whether the first beam
is: a) clamped, b) pinned, or c) free, the boundary conditions are of the following
form:

a) 𝑢1(0, 𝑡) = 0, 𝑤1(0, 𝑡) = 0,
𝜕𝑤1(0, 𝑡)

𝜕𝑧1
= 0

b) 𝑢1(0, 𝑡) = 0, 𝑤1(0, 𝑡) = 0, 𝑀𝐹1
(0, 𝑡) = 0

c) 𝐹𝐴1
(0, 𝑡) = 0, 𝐹𝑇1

(0, 𝑡) = 0, 𝑀𝐹1
(0, 𝑡) = 0.

The boundary conditions at the right end of the structure, which will be the subject
of consideration in the present paper, are of the form:

a) 𝑢𝑛(𝐿𝑛, 𝑡) = 0, 𝑤𝑛(𝐿𝑛, 𝑡) = 0,
𝜕𝑤𝑛(𝐿𝑛, 𝑡)

𝜕𝑧𝑛
= 0

b) 𝑢𝑛(𝐿𝑛, 𝑡) = 0, 𝑤𝑛(𝐿𝑛, 𝑡) = 0, 𝑀𝐹𝑛
(𝐿𝑛, 𝑡) = 0

c) 𝐹𝐴𝑛
(𝐿𝑛, 𝑡) = 0, 𝐹𝑇𝑛

(𝐿𝑛, 𝑡) = 0, 𝑀𝐹𝑛
(𝐿𝑛, 𝑡) = 0.
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Free vibrations of such a structure are considered under the following initial con-
ditions:

𝑢𝑖(𝑧𝑖, 0) = 𝑓𝑢𝑖
(𝑧𝑖),

𝜕𝑢𝑖(𝑧𝑖, 0)

𝜕𝑡
= ℎ𝑢𝑖

(𝑧𝑖),

𝑤𝑖(𝑧𝑖, 0) = 𝑓𝑤𝑖(𝑧𝑖),
𝜕𝑤𝑖(𝑧𝑖, 0)

𝜕𝑡
= ℎ𝑤𝑖(𝑧𝑖), 𝑖 = 1, . . . , 𝑛

The linear differential equations (2.1) are solved by the variable separation method
[9,10]:

𝑤𝑖(𝑧𝑖, 𝑡) = 𝑊𝑖(𝑧𝑖)𝑇 (𝑡), 𝑤𝐷𝑖
(𝑧𝑖, 𝑡) =

𝜕𝑊𝑖(𝑧𝑖, 𝑡)

𝜕𝑧𝑖
=

𝜕𝑊𝑖(𝑧𝑖)

𝜕𝑧𝑖
𝑇 (𝑡) = 𝑊𝑑𝑖

(𝑧𝑖)𝑇 (𝑡),

𝑢𝑖(𝑧𝑖, 𝑡) = 𝑈𝑖(𝑧𝑖)𝑇 (𝑡), 𝐹𝐴𝑖(𝑧𝑖, 𝑡) = 𝐹𝑎𝑖(𝑧𝑖)𝑇 (𝑡),

𝐹𝑇𝑖
(𝑧𝑖, 𝑡) = 𝐹𝑡𝑖(𝑧𝑖)𝑇 (𝑡), 𝑀𝐹𝑖

(𝑧𝑖, 𝑡) = 𝑀𝑓𝑖(𝑧𝑖)𝑇 (𝑡),

where the coupling between axial and bending vibrations under boundary condi-
tions (2.2) leads to the fact that the function of time 𝑇 (𝑡) is the same for both
types of vibrations in all beams, for which it holds

𝜕2𝑇 (𝑡)

𝜕𝑡2
= −𝜔2𝑇 (𝑡),

where 𝜔 is a circular natural frequency.
This way, a corresponding system of six linear ordinary differential equations

with variable coefficients can be written for each beam:

(2.3)

𝜕𝑈𝑖(𝑧𝑖)

𝜕𝑧𝑖
=

𝐹𝑎𝑖
(𝑧𝑖)

𝐸𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)
,

𝜕𝑊𝑖(𝑧𝑖)

𝜕𝑧𝑖
=𝑊𝑑𝑖

(𝑧𝑖),
𝜕𝑊𝑑𝑖

(𝑧𝑖)

𝜕𝑧𝑖
=

−𝑀𝑓𝑖(𝑧𝑖)

𝐸𝑖(𝑧𝑖)𝐼𝑥𝑖
(𝑧𝑖)

,

𝜕𝐹𝑎𝑖(𝑧𝑖)

𝜕𝑧𝑖
= −𝜔2𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)𝑈𝑖(𝑧𝑖),

𝜕𝐹𝑡𝑖(𝑧𝑖)

𝜕𝑧𝑖
= −𝜔2𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)𝑊𝑖(𝑧𝑖),

𝜕𝑀𝑓𝑖(𝑧𝑖)

𝜕𝑧𝑖
= 𝐹𝑡𝑖(𝑧𝑖),

while the boundary conditions at beam joints are:

(2.4)

𝑈𝑖+1(0) = 𝑈𝑖(𝐿𝑖) cos𝛼𝑖 −𝑊𝑖(𝐿𝑖) sin𝛼𝑖,

𝑊𝑖+1(0) = 𝑈𝑖(𝐿𝑖) sin𝛼𝑖 +𝑊𝑖(𝐿𝑖) cos𝛼𝑖

𝑊𝑑𝑖+1
(0) = 𝑊𝑑𝑖

(𝐿𝑖)

𝐹𝑎𝑖+1
(0) = 𝐹𝑎𝑖

(𝐿𝑖) cos𝛼𝑖 − 𝐹𝑡𝑖(𝐿𝑖) sin𝛼𝑖

𝐹𝑡𝑖+1(0) = 𝐹𝑎𝑖(𝐿𝑖) sin𝛼𝑖 + 𝐹𝑡𝑖(𝐿𝑖) cos𝛼𝑖

𝑀𝑓𝑖+1
(0) = 𝑀𝑓𝑖(𝐿𝑖),

at the left end:

(2.5)

a) 𝑈1(0) = 0, 𝑊1(0) = 0, 𝑊𝑑1
(0) = 0

b) 𝑈1(0) = 0, 𝑊1(0) = 0, 𝑀𝑓1(0) = 0

c) 𝐹𝑎1(0) = 0, 𝐹𝑡1(0) = 0, 𝑀𝑓1(0) = 0
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and at the right end:

(2.6)

a) 𝑈𝑛(𝐿𝑛) = 0, 𝑊𝑛(𝐿𝑛) = 0, 𝑊𝑑𝑛
(𝐿𝑛) = 0

b) 𝑈𝑛(𝐿𝑛) = 0, 𝑊𝑛(𝐿𝑛) = 0, 𝑀𝑓𝑛(𝐿𝑛) = 0

c) 𝐹𝑎𝑛(𝐿𝑛) = 0, 𝐹𝑡𝑛(𝐿𝑛) = 0, 𝑀𝑓𝑛(𝐿𝑛) = 0,

also linear. So, instead of numerically solving the system of 6𝑛 differential equations
(2.3) with the same number of boundary conditions (2.4)–(2.6), this enables us to
reduce the problem to numerical solving of the Cauchy problem [19]. Thereafter,
in each concrete case the frequency equation would be simply generated and solved,
and natural frequencies and mode shapes would be determined. That procedure is
presented in Chapter 3 of the paper.

Here, note that in a general case this problem needs to be numerically solved
but also solving the Cauchy problem, frequency equation, as well as calculating the
mode shapes is a part of standard numerical procedures that can be found in various
program packages. In this paper, our option was the package Mathematicar [20].

3. Modal analysis of coupled axial and bending vibrations

Considering the linearity (2.3)–(2.6), the solution can be sought, depending on
the value of the circular natural frequency 𝜔, as a linear form of three different
solutions for the system (2.3), (2.4):

𝑋𝑖(𝑧𝑖) = 𝐶1𝑋
1
𝑖 (𝑧𝑖) + 𝐶2𝑋

2
𝑖 (𝑧𝑖) + 𝐶3𝑋

3
𝑖 (𝑧𝑖),

where

𝑋𝑖(𝑧𝑖) = [𝑈𝑖(𝑧𝑖),𝑊𝑖(𝑧𝑖),𝑊𝑑𝑖
(𝑧𝑖), 𝐹𝑎𝑖

(𝑧𝑖), 𝐹𝑡𝑖(𝑧𝑖),𝑀𝑓𝑖(𝑧𝑖)]
𝑇

𝑋𝑘
𝑖 (𝑧𝑖) = [𝑈𝑘

𝑖 (𝑧𝑖),𝑊
𝑘
𝑖 (𝑧𝑖),𝑊

𝑘
𝑑𝑖
(𝑧𝑖), 𝐹

𝑘
𝑎𝑖
(𝑧𝑖), 𝐹

𝑘
𝑡𝑖(𝑧𝑖),𝑀

𝑘
𝑓𝑖(𝑧𝑖)]

𝑇 , 𝑘 = 1, 2, 3.

The solutions 𝑋𝑘
𝑖 (𝑧𝑖) are obtained by successive numerical solving of the system

(2.3) starting from the first beam, where the initial conditions 𝑋𝑘
1(0) must be

selected to satisfy the conditions (2.5). This can be done for the cases considered
herein, in the following manner:

a) 𝑋1
1(0) = [0, 0, 0, 1, 0, 0]𝑇 , 𝑋2

1(0) = [0, 0, 0, 0, 1, 0]𝑇 , 𝑋3
1(0) = [0, 0, 0, 0, 0, 1]𝑇

b) 𝑋1
1(0) = [0, 0, 1, 0, 0, 0]𝑇 , 𝑋2

1(0) = [0, 0, 0, 1, 0, 0]𝑇 , 𝑋3
1(0) = [0, 0, 0, 0, 1, 0]𝑇(3.1)

c) 𝑋1
1(0) = [1, 0, 0, 0, 0, 0]𝑇 , 𝑋2

1(0) = [0, 1, 0, 0, 0, 0]𝑇 , 𝑋3
1(0) = [0, 0, 1, 0, 0, 0]𝑇 .

For each of these solutions the boundary conditions (2.4) also hold, and they
can be written in the form:

(3.2) 𝑋𝑘
𝑖+1(0) = 𝐾𝑖𝑋

𝑘
𝑖 (𝐿𝑖),

where

𝐾𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos𝛼𝑖 − sin𝛼𝑖 0 0 0 0
sin𝛼𝑖 cos𝛼𝑖) 0 0 0 0
0 0 1 0 0 0
0 0 0 cos𝛼𝑖 − sin𝛼𝑖 0
0 0 0 − sin𝛼𝑖 cos𝛼𝑖 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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This set of Cauchy problems, considering that the form of differential equations
(2.3) for specified 𝜔 has a unique solution, can use the command NDSolve[. . . ]
in the package Mathematicar [20]. If these solutions are sought for different
values of 𝜔, the command ParametricNDSolve[. . . ,{𝜔 }] is available. However, only
solutions that satisfy boundary conditions at the right end of the structure (2.6)
are of interest, which leads to a homogeneous system of linear equations

(3.3) 𝐷(𝜔)𝐶 = 0, 𝐷(𝜔) =

⎡⎣𝑑11(𝜔) 𝑑12(𝜔) 𝑑13(𝜔)
𝑑21(𝜔) 𝑑22(𝜔) 𝑑23(𝜔)
𝑑31(𝜔) 𝑑32(𝜔) 𝑑33(𝜔)

⎤⎦ , 𝐶 =

⎡⎣𝐶1

𝐶2

𝐶3

⎤⎦ ,

where the matrix 𝐷(𝜔) in different cases of boundary conditions at the right end
is of the form:

a) 𝐷(𝜔) =

⎡⎣ 𝑈1
𝑛(𝐿𝑛) 𝑈2

𝑛(𝐿𝑛) 𝑈3
𝑛(𝐿𝑛)

𝑊 1
𝑛(𝐿𝑛) 𝑊 2

𝑛(𝐿𝑛) 𝑊 3
𝑛(𝐿𝑛)

𝑊 1
𝑑𝑛
(𝐿𝑛) 𝑊 2

𝑑𝑛
(𝐿𝑛) 𝑊 3

𝑑𝑛
(𝐿𝑛)

⎤⎦
b) 𝐷(𝜔) =

⎡⎣ 𝑈1
𝑛(𝐿𝑛) 𝑈2

𝑛(𝐿𝑛) 𝑈3
𝑛(𝐿𝑛)

𝑊 1
𝑛(𝐿𝑛) 𝑊 2

𝑛(𝐿𝑛) 𝑊 3
𝑛(𝐿𝑛)

𝑀1
𝑓𝑛
(𝐿𝑛) 𝑀2

𝑓𝑛
(𝐿𝑛) 𝑀3

𝑓𝑛
(𝐿𝑛)

⎤⎦
c) 𝐷(𝜔) =

⎡⎣𝐹 1
𝑎𝑛
(𝐿𝑛) 𝐹 2

𝑎𝑛
(𝐿𝑛) 𝐹 3

𝑎𝑛
(𝐿𝑛)

𝐹 1
𝑡𝑛(𝐿𝑛) 𝐹 2

𝑡𝑛(𝐿𝑛) 𝐹 3
𝑡𝑛(𝐿𝑛)

𝑀1
𝑓𝑛
(𝐿𝑛) 𝑀2

𝑓𝑛
(𝐿𝑛) 𝑀3

𝑓𝑛
(𝐿𝑛)

⎤⎦
The frequency equation now reads:

(3.4) 𝐹 (𝜔) = det(𝐷(𝜔)) = 0.

The function 𝐹 (𝜔) can also be graphically represented in a simple way, and
the finite number of its zeros 𝜔𝛼, 𝛼 = 1, . . . ,∞ can be numerically calculated
as well. The values of circular natural frequencies are matched by the solutions
𝑋𝑘

𝑖𝛼(𝑧𝑖) = [𝑈𝑘
𝑖𝛼(𝑧𝑖), 𝑊

𝑘
𝑖𝛼(𝑧𝑖), 𝑊

𝑘
𝑑𝑖𝛼

(𝑧𝑖), 𝐹
𝑘
𝑎𝑖𝛼

(𝑧𝑖), 𝐹
𝑘
𝑡𝑖𝛼(𝑧𝑖), 𝑀

𝑘
𝑓𝑖𝛼

(𝑧𝑖)]
𝑇 . A general

solution for the system (2.3) now becomes the sum of particular solutions

𝑋𝑖(𝑧𝑖) =

∞∑︁
𝛼=1

𝐶1𝛼𝑋
*
𝑖𝛼(𝑧𝑖)

where the functions of the mode shapes

𝑋*
𝑖𝛼(𝑧𝑖) = [𝑈*

𝑖𝛼(𝑧𝑖), 𝑊
*
𝑖𝛼(𝑧𝑖), 𝑊

*
𝑑𝑖𝛼

(𝑧𝑖), 𝐹
*
𝑎𝑖𝛼

(𝑧𝑖), 𝐹
*
𝑡𝑖𝛼(𝑧𝑖), 𝑀

*
𝑓𝑖𝛼(𝑧𝑖)]

𝑇

= 𝑋1
𝑖𝛼(𝑧𝑖) +

𝐶2𝛼

𝐶1𝛼
𝑋2

𝑖𝛼(𝑧𝑖) +
𝐶3𝛼

𝐶1𝛼
𝑋3

𝑖𝛼(𝑧𝑖)

are completely determined for each mode shape, because from the system (3.3) it
follows

𝐶2𝛼

𝐶1𝛼
=

𝑑21(𝜔𝛼)𝑑13(𝜔𝛼)− 𝑑11(𝜔𝛼)𝑑23(𝜔𝛼)

𝑑12(𝜔𝛼)𝑑23(𝜔𝛼)− 𝑑22(𝜔𝛼)𝑑13(𝜔𝛼)
,(3.5)

𝐶3𝛼

𝐶1𝛼
=

𝑑22(𝜔𝛼)𝑑11(𝜔𝛼)− 𝑑12(𝜔𝛼)𝑑21(𝜔𝛼)

𝑑12(𝜔𝛼)𝑑23(𝜔𝛼)− 𝑑22(𝜔𝛼)𝑑13(𝜔𝛼)
.
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If it is of interest to analyze the influence of some parameter 𝑝 on the dynamic
behavior of this structure, primarily on the values of its natural frequencies, this
procedure can be slightly modified and dependence of natural frequencies on that
parameter can be obtained. In that case, all numerical solutions would be sought in
the function of two parameters, 𝜔 and 𝑝, and the dependence sought would follow
from the frequency equation (3.4), which would now be of the form

(3.6) 𝐹 (𝜔, 𝑝) = det(𝐷(𝜔, 𝑝)) = 0

4. Orthogonality conditions of mode shapes and the closed-form
solution

Orthogonality conditions of the mode shapes can be found in the literature
[16,17] for a single body and separately for axial and bending vibrations. For the
needs of this paper, where coupling between axial and bending vibrations exists,
as well as a larger number of beams, the orthogonality conditions are somewhat
more complex. Here, we will describe the procedure which represents generalization
for the case of homogeneous bodies of a constant cross-section, as reported in our
paper [6].

Let 𝑈𝑖𝛼(𝑧𝑖) and 𝑊𝑖𝛼(𝑧𝑖) be the solutions corresponding to the circular natu-
ral frequency 𝜔𝛼 and let 𝑈𝑖𝛽(𝑧𝑖) and 𝑊𝑖𝛽(𝑧𝑖) correspond to the circular natural
frequency 𝜔𝛽 . Then, from differential equations (2.3), written for the case of the
mentioned natural frequencies, it follows

(𝜔2
𝛼 − 𝜔2

𝛽)

∫︁ 𝐿𝑖

0

𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)𝑈𝑖𝛼(𝑧𝑖)𝑈𝑖𝛽(𝑧𝑖)𝑑𝑧𝑖

=

∫︁ 𝐿𝑖

0

(︁
− 𝜕𝐹𝑎𝑖𝛼

(𝑧𝑖)

𝜕𝑧𝑖
𝑈𝑖𝛽(𝑧𝑖) +

𝜕𝐹𝑎𝑖𝛽
(𝑧𝑖)

𝜕𝑧𝑖
𝑈𝑖𝛼(𝑧𝑖)

)︁
𝑑𝑧𝑖

(𝜔2
𝛼 − 𝜔2

𝛽)

∫︁ 𝐿𝑖

0

𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)𝑊𝑖𝛼(𝑧𝑖)𝑊𝑖𝛽(𝑧𝑖)𝑑𝑧𝑖

=

∫︁ 𝐿𝑖

0

(︁
− 𝜕𝐹𝑡𝑖𝛼(𝑧𝑖)

𝜕𝑧𝑖
𝑊𝑖𝛽(𝑧𝑖) +

𝜕𝐹𝑡𝑖𝛽 (𝑧𝑖)

𝜕𝑧𝑖
𝑈𝑖𝛼(𝑧𝑖)

)︁
𝑑𝑧𝑖

where it is noticeable that

−
𝜕𝐹𝑎𝑖𝛼

(𝑧𝑖)

𝜕𝑧𝑖
𝑈𝑖𝛽(𝑧𝑖) +

𝜕𝐹𝑎𝑖𝛽 (𝑧𝑖)

𝜕𝑧𝑖
𝑈𝑖𝛼(𝑧𝑖) =

𝜕(−𝐹𝑎𝑖𝛼(𝑧𝑖)𝑈𝑖𝛽(𝑧𝑖) + 𝐹𝑎𝑖𝛽 (𝑧𝑖)𝑈𝑖𝛼(𝑧𝑖))

𝜕𝑧𝑖

−𝜕𝐹𝑡𝑖𝛼(𝑧𝑖)

𝜕𝑧𝑖
𝑊𝑖𝛽(𝑧𝑖) +

𝜕𝐹𝑡𝑖𝛽 (𝑧𝑖)

𝜕𝑧𝑖
𝑊𝑖𝛼(𝑧𝑖)

=
𝜕(−𝐹𝑡𝑖𝛼(𝑧𝑖)𝑊𝑖𝛽(𝑧𝑖) +𝑀𝑓𝑖𝛼(𝑧𝑖)𝑊𝑑𝑖𝛽 (𝑧𝑖) + 𝐹𝑡𝑖𝛽 (𝑧𝑖)𝑊𝑖𝛼(𝑧𝑖)−𝑀𝑓𝑖𝛽 (𝑧𝑖)𝑊𝑑𝑖𝛼(𝑧𝑖))

𝜕𝑧𝑖
,

from which it follows

(4.1) (𝜔2
𝛼 − 𝜔2

𝛽)

∫︁ 𝐿𝑖

0

𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)(𝑈𝑖𝛼(𝑧𝑖)𝑈𝑖𝛽(𝑧𝑖) +𝑊𝑖𝛼(𝑧𝑖)𝑊𝑖𝛽(𝑧𝑖))𝑑𝑧𝑖

=
(︀
− 𝐹𝑎𝑖𝛼(𝐿𝑖)𝑈𝑖𝛽(𝐿𝑖) + 𝐹𝑎𝑖𝛽

(𝐿𝑖)𝑈𝑖𝛼(𝐿𝑖)− 𝐹𝑡𝑖𝛼(𝐿𝑖)𝑊𝑖𝛽(𝐿𝑖)



FREE VIBRATIONS OF PLANAR SERIAL FRAME STRUCTURES... 229

+𝑀𝑓𝑖𝛼(𝐿𝑖)𝑊𝑑𝑖𝛽
(𝐿𝑖) + 𝐹𝑡𝑖𝛽 (𝐿𝑖)𝑊𝑖𝛼(𝐿𝑖)−𝑀𝑓𝑖𝛽 (𝐿𝑖)𝑊𝑑𝑖𝛼

(𝐿𝑖)
)︀

−
(︀
− 𝐹𝑎𝑖𝛼

(0)𝑈𝑖𝛽(0) + 𝐹𝑎𝑖𝛽
(0)𝑈𝑖𝛼(0)− 𝐹𝑡𝑖𝛼(0)𝑊𝑖𝛽(0) +𝑀𝑓𝑖𝛼(0)𝑊𝑑𝑖𝛽

(0)

+ 𝐹𝑡𝑖𝛽 (0)𝑊𝑖𝛼(0)−𝑀𝑓𝑖𝛽 (0)𝑊𝑑𝑖𝛼
(0)

)︀
.

If the conditions (2.4)–(2.6) are written for the cases corresponding to the
mentioned natural frequencies and are inserted into (4.1), it is noticeable that

𝑛∑︁
𝑖=1

(︀
− 𝐹𝑎𝑖𝛼(𝐿𝑖)𝑈𝑖𝛽(𝐿𝑖) + 𝐹𝑎𝑖𝛽

(𝐿𝑖)𝑈𝑖𝛼(𝐿𝑖)− 𝐹𝑡𝑖𝛼(𝐿𝑖)𝑊𝑖𝛽(𝐿𝑖)

+𝑀𝑓𝑖𝛼(𝐿𝑖)𝑊𝑑𝑖𝛽
(𝐿𝑖) + 𝐹𝑡𝑖𝛽 (𝐿𝑖)𝑊𝑖𝛼(𝐿𝑖)−𝑀𝑓𝑖𝛽 (𝐿𝑖)𝑊𝑑𝑖𝛼

(𝐿𝑖)
)︀

−
(︀
− 𝐹𝑎𝑖𝛼

(0)𝑈𝑖𝛽(0) + 𝐹𝑎𝑖𝛽
(0)𝑈𝑖𝛼(0)− 𝐹𝑡𝑖𝛼(0)𝑊𝑖𝛽(0) +𝑀𝑓𝑖𝛼(0)𝑊𝑑𝑖𝛽

(0)

+ 𝐹𝑡𝑖𝛽 (0)𝑊𝑖𝛼(0)−𝑀𝑓𝑖𝛽 (0)𝑊𝑑𝑖𝛼
(0)

)︀
= 0

so that the orthogonality conditions have the form

(4.2) (𝜔2
𝛼 − 𝜔2

𝛽)

𝑛∑︁
𝑖=1

∫︁ 𝐿𝑖

0

𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)
(︀
𝑈𝑖𝛼(𝑧𝑖)𝑈𝑖𝛽(𝑧𝑖) +𝑊𝑖𝛼(𝑧𝑖)𝑊𝑖𝛽(𝑧𝑖)

)︀
𝑑𝑧𝑖 = 0,

from which it follows
𝑛∑︁

𝑖=1

∫︁ 𝐿𝑖

0

𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)
(︀
𝑈𝑖𝛼(𝑧𝑖)𝑈𝑖𝛽(𝑧𝑖) +𝑊𝑖𝛼(𝑧𝑖)𝑊𝑖𝛽(𝑧𝑖)

)︀
𝑑𝑧𝑖 = 0, 𝛼 ̸= 𝛽.

Considering that

𝑈𝑖𝛼(𝑧𝑖) = 𝐶1𝛼𝑈
*
𝑖𝛼(𝑧𝑖), 𝑊𝑖𝛼(𝑧𝑖) = 𝐶1𝛼𝑊

*
𝑖𝛼(𝑧𝑖),

𝑈𝑖𝛽(𝑧𝑖) = 𝐶1𝛽𝑈
*
𝑖𝛽(𝑧𝑖), 𝑊𝑖𝛽(𝑧𝑖) = 𝐶1𝛽𝑊

*
𝑖𝛽(𝑧𝑖),

the conditions (4.2) also apply to the functions of the mode shapes considered in
Chapter 3:

(4.3)
𝑛∑︁

𝑖=1

∫︁ 𝐿𝑖

0

𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)
(︀
𝑈*
𝑖𝛼(𝑧𝑖)𝑈

*
𝑖𝛽(𝑧𝑖) +𝑊 *

𝑖𝛼(𝑧𝑖)𝑊
*
𝑖𝛽(𝑧𝑖)

)︀
𝑑𝑧𝑖 = 0, 𝛼 ̸= 𝛽.

These conditions are necessary to obtain the closed-form solutions. The func-
tion of time that corresponds to the circular natural frequency 𝜔𝛼 is of the form:

𝑇𝛼(𝑡) = 𝐴𝛼 cos(𝜔𝛼𝑡) +𝐵𝛼 sin(𝜔𝛼𝑡),

so that the final solutions for axial and transverse displacements can be written as:

𝑢𝑖(𝑧𝑖, 𝑡) =

∞∑︁
𝛼=1

𝑈*
𝑖𝛼(𝑧𝑖)

(︀
𝐴*

𝛼 cos(𝜔𝛼𝑡) +𝐵*
𝛼 sin(𝜔𝛼𝑡)

)︀
,(4.4)

𝑤𝑖(𝑧𝑖, 𝑡) =

∞∑︁
𝛼=1

𝑊 *
𝑖𝛼(𝑧𝑖)

(︀
𝐴*

𝛼 cos(𝜔𝛼𝑡) +𝐵*
𝛼 sin(𝜔𝛼𝑡)

)︀
,

where 𝐴*
𝛼 = 𝐶1𝛼𝐴𝛼, 𝐵*

𝛼 = 𝐶1𝛼𝐵𝛼.
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By using the orthogonality conditions (4.3), we also obtain the solutions for
constants in the functions 𝑇𝛼(𝑡)

𝐴*
𝛼 =

∑︀𝑛
𝑖=1

∫︀ 𝐿𝑖

0
𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)(𝑈

*
𝑖𝛼(𝑧𝑖)𝑓𝑢𝑖

(𝑧𝑖) +𝑊 *
𝑖𝛼(𝑧𝑖)𝑓𝑤𝑖

(𝑧𝑖))𝑑𝑧𝑖∑︀𝑛
𝑖=1

∫︀ 𝐿𝑖

0
𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)(𝑈*

𝑖𝛼(𝑧𝑖)
2 +𝑊 *

𝑖𝛼(𝑧𝑖)
2)𝑑𝑧𝑖

(4.5)

𝐵*
𝛼 =

1

𝜔𝛼

∑︀𝑛
𝑖=1

∫︀ 𝐿𝑖

0
𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)(𝑈

*
𝑖𝛼(𝑧𝑖)ℎ𝑢𝑖

(𝑧𝑖) +𝑊 *
𝑖𝛼(𝑧𝑖)ℎ𝑤𝑖

(𝑧𝑖))𝑑𝑧𝑖∑︀𝑛
𝑖=1

∫︀ 𝐿𝑖

0
𝜌𝑖(𝑧𝑖)𝐴𝑖(𝑧𝑖)(𝑈*

𝑖𝛼(𝑧𝑖)
2 +𝑊 *

𝑖𝛼(𝑧𝑖)
2)𝑑𝑧𝑖

,

which completes the procedure of finding the closed-form solutions. It should be
noted that the integrals in the expressions (4.5), as well as all other solutions in this
paper, are possible to solve only numerically, because the authors’ intention is that
the procedure should apply in a general case to arbitrary change of cross-section,
as well as to axially functionally graded materials.

5. Numerical example

The presented procedure will be illustrated by an example of the planar serial
frame structures which consist of 𝑛 = 3 equal beams of variable circular cross-
section, diameter 𝐷𝑖, made of axially functionally graded material, where:

𝐿𝑖 = 𝐿, 𝐷𝑖(𝑧𝑖) = 𝐷0

(︁
1− 0.1

𝑧𝑖
𝐿

)︁
, 𝐸𝑖(𝑧𝑖) = 𝐸0

(︁
1− 0.1 sin

𝜋𝑧𝑖
𝐿

)︁
,

𝜌𝑖(𝑧𝑖) = 𝜌0

(︁
1− 0.1 sin

𝜋𝑧𝑖
𝐿

)︁
, 𝑖 = 1, 2, 3,

with numerical values of the parameters:

𝐿 = 1m, 𝐷0 = 0.05m, 𝐸0 = 2.068 · 1011 N/m2
, 𝜌0 = 7850 kg/m3

.

We will also take that the angles between adjacent beams are equal, 𝛼1 = 𝛼2 =
𝑝, and we will analyze the dynamic behavior in terms of that parameter, angle 𝑝.
The analysis will involve three cases of connecting the structure at the right and left
end: clamped-clamped, clamped-pinned and clamped-free, as presented in Figure 2
(a, b, and c), respectively.

30°

2

3

30°

�1=�2=�

a)

�1

�2

2

3

α1=α2=α

b)

α1

α2

2

3

α1=α2=α

c)

α1

α2

Figure 2. Initial positions of frame structures with various
boundary conditions: a) clamped-clamped; b) clamped-pinned; c)
clamped-free
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Dependencies of the first four natural frequencies on the parameter 𝑝, in the
considered cases, are displayed consecutively in Figures 3, 4 and 5 based on implicit
dependence 𝐹 (𝜔, 𝑝) = 0.

Figure 3. Representation of the function 𝐹 (𝜔, 𝑝) = 0 in the case
of clamped-clamped boundary conditions

Figure 4. Representation of the function 𝐹 (𝜔, 𝑝) = 0 in the case
of clamped-pinned boundary conditions
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Figure 5. Representation of the function 𝐹 (𝜔, 𝑝) = 0 in the case
of clamped-free boundary conditions

All the presented graphs indicate clearly the influence of the angle 𝑝 on each of
the four first natural frequencies, as well as the difference between these diagrams
depending on the mode of the structure support. It can also be clearly seen that
the values of natural frequencies are the highest in the first considered case and the
lowest in the third one.

A well-known veering phenomenon is noted in the first considered case [7–9],
where two adjacent natural frequencies converge for specific parameter values. The
initial position of the frame structure for the small values of the angle 𝑝 is presented
in Figure 6.

2

3

6°p

6°p

Figure 6. The initial position of the frame structure with
clamped ends in the case of veering, (𝑝 = 0.1)

In this case, the basic and second natural frequency converge, as shown in
Figure 7.

The procedure of determining circular natural frequencies and the functions of
mode shapes will be conducted in the clamped-clamped case for 𝑝 = 𝜋

4 .
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Figure 7. Veering phenomenon in the case of the frame structure
with clamped ends

Figure 8. Graph of the function 𝐹 (𝜔) in the clamped-clamped
case for 𝑝 = 𝜋/4

The graph of the function 𝐹 (𝜔) is shown in Figure 8 and its first four zeros are
simply numerically calculated and are given in Table 1.

Thereafter, for each of the natural frequencies the Cauchy problems with differ-
ential equations are solved (2.3), starting from the first body with initial conditions
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Table 1. First four circular natural frequencies in the clamped-
clamped case, 𝑝 = 𝜋/4

𝜔1 [Hz] 𝜔2 [Hz] 𝜔3 [Hz] 𝜔4 [Hz]

335.356 772.214 1285.829 1362.564

(3.1)a and conditions (3.2) at the body joints. When obtaining the functions of
mode shapes 𝑋*

𝑖𝛼(𝑧𝑖) it is necessary to calculate previously the coefficients in the
expressions (3.5). For illustration purposes, Figure 9 presents mode shapes for the
first body, which correspond to transverse displacements in the first four mode
shapes (𝑊 *

1𝛼(𝑧1), 𝛼 = 1, . . . , 4) respectively.

Figure 9. Graphs of the functions 𝑊 *
1𝛼(𝑧1), 𝛼 = 1, . . . , 4 in the

clamped-clamped case for 𝑝 = 𝜋/4

Note here that this procedure can be efficiently applied in testing possible
equalization of adjacent natural frequencies for specific values of the parameter 𝑝,
a well-known crossing phenomenon in the literature [7,10]. It is then that the two
adjacent lines in diagrams 𝐹 (𝜔, 𝑝) = 0 are intersecting, unlike the veering phe-
nomenon, where they are converging. If in the clamped-clamped case we consider
the homogeneous material (𝐸𝑖(𝑧𝑖) = 𝐸0 𝜌𝑖(𝑧𝑖) = 𝜌0), where each rod diameter is
constant (𝐷𝑖(𝑧𝑖) = 𝐷0), the structure is completely symmetrical. Dependence of
natural frequencies on the angle 𝑝 is shown in Figure 10.

Equalization of the first two natural frequencies 𝜔1 = 𝜔2 = 437.866Hz is noted
for the value 𝑝* = 0.101074 rad, as shown in Figure 11.
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Figure 10. Representation of the function 𝐹 (𝜔, 𝑝) = 0 in the case
of the clamped-clamped symmetrical structure

Figure 11. Crossing phenomenon in the case of the clamped-
clamped symmetrical structure

By changing the parameter 𝑝 in the neighborhood of 𝑝* the first and second
mode shape immediately exchange their places. However, the orthogonality condi-
tions of these mode shapes do not hold for 𝑝 = 𝑝*(𝜔1 = 𝜔2), and therefore for the
final solutions either (4.4). The corresponding expressions in that case of equal-
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ized adjacent natural frequencies can be found in the authors’ paper [6] for the
case of homogeneous beams of a constant cross-section, and can be relatively easily
generalized to the problem treated in this paper.

The method, developed in [6], can be applied in forming the transcendental
frequency equation (3.6) that can be solved numerically in order for values of cir-
cular natural frequencies for the given values of the parameter 𝑝 to be obtained. It
should be noted that there are analytical solutions for the system (2.3) with bound-
ary conditions (2.4)–(2.6) for homogeneous beams with a constant cross-sectional
area. In Table 2 the comparative values of the first two natural frequencies are
presented. The numerical values are computed using the method presented in this
paper, FEM analysis (Ansys, element type BEAM 189, Number of total elements
304) and numerical solution for the exact frequency equation [6].

Table 2. The first two circular natural frequencies in the vicinity
of 𝑝 = 𝑝*

P Source 𝜔1 [Hz] 𝜔2 [Hz]

0.101 This paper 437.618 437.925
0.101 FME 433.791 435.563
0.101 Reference [6] 437.614 437.869
0.102 This paper 437.889 441.001
0.102 FME 435.525 437.146
0.102 Reference [6] 437.834 440.997

Figure 12. Crossing phenomenon: a) – 1st mode, 𝑝 = 0.101 𝜔 =
433.791Hz; b) – 2nd mode, 𝑝 = 0.101 𝜔 = 435.563Hz; c) – 1st

mode, 𝑝 = 0.102 𝜔 = 435.525Hz; d) – 2nd mode, 𝑝 = 0.102 𝜔 =
437.146Hz
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Comparative results, obtained in the vicinity of the angle 𝑝 = 𝑝*, show that
the referent values of circular natural frequencies obtained using the presented
analytical form of the frequency equation are superior to those obtained using
FEM analysis.

Figure 12 presents the results of the FEM computations in Ansys for the first
two mode shapes. It can be noticed that the changes in a thousandth part of
a radian cause switching among mode shapes, which is typical for the crossing
phenomenon.

6. Conclusions

The paper presents the original numerical procedure for solving the system
of partial differential equations of coupled axial and bending vibrations of Euler–
Bernoulli beams within the framework of planar serial frame structures. The cross-
section can be arbitrarily changed along the beam axis, whose dimensions must be
within the validity of the Euler–Bernoulli theory. This also applies to the material
density and Young’s modulus of elasticity, which is the case in axially function-
ally graded materials. The procedure can be supported by any standard math-
ematical program package that contains programs for solving Cauchy’s problem
(Mathematicar, Matlabr,...) and can be applied easily to a larger number of
beams.

Verification of numerical results obtained by this procedure can always be per-
formed by FEM analysis, for natural frequencies and mode shapes. However, the
presented application of the SNMIP method is superior to FEM analysis when
qualitative and quantifying influences of some parameters on the natural frequen-
cies themselves and mode shapes are analyzed, because it allows us to easily obtain
the function 𝐹 (𝜔, 𝑝) = 0. This fact particularly refers to investigating the veering
and crossing phenomena.

The contribution of this work is also in deriving the orthogonality conditions
and determining the closed-form solutions in the arbitrary case of initial conditions.
Standard packages for FEM analysis do not have such a feature and cannot be
applied when it is necessary to determine the structure response in the time domain.

The procedure can also be generalized without any major problems to some
more complex boundary conditions between beams, or at the structure ends such
as embedded rigid bodies of finite dimensions or some elastic elements. Also, the
proposed methodology can be applied to the buckling problem of planar serial
frame structures, with minor modifications. Namely, the differential equations (2.1)
should be replaced with the equations that are valid for the buckling problem
accompanied with the appropriate analysis. This will be the topic of our next
paper in this field.
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СЛОБОДНЕ НЕПРИГУШЕНЕ ОСЦИЛАЦИJЕ
РАВАНСКИХ ОКВИРНИХ НОСАЧА ЗА

СЛУЧАJ АКСИJАЛНО ФУНКЦИОНАЛНО
ГРАДИJЕНТНИХ МАТЕРИJАЛА

Резиме. У раду се разматра модална анализа и налажење решења у за-
твореном облику слободних непригушених осцилациjа раванских оквирних но-
сача, коjи се састоjе од Оjлер-Бернулиjевих греда променљивог попречног пре-
сека за случаj аксиjално функционално градиjентних материjала. Свака од тих
греда врши спрегуте уздужне и попречне осцилациjе, где спрега настаjе услед
контурних услова на њиховим споjевима. Нумеричко решавање система пар-
циjалних диференциjалних jедначина, након раздваjања променљивих, своди
се на двотачкасти гранични проблем система обичних линеарних диференци-
jалних jедначина са променљивим коефициjентима и линеарним контурним
условима. У том случаjу могућ jе пренос граничних услова и свођење про-
блема на Кошиjев проблем почетних услова. Такође jе могуће анализирати и
утицаj поjединих параметара на динамичко понашање. Метод се може приме-
нити за различите случаjеве контурних услова на краjевима структуре, што jе
илустровано на одговараjућем нумеричком примеру.
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