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A BRIEF SURVEY OF THE SPECTRAL
NUMBERS IN FLOER HOMOLOGY

Jelena Katić, Darko Milinković, and Jovana Nikolić

Abstract. We give a brief introduction and a partial survey of some of the
results about spectral numbers in symplectic topology that we are aware of.
Without attempting to be comprehensive, we will select just some of the con-
structions and ideas that, according to our personal taste and our point of
view, give a flavor of this fast developing theory.

1. Introduction

Although symplectic geometry is defined in a smooth setting, the following
classical theorem by Eliashberg [26] and Gromov [40] was the first indication that
some symplectic notions and properties can be carried out in a 𝐶0 world:

Theorem 1.1 (Gromov–Eliashberg). If a sequence of symplectic diffeomor-
phisms 𝜙𝑘 of a symplectic manifold converges in a 𝐶0 sense to a diffeomorphism
𝜙, then 𝜙 is also symplectic.

In other words, the group of symplectic diffeomorphisms is closed in 𝐶0 topol-
ogy in the group of all diffeomorphisms of any symplectic manifold. This phenom-
enon is also called the symplectic rigidity. Since then, this kind of phenomena has
been intensively studied and has grown into a huge research area, 𝐶0 symplectic
topology (see for example [19,20,41,73] and the references cited therein).

Spectral numbers belong to a class of symplectic invariants of 𝐶0-type.
Let 𝑓 : 𝑋 → R be a continuous function on a topological space 𝑋. For 𝑡 ∈ R

denote by
𝑓 𝑡 := {𝑥 ∈ 𝑋 | 𝑓(𝑥) 6 𝑡}

the sublevel sets of 𝑓 . Let 𝐻*(·) be a homology theory.

Definition 1.1. For 𝛼 ∈ 𝐻*(𝑋)r {0} the spectral number of 𝑓 is defined as

𝑐(𝛼, 𝑓) := inf{𝑡 ∈ R | 𝛼 ∈ im(𝜄𝑡*)},
where 𝜄𝑡 : 𝑓 𝑡 → 𝑋 is the inclusion.
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If 𝐻*(·) is singular homology, the definition above can be rephrased as

𝑐(𝛼, 𝑓) := inf
[𝑎]=𝛼

max 𝑓(|𝑎|),

where |𝑎| is the support of the singular cycle 𝑎 and the infimum is taken over all
singular cycles representing 𝛼.

If 𝑋 is a compact smooth manifold and 𝑓 is a smooth function, then 𝑐(𝛼, 𝑓) is
a critical value of 𝑓 (and, since its definition does not involve derivatives, can be
considered as a 𝐶0-definition of a critical value). For that reason, the term critical
value selector is sometimes used as a synonym for spectral numbers (another term
in use is spectral invariants). For example, if 𝑋 is path connected, then 𝑐([pt], 𝑓) =
min 𝑓 , and, if 𝑋 is oriented and [𝑋] its fundamental class, then 𝑐([𝑋], 𝑓) = max 𝑓 .

For fixed 𝛼, we have the function 𝑐(𝛼, ·) : 𝐶(𝑋) → R, where 𝐶(𝑋) is the space
of continuous functions on 𝑋 with the uniform norm. An important property of
this function is the following

Proposition 1.1. The function 𝑐(𝛼, ·) : 𝐶(𝑋) → R is Lipschitz continuous.

As a consequence, 𝑐(𝛼, ·) is uniquely determined by its values on some dense
subset of 𝐶(𝑋).

For example, if 𝑋 is a compact smooth manifold, it is enough to know the
values of 𝑐(𝛼, ·) on the set of Morse functions. As the singular homology of a
compact smooth manifold can be computed with the help of Morse homology (see
[10, 82, 83]), we can rephrase Definition 1.1 in the following way. For a Morse
function 𝑓 : 𝑋 → R, denote by 𝐶𝑘(𝑓) the free abelian group generated by its critical
points with Morse index 𝑘, and by 𝐶𝑡

𝑘(𝑓) the subgroup generated by critical points
in 𝑓 𝑡. It is well known that 𝐶𝑘(𝑓) is a chain complex with respect to the boundary
operator which is well defined in terms of negative gradient lines of 𝑓 , and that
(since 𝑓 decreases along the negative gradient lines) 𝐶𝑡

𝑘(𝑓) is its subcomplex. The
corresponding homology groups are denoted by𝐻𝑘(𝑓) and𝐻𝑡

𝑘(𝑓). The obvious map
𝚥𝑡 : 𝐶𝑡

𝑘(𝑓) → 𝐶𝑘(𝑓) gives rise to the map 𝚥𝑡* : 𝐻𝑡
𝑘(𝑓) → 𝐻𝑘(𝑓). Now, for 𝛼 ∈ 𝐻𝑘(𝑓)

we can set
𝑐(𝛼, 𝑓) := inf{𝑡 ∈ R | 𝛼 ∈ im(𝚥𝑡*)}.

The function 𝑐(𝛼, ·) is Lipshitz continuous on the dense subset of 𝐶(𝑋) consisting
of Morse functions, and thus it extends to a Lipschitz continuous function on 𝐶(𝑋).

The advantage of this approach is that instead of exploiting the topology of
the ambient 𝑋, it is based solely on the algebra of 𝐶*(𝑓). This gives rise to the
following possibility to modify the definition of spectral numbers in a symplectic
environment, following the first work in this direction by Viterbo [102].

Let (𝑀,𝜔) be a closed (or convex at infinity in the sense of [27]) symplectic
manifold. The idea of construction of spectral numbers in symplectic topology is
as follows. Instead of a topological space 𝑋 in Definition 1.1, one takes the space
of paths Γ: [0, 1] → 𝑀 (with prescribed boundary conditions), and instead of the
function 𝑓 one takes the Hamiltonian action functional

𝒜𝐻(Γ) :=

∫︁
Γ

𝑝 𝑑𝑞 −𝐻 𝑑𝑡.
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Spectral numbers of the action functional are sometimes called action selectors
(see [41]). Here, instead of the homology theory 𝐻*(·), one takes the Floer ho-
mology theory defined by the chosen boundary condition. For periodic boundary
conditions on closed symplectically aspherical symplectic manifolds, this construc-
tion is due to Schwarz [84], and for Lagrangian boundary conditions on a pair
(zero-section, conormal bundle of a closed submanifold) in cotangent bundles, the
construction is due to Oh [63,64]. There are several generalizations of these con-
structions, such as [25,45,46,54,55,57,61,63,64].

The previous constructions can be considered as an infinite dimensional version
of the construction given earlier by Viterbo [102]. Let 𝐸 be a finite dimensional
smooth vector bundle over the smooth closed manifold 𝐵, and let 𝑆 : 𝐸 → R be a
smooth function which is quadratic in fibers outside a compact subset of 𝐸. If the
derivative 𝑑𝑣𝑆 in vertical directions is transversal to the zero section of the dual
bundle 𝐸*, so that Σ𝑆 := {𝑒 ∈ 𝐸 | 𝑑𝑣𝑆(𝑒) = 0}, then

𝑖𝑆 : Σ𝑆 → 𝑇 *𝐵, 𝑖𝑆(𝑒) := 𝑑𝑆(𝑒)

is an exact Lagrangian immersion, i.e. 𝐿𝑆 := 𝑖𝑆(Σ𝑆) is an immersed exact La-
grangian submanifold. Viterbo’s spectral numbers are the spectral numbers of 𝑆.
If instead of the finite dimensional bundle 𝑆 one takes the infinite dimensional fi-
bration Ω over 𝑀 consisting of smooth paths Γ: [0, 1] → 𝑇 *𝐵 starting at the zero
section, with the fibration map Γ ↦→ 𝜋 ∘ Γ(1) (here 𝜋 : 𝑇 *𝐵 → 𝐵 is the canonical
projection), and the Hamiltonian action functional 𝒜𝐻 instead of 𝑆, and repeats
the previous construction, a simple calculation shows that Σ𝒜𝐻

is the set of Hamil-
tonian paths in 𝑇 *𝐵 starting at the zero section, and 𝐿𝒜𝐻

is the Hamiltonian
deformation of the zero section.

2. Construction of spectral numbers

2.1. Periodic boundary conditions. Here we will present the construction
of spectral numbers in periodic orbits Floer homology for closed symplectically as-
pherical symplectic manifolds, following Schwarz [84]. For general closed symplectic
manifolds we refer the reader to [39,65,66,94,95].

If (𝑀,𝜔) is symplectically aspherical (i.e. 𝜔|𝜋2(𝑀) = 0 = 𝑐1|𝜋2(𝑀)), then the
Hamiltonian action functional is well defined on the space Ω(𝑀) of contractible
smooth loops. More precisely, if Γ: [0, 1] → 𝑀 is such a loop, 𝑢 : 𝐷2 → 𝑀 a
capping disc for Γ, and 𝐻 : [0, 1]×𝑀 → R a smooth Hamiltonian, then

𝒜𝐻(Γ) :=

∫︁
𝐷2

𝑢*𝜔 −
∫︁ 1

0

𝐻(𝑡,Γ(𝑡))𝑑𝑡

is well defined, i.e. does not depend on the choice of a capping disc. Its set of
critical points Crit(𝒜𝐻) consists of time-one periodic orbits of the Hamiltonian
flow 𝜑𝐻𝑡 defined by 𝐻. The free abelian group generated by Crit(𝒜𝐻), denoted by
𝐶𝐹*(𝐻), is a chain complex with the boundary map defined by counting pseudo-
holomorphic cylinders connecting two periodic orbits. For 𝑡 ∈ R the free abelian
group 𝐶𝐹 𝑡

*(𝐻) generated by Γ ∈ Crit(𝒜𝐻) with 𝒜𝐻(Γ) 6 𝑡 is a chain subcomplex.
The corresponding homology groups, called Floer homology groups, are denoted
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by 𝐻𝐹*(𝐻) and 𝐻𝐹 𝑡
*(𝐻). There exists a canonical isomorphism PSS: 𝐻*(𝑀) →

𝐻𝐹*(𝐻), where 𝐻*(·) is the Morse homology [76]. For 𝛼 ∈ 𝐻*(𝑀) r {0} the
spectral number 𝜌(𝛼,𝐻) is defined by

𝜌(𝛼,𝐻) := inf{𝑡 ∈ R | PSS(𝛼) ∈ im(𝚤𝑡*)},
where 𝚤𝑡* : 𝐻𝐹 𝑡

*(𝐻) → 𝐻𝐹*(𝐻) is the map induced by the inclusion 𝚤𝑡 : 𝐶𝐹 𝑡
*(𝐻) →

𝐶𝐹*(𝐻).

Proposition 2.1. [84] If 𝐹,𝐺 : [0, 1]×𝑀 → R are smooth Hamiltonians, then

|𝜌(𝛼, 𝐹 )− 𝜌(𝛼,𝐺)| 6 ‖𝐹 −𝐺‖,
where

(2.1) ‖𝐻‖ :=

∫︁ 1

0

(︁
max
𝑥∈𝑀

𝐻(𝑡, 𝑥)− min
𝑥∈𝑀

𝐻(𝑡, 𝑥)
)︁
𝑑𝑡

is Hofer’s norm.

As a corollary, 𝜌(𝛼,𝐻) can be defined, by continuity, for every continuous 𝐻.
For constant 𝐶 ∈ R, the Hamiltonians 𝐻 and 𝐻+𝐶 generate the same Hamil-

tonian paths. Thus it is natural to normalize the Hamiltonians so that∫︁
𝑀

𝐻𝜔∧𝑛 = 0.

The spectral numbers 𝜌(𝛼,𝐻) belong to the action spectrum Spec(𝐻), which is the
set of critical values of 𝒜𝐻 : Ω(𝑀) → R. If 𝐹 and 𝐺 are two normalized Hamil-
tonians generating the same time-one map 𝜑𝐹1 = 𝜑𝐺1 = 𝜑, such that the paths 𝜑𝐹𝑡
and 𝜑𝐺𝑡 in the group Ham(𝑀) of Hamiltonian diffeomorphisms are homotopic with
fixed endpoints, then Spec(𝐹 ) = Spec(𝐺). However, if normalized Hamiltonians
𝐹 and 𝐺 generate the same time-one map 𝜑, but 𝜑𝐹𝑡 and 𝜑𝐺𝑡 belong to different
homotopy classes of paths, then their action spectra differ by a quantity associated
to a certain group homomorphism

𝐼 : 𝜋1(Ham(𝑀)) → R.
On symplectically aspherical manifolds this homomorphism vanishes [83,87], and
thus one can prove that spectral numbers 𝜌(𝛼,𝐻) depend only on the time-one map
generated by 𝐻, i.e. that 𝜌(𝛼, ·) is a function defined on Ham(𝑀). In a general
case 𝜌(𝛼, ·) can be considered as a function defined on the universal cover H̃am(𝑀)
of Ham(𝑀).

If 𝐹 and 𝐺 are two Hamiltonians which generate the same time-one map 𝜑,
then for any non-zero homology class 𝛼 the difference 𝜌(𝛼, 𝐹 )− 𝜌(𝛼,𝐺) is constant
on 𝐻*(𝑀)r {0}. Therefore, for 𝛼, 𝛽 ∈ 𝐻*(𝑀)r {0} the number

(2.2) 𝛾𝜌(𝛼, 𝛽,𝐻) := 𝜌(𝛼,𝐻)− 𝜌(𝛽,𝐻)

does not depend on the choice of 𝐻 generating the time-one map 𝜑 := 𝜑𝐻1 and it
is justified to denote it by 𝛾𝜌(𝛼, 𝛽, 𝜑).

A different approach to the construction of spectral numbers on aspherical sym-
plectic manifolds, which uses only Gromov compactness, is given by Abbondandolo,
Haug and Schlenk in [1].
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In addition to 𝐶0 continuity, spectral numbers have several important proper-
ties that were used for axiomatic definitions of a weak action selector and an action
selector by Frauenfelder, Ginzburg and Schlenk in [38], where they proved that the
existence of a (weak) action selector implies several energy-capacity inequalities.

Albers and Frauenfelder [5] defined spectral numbers for a perturbed action
functional. Here the ambient symplectic manifold is exact and has contact type
boundary, i.e. it is a compact smooth manifold𝑊 with boundary, with a symplectic
form 𝜔 = −𝑑𝜆, such that there exists a vector field (called the Liouville vector field)
𝑌 pointing outside the boundary 𝜕𝑊 and defined by 𝐿𝑌 𝜔 = 𝜔. If (𝐻,𝐹 ) is a pair
of Hamiltonians satisfying certain assumptions (the so called Moser pair, see [5]),
the action functional under consideration is the Rabinowitz action functional

𝒜(𝐻,𝐹 )(Γ) :=

∫︁ 1

0

Γ*𝜆−
∫︁ 1

0

𝐻(𝑡,Γ(𝑡))𝑑𝑡− 𝜂

∫︁ 1

0

𝐹 (𝑡,Γ(𝑡))𝑑𝑡

defined on the free loop space. Here 𝜂 can be thought of as a Lagrange multiplier.
The corresponding Floer homology theory is the Rabinowitz Floer homology (see
[4–6], for the precise definitions).

2.2. Lagrangian boundary conditions. In [63,64] Oh considered the case
of cotangent bundle 𝑇 *𝐵 over the closed smooth manifold 𝐵, with canonical Liou-
ville 1-form 𝜆. Let 𝑁 ⊂ 𝐵 be a closed submanifold and let 𝐻 : [0, 1]×𝑇 *𝐵 → R be
a smooth Hamiltonian function with compact support. As the action functional in
this case consider

𝒜𝐻(Γ) :=

∫︁ 1

0

Γ*𝜆−
∫︁ 1

0

𝐻(𝑡,Γ(𝑡))𝑑𝑡,

defined on the space Ω(𝐵,𝑁) of smooth paths Γ: [0, 1] → 𝑇 *𝐵 with boundary
condition Γ(0) ∈ 0𝐵 , Γ(1) ∈ 𝜈*𝑁 , where 0𝐵 is the zero section in 𝑇 *𝐵 and 𝜈*𝑁
is the conormal bundle of 𝑁 . The set Crit(𝒜𝐻) of critical points of 𝒜𝐻 consists
of Hamiltonian paths connecting 0𝐵 and 𝜈*𝑁 . The free abelian group generated
by 𝒜𝐻 is the Floer chain group 𝐶𝐹*(𝐻,𝑁), and the free abelian group generated
by orbits Γ ∈ Crit(𝒜𝐻) with 𝒜𝐻(Γ) 6 𝑡 is the chain subgroup 𝐶𝐹 𝑡

*(𝐻,𝑁). Here
the boundary map is defined by counting perturbed pseudo-holomorphic strips, i.e.
𝑢 : [0, 1]×R → 𝑇 *𝐵 such that 𝜕𝐽𝑢 = −∇𝐻(𝑢), with boundary conditions 𝑢(0, ·) ∈
0𝐵 , 𝑢(1, ·) ∈ 𝜈*𝑁 and asymptotic conditions such that 𝑢(·,±∞) are Hamiltonian
orbits, i.e. generators of 𝐶𝐹*(𝐻,𝑁). The corresponding Floer homology groups are
denoted by𝐻𝐹*(𝐻,𝑁) and 𝐻𝐹 𝑡

*(𝐻,𝑁). There exist isomorphisms PSS : 𝐻*(𝑁) →
𝐻𝐹*(𝐻,𝑁), where 𝐻*(·) is the Morse homology [80]. They can be made canonical,
i.e. independent of the choice of Morse function [24,43,44]. For 𝛼 ∈ 𝐻*(𝑁)r {0}
spectral numbers are defined by

(2.3) ℓ(𝛼,𝐻;𝑁) := inf
{︀
𝑡 ∈ R | PSS(𝛼) ∈ im(𝚤𝑡*)

}︀
,

where 𝚤𝑡* : 𝐻𝐹
𝑡
*(𝐻,𝑁) → 𝐻𝐹*(𝐻,𝑁) is the map induced by the inclusion

𝚤𝑡 : 𝐶𝐹 𝑡
*(𝐻,𝑁) → 𝐶𝐹*(𝐻,𝑁). We abbreviate

(2.4) ℓ(𝛼,𝐻) := ℓ(𝛼,𝐻;𝐵)
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in case 𝑁 = 𝐵. One can show (see for example [61, Lemma 2.7]) that if 𝐻1, 𝐻2

are properly normalized Hamiltonians such that their time-one maps coincide, then
their spectral invariants coincide:

𝜑𝐻1
1 = 𝜑𝐻2

1 =⇒ ℓ(𝛼,𝐻1) = ℓ(𝛼,𝐻2).

This justifies the notation ℓ(𝛼, 𝜑) := ℓ(𝛼,𝐻), where 𝜑 := 𝜑𝐻1 .
The spectral numbers are contained in the action spectrum Spec(𝐻; 0𝐵 , 𝜈

*𝑁),
i.e. in the set of critical values of 𝒜𝐻 : Ω(0𝐵 , 𝜈

*𝑁) → R. If 𝐹 and 𝐺 are Hamilto-
nians such that 𝜑𝐹1 (0𝐵) = 𝜑𝐺1 (0𝐵), then Spec(𝐹 ; 0𝐵 , 𝜈

*𝑁) = Spec(𝐺; 0𝐵 , 𝜈
*𝑁)+𝐶

for some constant 𝐶 ∈ R. Using this fact, and combining the geometric and dy-
namic definitions of Lagrangian Floer homology, one can show (see [63] for more
details) that

𝛾ℓ(𝛼, 𝛽, 𝐿) := ℓ(𝛼,𝐻)− ℓ(𝛽,𝐻)

does not depend on 𝐻 as long as 𝜑𝐻1 (0𝐵) =: 𝐿 is a fixed Lagrangian submanifold.
It is known [21, 52] that every Hamiltonian deformation of zero section can

be generated by a generating function 𝑆 : 𝐸 → R fiberwise quadratic outside a
compact set on a finite dimensional vector bundle 𝐸 in a way that we mentioned
in Introduction. Hence for 𝐿 = 𝜑𝐻1 (0𝐵) the spectral numbers 𝑐(𝛼, 𝑆) introduced
earlier by Viterbo are defined. In that case, again,

(2.5) 𝛾𝑐(𝛼, 𝛽, 𝐿) := 𝑐(𝛼, 𝑆)− 𝑐(𝛽, 𝑆)

depends only on 𝐿. It turns out that these two constructions give the same result
(see [56,57] for more details; see also [42] for similar relations in a different context
and for the surfaces).

In [45, 46] the previous construction is generalized to the case where 𝑁 is a
submanifold with boundary in 𝐵. The assumption that 𝐵 is closed can also be
somewhat weakened [57].

Leclercq [54] constructed spectral numbers in the following situation. Let a
symplectic manifold 𝑀 be closed or convex at infinity. Let 𝐿0 ⊂ 𝑀 be a closed
Lagrangian submanifold, such that 𝜔|𝜋2(𝑀,𝐿0) = 0 and 𝜇|𝜋2(𝑀,𝐿0) = 0, where 𝜇
is the Maslov index. If 𝐿1 := 𝜑𝐻1 (𝐿0) is a Hamiltonian deformation of 𝐿0, then
the Floer homology 𝐻𝐹*(𝐻;𝐿0) and its filtrations by action 𝐻𝐹 𝑡

*(𝐻;𝐿0) are well
defined. In this generality, there exists a morphism PSS: 𝐻*(𝐿0) → 𝐻𝐹*(𝐻;𝐿0)
[3,11,104]. This gives rise to the definition of spectral numbers in this case. Using
spectral sequences machinery developed by Barraud and Cornea [12], Leclercq also
introduced the higher order invariants, and showed that spectral invariants are
actually their special case.

Leclercq and Zapolsky generalized the construction of spectral numbers to
monotone Lagrangian submanifolds in [55]. Another generalization is given in [39].

Lagrangian spectral numbers are continuous with respect to Hofer’s norm.
Therefore, their definition can be extended by continuity to the cases that avoid
several generic choices needed in definitions of Floer homology, and even to con-
tinuous Hamiltonians. In case of Lagrangian submanifolds, the Hofer distance has
a remarkable generalization to the cobordism distance discovered by Cornea and
Shelukhin [23]; its relation to spectral invariants is studied by Bisgaard [16].
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For some symplectic manifolds and some Lagrangian submanifolds the La-
grangian Floer homology has the structure of a module over the Floer homology
for periodic orbits, i.e. there exists a bilinear product

∘ : 𝐻𝐹*(𝐻1)⊗𝐻𝐹*(𝐻2;𝐿) → 𝐻𝐹*(𝐻3;𝐿).

This product is due to the holomorphic “chimneys” (see [2, 3]) and it leads to a
comparison of the Lagrangian spectral invariants with the spectral invariants for
periodic orbits:

ℓ(PSS−1(𝑎 ∘ 𝑏), 𝐻1♯𝐻2) 6 𝜌(PSS−1(𝑎), 𝐻1) + ℓ(PSS−1(𝑏), 𝐻2),

where ♯ denotes the concatenation of Hamiltonians with respect to the time variable.
Similar comparison formulae for spectral numbers with periodic and Lagrangian
boundary conditions were proved in [61] in cotangent bundles, in [25] for weakly
exact Lagrangian submanifolds and in [55] in a more general case.

3. Some objects constructed by spectral numbers

3.1. Graph selectors. Let 𝐵 be a closed smooth manifold. Recall that the
Lagrangian submanifold 𝐿 ⊂ 𝑇 *𝐵 is called exact if the restriction 𝜆|𝐿 of the Li-
ouville form is exact. In other words, if 𝚤 : 𝐿 → 𝑇 *𝐵 is the inclusion map, then
𝐿 is exact if 𝚤*𝜆 = 𝑑ℎ𝐿, for some function ℎ𝐿 : 𝐿 → R. The simplest example of
an exact Lagrangian submanifold is a graph graph(𝑑𝑓) := {(𝑞, 𝑑𝑓(𝑞)) | 𝑞 ∈ 𝐵} of
the differential of a smooth function 𝑓 : 𝐵 → R. In this case ℎ𝐿 = 𝑓 ∘ 𝜋|𝐿. Every
exact Lagrangian submanifold 𝐿 in 𝑇 *𝐵 such that the restriction 𝜋|𝐿 : 𝐿→ 𝐵 is a
diffeomorphism is the graph of 𝑑𝑓 for 𝑓 = ℎ𝐿 ∘ (𝜋|𝐿)−1.

More general examples are Lagrangian submanifolds generated by a generating
function 𝑆 : 𝐸 → R that we mentioned in Introduction. If 𝐿 is a Hamiltonian
deformation of a zero section, i.e. 𝐿 := 𝜑𝐻1 (0𝐵), then it is not difficult to see that
𝐿 is exact with

ℎ𝐿(𝑥) = 𝒜𝐻(𝜑𝐻𝑡 (𝜑1)−1(𝑥)).

Unlike the case of 𝐿 := graph(𝑑𝑓), where the projection 𝜋|𝐿 is a diffeomorphism
and 𝑓 = ℎ𝐿∘(𝜋|𝐿)−1, for the general exact Lagrangian submanifold 𝐿 the primitive
ℎ𝐿 : 𝐿→ R of the Liouville form 𝜆|𝐿 is not related to a function on 𝐵.

Suppose that 𝐿 is closed and that 𝜋|𝐿 is surjective. The composition 𝑓 =
ℎ𝐿 ∘ (𝜋|𝐿)−1 can be considered as a multi-valued function on 𝐵. The Lagrangian
submanifold 𝐿 can be considered as an image of the multi-valued section (𝜋|𝐿)−1.
The set of singular values of the projection 𝜋|𝐿 : 𝐿 → 𝐵 is a set of measure zero.
On the complement of the set of singular points 𝜋|𝐿 is a local diffeomorphism.

A genuine section 𝜎 : 𝐵 → 𝑇 *𝐵, such that 𝜎(𝐵) ⊂ 𝐿 can be understood as a
section that selects a branch of 𝐿 understood as an image of a multi-valued section
(𝜋|𝐿)−1. For that reason, it is natural to call such a section a Lagrangian selector
of 𝐿 (see [72,75]).

A related object is introduced in the following

Definition 3.1. A graph selector of a closed exact Lagrangian submanifold
𝐿 ⊂ 𝑇 *𝐵 is a Lipschitz function 𝑓 : 𝐵 → R which is differentiable on a dense open
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subset 𝑈 ⊂ 𝐵 of full measure, such that for all 𝑞 ∈ 𝑈 we have (𝑞, 𝑑𝑓(𝑞)) ∈ 𝐿 and
𝑓 ∘ 𝜋|𝐿 = ℎ𝐿.

Clearly, if 𝑓 is a graph selector, then 𝑑𝑓 is a Lagrangian selector.
It turns out that every closed exact Lagrangian submanifold admits a graph

selector 𝑓 . Moreover, if 𝑑𝑓 ≡ 0 on 𝑈 , then 𝐿 coincides with the zero section. The
construction is given by Chaperon [22], Sikorav [91] and Paternain, Polterovich,
Siburg [75] via generating functions and by Oh [63] and Amorim, Oh and Dos
Santos [7] via Floer homology. See also [8] for some discussion and the application.

The construction in [63] assumes that 𝐿 is a Hamiltonian deformation of the
zero section. In that case 𝑓 is defined as 𝑓(𝑞) := ℓ([𝑞], 𝐻; {𝑞}), where ℓ([𝑞], 𝐻; {𝑞})
is defined in (2.3), with 𝑁 = {𝑞} and 𝐻 such that 𝜑𝐻1 (0𝐵) = 𝐿. For a closed exact
𝐿, in [7] Amorim, Oh and Dos Santos used the wrapped Floer homology without
making a reference to a Hamiltonian deformation.

3.2. Spectral norm. The spectral norm for compactly supported Hamilton-
ian diffeomorphisms in R2𝑛 is first constructed by Viterbo [102]. By identifying
the graph of Hamiltonian diffeomorphism 𝜑 with the Hamiltonian deformation 𝐿 of
the zero section in 𝑇 *Δ (where Δ is the diagonal in R2𝑛×R2𝑛), and compactifying
Δ to S2𝑛, Viterbo defined the norm 𝛾𝑐(𝜑) := 𝛾𝑐([S2𝑛], [pt], 𝐿), where 𝛾𝑐 is defined
by (2.5).

In a similar way, for a closed symplectically aspherical manifold𝑀 , the function

𝛾 : Ham(𝑀) → R, 𝛾(𝜑) := 𝛾𝜌([𝑀 ], [pt], 𝜑),

where 𝛾𝜌(𝛼, 𝛽, 𝜑) is defined by (2.2), is a norm on the group of Hamiltonian diffeo-
morphisms of 𝑀 , i.e. it holds:

(1) 𝛾(𝜑) > 0
(2) 𝛾(𝜑) = 0 if and only if 𝜑 = id
(3) 𝛾(𝜑−1) = 𝛾(𝜑)
(4) 𝛾(𝜑𝜓) 6 𝛾(𝜑) + 𝛾(𝜓).

This norm is called the spectral norm. It is invariant under the conjugation by
symplectomorphisms, i.e. 𝛾(𝜑) = 𝛾(𝜃𝜑𝜃−1) for any 𝜑 ∈ Ham(𝑀) and any symplec-
tomorphism 𝜃. It is bounded from above by Hofer’s distance

𝛾(𝜑) 6 𝑑Hofer(id, 𝜑).

Here 𝑑Hofer(id, 𝜑) := inf ‖𝐻‖, where ‖ · ‖ is Hofer’s norm (2.1) and the infimum
is taken over all Hamiltonians 𝐻 having 𝜑 as the time-one map. The norm 𝛾
satisfies the energy–capacity inequality 𝛾(𝜑) 6 2𝑒(supp(𝜑)), where 𝑒(·) denotes
the displacement energy of the set 𝑒(𝐴) := inf{𝑑Hofer(id, 𝜓) | 𝜓(𝐴) ∩ 𝐴 = ∅} and
supp(𝜑) := {𝑥 ∈𝑀 | 𝜑(𝑥) ̸= 𝑥} is the support of a diffeomorphism 𝜑. The proofs
can be found in [66,69,84,95,96]. Buhovsky, Humilière and Seyfaddini proved that
the spectral norm is continuous in 𝐶0 topology [19], answering the question posed
by Oh [70]. Some estimates relating the difference of spectral invariants with the 𝐶0

distance of the corresponding Hamiltonian flows are obtained by Seyfaddini [85,86].
Note that, unlike Hofer’s distance, the spectral norm is not intrinsic, i.e. it is not

obtained as an infimum of the length of paths. However, it has many applications
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to Hofer’s geometry. For example, it is exploited to describe the geodesics and
length minimizing paths in Hofer’s geometry, following the first work by Bialy and
Polterovich [13] (see e.g. [58–60,67,68,71]).

Using the Lagrangian spectral numbers, one can define the spectral distance
between Lagrangian submanifolds in a similar way. For example, if 𝐵 is a closed
smooth manifold and 𝐿0, 𝐿1 are two Hamiltonian deformations of the zero section in
𝑇 *𝐵, their spectral distance 𝛾(𝐿0, 𝐿1) is a generalization of the spectral distance for
Hamiltonian diffeomorphisms. It satisfies the inequality 𝛾(𝐿0, 𝐿1) 6 𝑑Hofer(𝐿0, 𝐿1).
It is conjectured by Viterbo [103] that if the 𝑈 ⊂ 𝑇 *𝐵 is a bounded domain, the
set of Hamiltonian deformations of the zero section contained in 𝑈 is bounded in
the metric 𝛾. It is proved for some manifolds by Shelukhin [88,89]. Some bounds
on spectral metric that depend on the boundary depth of Floer complexes for the
pairs (𝐿0, 𝐹 ) and (𝐿1, 𝐹 ) for fiber 𝐹 ⊂ 𝑇 *𝐵 are given by Biran and Cornea in [14].
Note that, in contrast to these results, it is proved by Khanevsky [48] that Hofer’s
metric on the same space is unbounded in some cases, and conjectured that it also
holds in general.

3.3. Quasi-morphisms. By the theorem proved by Banyaga [9] in 1978, the
group Ham(𝑀) of Hamiltonian diffeomorphisms of a closed symplectic manifold is
simple. Therefore, there are no nontrivial homomorphisms from this group to the
additive group of real numbers. Similarly, the universal cover H̃am(𝑀) for closed𝑀
is a perfect group; thus this group also does not admit non-trivial homomorphisms
to (R,+).

A weaker notion, which has been in use in algebra, topology, geometry and
dynamics for a while, is that of a quasi-morphism (see [50]). Its application to
the group of Hamiltonian diffeomorphisms or its universal cover was extensively
studied by Entov, Polterovich [29–31] and several other authors [15,17,18,39,51,
61,74,95,97] (see also [28,77] and the references therein).

If 𝒢 is a group, a map 𝜇 : 𝒢 → R is a quasi-morphism if there exists a constant
𝐶 > 0 such that |𝜇(𝑔ℎ)− 𝜇(𝑔)− 𝜇(ℎ)| 6 𝐶 for all 𝑔, ℎ ∈ 𝒢. This property is called
quasi-additivity. A quasi-morphism is homogeneous if 𝜇(𝑔𝑘) = 𝑘 ·𝜇(𝑔) for all 𝑔 ∈ 𝒢,
𝑘 ∈ Z. Every quasi-morphism can be homogenized by defining

�̄�(𝑔) := lim
𝑘→∞

𝜇(𝑔𝑘)

𝑘
.

It can be proved that the above limit exists and that �̄� is a homogeneous quasi-
morphism (see [77]). The quasi-morphism �̄� is called the homogenization of 𝜇.

If 𝒢 is a Lie group and g its Lie algebra, the derivative of a quasi-morphism
is a mapping 𝜁 : g → R called a quasi-state (see [28,30,77] for a definition in full
generality).

Sometimes a quasi-morphism on H̃am(𝑀) can be defined via spectral numbers
(see [77] and the references therein). In [77] the subadditive spectral invariant is
defined axiomatically as a function 𝑐 : H̃am(𝑀) → R satisfying the following:

(1) 𝑐(𝜓𝜑𝜓−1) = 𝑐(𝜑)
(2) 𝑐(𝜑𝜓) 6 𝑐(𝜑) + 𝑐(𝜓)
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(3)
∫︀ 1

0
min(𝐹𝑡−𝐺𝑡)𝑑𝑡 6 𝑐(𝜑)− 𝑐(𝜓) 6

∫︀ 1

0
max(𝐹𝑡−𝐺𝑡)𝑑𝑡, where 𝜑 and 𝜓 are

generated by normalized Hamiltonians 𝐹 and 𝐺
(4) 𝑐(𝜑) ∈ Spec(𝜑) for nondegenerate 𝜑 (see [77] for details).

The term subadditive is related to the second axiom above. In the presence of
subadditive spectral invariant 𝑐 the function defined by 𝜈𝑐(𝜑) := 𝑐(𝜑) + 𝑐(𝜑−1) for
𝜑 ̸= id and 𝜈𝑐(id) = 0 is a pseudo-norm on H̃am(𝑀), called the spectral pseudo-
norm.

It is proved in [77, Proposition 4.8.1] that if a closed symplectic manifold
𝑀 admits a subadditive spectral invariant 𝑐 with bounded spectral pseudo-norm,
then 𝜎(𝜑) := lim𝑘→∞ 𝑐(𝜑𝑘)/𝑘 is a homogeneous quasi-morphism. Moreover, the
normalized quasi-morphism 𝜇 := −𝑉 · 𝜎 (where 𝑉 :=

∫︀
𝑀
𝜔∧𝑛 is the volume of 𝑀)

also satisfies the Calabi property : for every open displaceable subset 𝑈 ⊂ 𝑀 the
restriction 𝜇|

H̃am(𝑈)
is equal to the Calabi homomorphism

Cal𝑈 : H̃am(𝑈) → R, Cal𝑈 (𝜑) :=

∫︁ 1

0

∫︁
𝑀

𝐻𝑡𝜔
∧𝑛𝑑𝑡.

Note that Cal𝑈 is a homomorphism – in contrast to the closed case, the group of
Hamiltonian diffeomorphisms (or its universal cover) of an open symplectic manifold
admits a non-trivial homomorphism Cal to R. A theorem by Banyaga [9] states
that the kernel of Calabi homomorphism is a simple group.

Spectral numbers 𝜌(𝛼, 𝜑) are defined in maximal generality for every 𝜑 ∈
H̃am(𝑀) and for every non-zero quantum homology class (see [65, 66, 94, 95]).
They satisfy the triangle inequality 𝜌(𝛼 ⋆ 𝛽, 𝜑𝜓) 6 𝜌(𝛼, 𝜑) + 𝜌(𝛽, 𝜓), where ⋆ is
the quantum product. If there is an idempotent non-zero element in the quantum
homology ring, i.e. an element 𝑒 such that 𝑒2 = 𝑒, then 𝑐(·) := 𝜌(𝑒, ·) satisfies
the subadditivity axiom. In [77, Theorem 12.6.1] gives sufficient conditions for a
corresponding spectral pseudo-norm to be bounded. As a consequence, if the quan-
tum homology of a closed monotone symplectic manifold 𝑀 has a field as a factor,
then there exists a homogeneous quasi-morphism 𝜇 on H̃am(𝑀), which satisfies the
Calabi property (see [28, Theorem 3.1] and [77, Corollary 12.6.2]).

In general, if 𝑒 is an idempotent non-zero element in a quantum homology the
ring, 𝜇 constructed as before has weaker properties (see [28, Theorem 3.2]). Instead
of being quasi-additive, it is partially quasi-additive, i.e. for a displaceable open set
𝑈 there exists 𝐶 > 0 such that

|𝜇(𝑔ℎ)− 𝜇(𝑔)− 𝜇(ℎ)| 6 𝐶min{‖𝜑‖𝑈 , ‖𝜓‖𝑈},

where ‖ · ‖𝑈 is Banyaga’s fragmentation norm (see [9]). Instead of being homoge-
neous, it is partially homogeneous, i.e. 𝜇(𝜑𝑘) = 𝑘𝜇(𝜑) for any non-negative integer
𝑘. Such 𝜇 is called a partial quasi-morphism.

For a closed manifold 𝐵, Monzner, Vichery and Zapolsky [61] defined the
mapping 𝜇0 : Ham(𝑇 *𝐵) → R on a group of compactly supported Hamiltonian
diffeomorphisms in 𝑇 *𝐵 by

𝜇0(𝜑) := lim
𝑘→∞

ℓ([𝐵], 𝜑𝑘)

𝑘
,
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where ℓ is defined by (2.3) and (2.4). More generally, for 𝑎 ∈ 𝐻1(𝐵) and for a
one-form 𝛼 : 𝐵 → 𝑇 *𝐵 representing cohomology class 𝑎 they defined

𝜇𝑎(𝜑) := 𝜇0(𝑇−𝛼𝜑𝑇𝛼),

where 𝑇𝛼 is a symplectomorphism of 𝑇 *𝐵 defined by 𝑇𝛼(𝑞, 𝑝) := (𝑞, 𝑝+ 𝛼(𝑞)), and
proved that it has the properties analogous to those of a partial quasi-morphism.
Due to the results of Shelukhin [88] and Kislev–Shelukhin [49], 𝜇𝑎 are genuine
quasi-morphisms for suitable bases 𝐵 (Zoll spaces etc). In a special case of 𝐵 = T𝑛,
Monzner, Vichery and Zapolsky in [61] proved that 𝜇𝑝(𝜑

𝐻
1 ) = �̄�(𝑝), where �̄� is

the Viterbo’s homogenization [103] of 𝐻 and 𝑝 ∈ R𝑛 ∼= 𝐻1(T𝑛) (see also [62] for
the relation between symplectic homogenization and Calabi quasi-states).

4. Concluding remarks

Floer homology, the infinite dimensional version of Morse theory for the Hamil-
tonian action functional, is one of the main tools in symplectic topology. It was
created by Andreas Floer in a series of papers [32–36] as a part of the proof of the
Arnold conjecture about the minimal number of periodic Hamiltonian orbits (or the
Lagrangian intersections in another version). Under certain transversality assump-
tions, it is defined on a large class of symplectic manifolds, and, as an algebraic
object, independent of the choice of Hamiltonian. This feature of Floer homology
makes it suitable for the study of the properties shared by all Hamiltonians, such
as the aforementioned Arnold conjecture.

In order to obtain an algebraic object adapted to a particular Hamiltonian,
one needs a construction that would depend on its choice. The use of filtration
by the levels of the action functional meets that requirement. Chronologically,
the first construction of this type were the spectral numbers. Our intention in
this paper was to illustrate the basic ideas of their construction and some of its
applications in the simplest form. We have not touched on the constructions in
which these ideas were further developed. Using the chain level Floer theory, Oh
[65] developed a more delicate version of similar constructions in order to give
some descriptions of minimizing paths in Hofer’s geometry. For Usher’s notion
of boundary depth and application we refer the reader to [95, 98, 99, 101]. The
recent generalization of the ideas of filtered Floer’s theory within the theory of
persistent modules and barcodes has been the subject of a large number of papers
[19,37,47,49,53,78,79,81,88–90,92,93,100,101,105], to mention just a few.

Acknowledgments. This paper is based on a talk given by the second named
author in May 2019 at the Symposium on Analytic Mechanics and Differential
Geometry at the Mathematical Institute SANU, Belgrade. The second named
author thanks the organizer for the invitation. The authors are also grateful to
Vukašin Stojisavljević for several comments and suggestions. Finally, the authors
would like to thank the anonymous referee for helpful remarks, comments and
suggestions.
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КРАТКИ ПРЕГЛЕД ИСТРАЖИВАЊА О СПЕКТРАЛНИМ
БРОJЕВИМА У ФЛОРОВОJ ХОМОЛОГИJИ

Резиме. Даjемо кратак и делимичан преглед резултата о спектралним
броjевима у симплектичкоj топологиjи коjи су нам познати. Без намере да
будемо свеобухватни, издваjамо само неке конструкциjе и идеjе, коjе, у складу
са нашим субjективним избором и тачком гледишта, приказуjу начин на коjи
се ова теориjа брзо развиjа.
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