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ON RHEONOMIC NONHOLONOMIC
DEFORMATIONS OF THE EULER

EQUATIONS PROPOSED BY BILIMOVICH

A. V. Borisov and A. V. Tsiganov

Abstract. In 1913 A. D. Bilimovich observed that rheonomic constraints
which are linear and homogeneous in generalized velocities are ideal. As a
typical example, he considered rheonomic nonholonomic deformation of the
Euler equations whose scleronomic version is equivalent to the nonholonomic
Suslov system. For the Bilimovich system, equations of motion are reduced to
quadrature, which is discussed in rheonomic and scleronomic cases.

1. Introduction

Let 𝑞 = (𝑞1 . . . , 𝑞𝑛) be generalized coordinates on the configuration space 𝑄 of
the system. The Lagrange equations describing the motion of the system may be
written as

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖
− 𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖, 𝑖 = 1, . . . , 𝑛,

where 𝑇 denotes the kinetic energy and 𝑄 is a force. Assume now that the system
is subject to additional independent constraints

𝑓𝑗(𝑞, 𝑞, 𝑡) = 0, 𝑗 = 1, . . . , 𝑘 < 𝑛

and we have a constrained Lagrangian system with the number of degrees of freedom
dim𝑄−𝑘 = 𝑛−𝑘. These constraints may be thought of as an addition of constraint
forces to the original Lagrange equations.

The constraints are called integrable if they can be written in the form

𝑓𝑗 =
𝑑

𝑑𝑡
𝑔𝑗(𝑞, 𝑡) = 0

for some functions 𝑔𝑗 . Otherwise the constraints are called nonintegrable. After
1917, according to Hertz, nonintegrable constraints have been called nonholonomic.
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Similarly to the Lagrangian function, constraints may be time-dependent (rheo-
nomic) or time-independent (scleronomic). Thus, we say that the constrained La-
grangian system is scleronomic (rheonomic) if the constraints and the Lagrangian
are time-independent (time-dependent).

A nonholonomic constraint 𝑓𝑗 = 0 is said to be ideal if the infinitesimal work of
the constraint force vanishes for any admissible infinitesimal virtual displacement

(1.1)
𝑘∑︁

𝑖=1

𝜕𝑓𝑗
𝜕𝑞𝑖

𝛿𝑞𝑖 = 0.

This equation is the so-called Chetaev condition (see the paper [8], published in
1932). Some simple examples show that Chetaev’s rule cannot be used in general
(see [7,19]).

Equations of motion of the nonholonomic system are deduced using the La-
grange–d’Alembert principle, Gauss and Appel principles, Hamilton–Suslov prin-
ciple and so on. The general theory of linear and nonlinear, rheonomic and sclero-
nomic, ideal and nonideal constraints and the corresponding nonholonomic systems
has been discussed in many recent papers and textbooks. From the existing exten-
sive list of literature, we have chosen publications particularly close to the work of
Bilimovich [2,3], see [1,6,9–11,14,15,17,18,20–24] and references therein.

In 1903 A.D. Bilimovich graduated from Kiev University with the gold medal
for his work “Application of geometric derivatives to the theory of curves and sur-
faces”. He was a student of famous mechanicians K. G. Suslov and P.V. Voronets.
After graduation, he was appointed a teaching assistant at the Department of The-
oretical and Applied Mechanics. In 1907 he received the title of Privatdocent of
the Department of Theoretical and Applied Mechanics of Kiev University, where in
1912 he defended his master’s thesis “Equations of motion for conservative systems
and their applications”, which was published later in two papers [2,3].

After the death of A. M. Lyapunov on November 3, 1918, he headed the com-
mission for the preservation, processing and preparation for printing of the aca-
demician’s works, which saved his manuscript “On Some Equilibrium Figures of a
Rotating Fluid”.

In January 1920, he left Odessa and soon found refuge in Serbia, where he
created a large scientific school of analytical mechanics. Much credit also goes
to him for creating a number of scientific associations and institutes in Serbia (in
the 1920–1960s), and participating in the publishing activities of his immigrant
compatriots: the Russian Academic Circle (April), Russian Scientific Institute, two
editions of ”Materials for the Bibliography of Russian Scientific Works Abroad”,
and the Mathematical Institute of the Serbian Academy of Sciences, the opening
of which took place in May 1946. In 1949, the first volume of “Transactions of the
Mathematical Institute of the Serbian Academy of Sciences” was published. It was
in this edition that he published his works for several years, including the memoirs of
Lyapunov in Odessa (1956). In addition, A. D. Bilimovich was one of the founders
of the Yugoslav Society of Mechanics. His scientific activity was marked by his
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election on February 18, 1925 as a corresponding member, and February 17, 1936
as a full member of the Serbian Academy of Sciences and Arts [4].

So, in 1913–1914 Bilimovich published two papers in which he discussed the
“commonly known fact” that scleronomic constraints

𝑓𝑗 =

𝑛∑︁
𝑖=1

𝑏𝑖𝑗(𝑞)𝑞𝑗 + 𝑏𝑗 = 0, 𝑗 = 1, . . . , 𝑘 < 𝑛,

are ideal if 𝑏𝑗 = 0. Bilimovich noted that rheonomic constraints which are linear
and homogeneous in generalized velocities

𝑓𝑗 =

𝑛∑︁
𝑖=1

𝑏𝑖𝑗(𝑞, 𝑡)𝑞𝑗 = 0, 𝑗 = 1, . . . , 𝑘 < 𝑛,

are also ideal constraints. Bilimovich’s first paper [2] was submitted to Comptes
rendus de l’Académie des Sciences by Appel, so Appel also knew this “commonly
known fact (1.1). Thus, Appel, Suslov and Voronets also knew this “commonly
known fact” (1.1) about linear and homogeneous constraints in generalized veloci-
ties, but we cannot find the original source of this fact.

A typical example of rheonomic constraints is a rod of varying length, see
Bilimovich’s paper [3]. In this note we discuss another typical example associated
with a rotating rod, which allows us to study rheonomic nonholonomic deformations
of the Euler equations [2]. This rheonomic Bilimovich system is a generalization
of the scleronomic nonholonomic Suslov system up to the choice of coordinates.
The physical realization of the corresponding constraint which was proposed by
Bilimovich is not realistic, in contrast to the nonholonomic pendulum [3], but
it is also a typical rheonomic nonholonomic system, which we will integrate by
quadratures below.

1.1. On constraints that are linear in velocities and imposed on a
conservative dynamical system. Consider Lagrange’s equations of the second
kind

(1.2)
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖
− 𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖, 𝑖 = 1, . . . , 𝑛,

in which the kinetic energy is a second-degree polynomial in the generalized veloc-
ities and can be represented as

𝑇 = 𝑇2 + 𝑇1 + 𝑇0,

where

𝑇2 =
1

2

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗𝑞𝑖𝑞𝑗 , 𝑇1 =

𝑛∑︁
𝑘=1

𝑎𝑘𝑞𝑘, 𝑇0 = 𝑎0,

and the coefficients 𝑎𝑖𝑗 and 𝑎𝑘 are functions of the generalized coordinates 𝑞1, . . . , 𝑞𝑛
and time 𝑡.

If one divides the forces 𝑄𝑖 into potential and nonpotential ones

𝑄𝑖 = −𝜕𝑉
𝜕𝑞𝑖

+ ̃︀𝑄𝑖,
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then one can formulate a theorem of the change in the total mechanical energy
𝐸 = 𝑇 + 𝑉 of the holonomic system

(1.3)
𝑑

𝑑𝑡
𝐸 =

𝑛∑︁
𝑖=1

𝑄̃𝑖𝑞𝑖 +
𝑑

𝑑𝑡
(𝑇1 + 2𝑇0)−

𝜕𝐿

𝜕𝑡
,

where the Lagrangian is 𝐿 = 𝑇 − 𝑉 . The imposition of 𝑘 < 𝑛 nonholonomic
constraints

𝑓𝑗(𝑞, 𝑞) = 0, 𝑗 = 1, . . . , 𝑘 < 𝑛

changes Lagrange’s equations (1.2)

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑖
− 𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖 +

𝑘∑︁
𝑗=1

𝜆𝑗
𝜕𝑓𝑗
𝜕𝑞𝑖

, 𝑖 = 1, . . . , 𝑛,

and the theorem of the change in the total mechanical energy (1.3)

𝑑

𝑑𝑡
𝐸 =

𝑛∑︁
𝑖=1

(𝑄̃𝑖 +𝑄*
𝑖 )𝑞𝑖 +

𝑑

𝑑𝑡
(𝑇1 + 2𝑇0)−

𝜕𝐿

𝜕𝑡
, 𝑄*

𝑖 =

𝑘∑︁
𝑗=1

𝜆𝑗

𝑛∑︁
𝑖=1

𝜕𝑓𝑗
𝜕𝑞𝑖

𝑞𝑖,

where 𝑄*
𝑖 are the reaction forces of the nonholonomic constraints.

The homogeneous linear functions of the generalized velocities

𝑓𝑗 =

𝑛∑︁
𝑖=1

𝑏𝑗𝑖(𝑞, 𝑡)𝑞𝑖

are distinguished by the fact that in this case the imposition of nonholonomic
constraints does not change the theorem of the change in the total mechanical
energy, since the work done by these corresponding reaction forces is zero

𝑛∑︁
𝑖=1

𝑄*
𝑖 𝑞𝑖 =

𝑘∑︁
𝑗=1

𝜆𝑗

𝑛∑︁
𝑖=1

𝜕𝑓𝑗
𝜕𝑞𝑖

𝑞𝑖 =

𝑘∑︁
𝑗=1

𝜆𝑗

𝑛∑︁
𝑖=1

𝑏𝑗𝑖𝑞𝑖 =

𝑘∑︁
𝑗=1

𝜆𝑗𝑓𝑗 = 0.

This fact follows from Euler’s theorem of homogeneous functions, which is also used
for a standard derivation of the initial theorem of the change in the total mechanical
energy of the holonomic system.

In discussing this well-known fact, in [2], Bilimovich noted that the coefficients
𝑏𝑖𝑗 can explicitly depend on time 𝑡. Thus, imposing rheonomic constraints which
are linear in the velocities in the velocities on the conservative system whose total
mechanical energy does not change during the motion of the system, we obtain a
rheonomic nonholonomic system for which the total mechanical energy is conserved
as well.

2. Rheonomic deformations of the Euler equations

The main example in the work of Bilimovich [2] is related to the nonholonomic
deformation of Euler’s equations

𝐼𝜔̇ = 𝐼𝜔 × 𝜔 ⇐⇒ 𝑑

𝑑𝑡

(︁ 𝜕𝑇
𝜕𝜔𝑖

)︁
= (𝐼𝜔 × 𝜔)𝑖,
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where 𝜔 is the angular velocity vector of a rigid body and 𝐼 is the inertia tensor of
the body. For this conservative system the total mechanical energy coincides with
the kinetic energy

𝑇 = 1
2 (𝐼𝜔, 𝜔),

which remains unchanged during motion, as does the squared angular momentum
of the body, 𝑀2.

Solving two equations 𝑇 = 𝐸 and 𝑀2 = 𝑚 for 𝜔1 and 𝜔2 and substituting the
resulting solutions into the equation of motion for the third angular velocity com-
ponent, we obtain the well-known autonomous differential equation with separable
variables

𝑑𝜔3

𝑑𝑡
=

√︀
𝑃4(𝜔3, 𝐸,𝑚) or

(︁𝑑𝜔3

𝑑𝑡

)︁2

= 𝑃4(𝜔3, 𝐸,𝑚),

which contains a fourth-degree polynomial 𝑃4 in 𝜔3. An explicit form of this poly-
nomial and a solution to this quadrature in terms of elliptic functions can be found,
for example, in the textbooks [5,10].

Imposing on this integrable system the nonholonomic rheonomic constraint

(2.1) 𝑓 = 𝜔1 − 𝑔(𝑡)𝜔2 = 0,

where 𝑔(𝑡) is an arbitrary function of time, changes the equations of motion

(2.2) 𝐼𝜔̇ = 𝐼𝜔 × 𝜔 + 𝜆
𝜕𝑓

𝜕𝜔
, ⇐⇒ 𝑑

𝑑𝑡

(︁ 𝜕𝑇
𝜕𝜔𝑖

)︁
= (𝐼𝜔 × 𝜔)𝑖 + 𝜆

𝜕𝑓

𝜕𝜔𝑖
,

in which, however, the total mechanical energy of the system remains unchanged:

𝑇 = 1
2 (𝐼𝜔, 𝜔) = 𝐸.

The undetermined Lagrange multiplier 𝜆 appearing in these equations can be found
by differentiating the constraint

𝑑𝑓

𝑑𝑡
=

3∑︁
𝑖=1

𝜕𝑓

𝜕𝜔𝑖
𝑤̇𝑖 +

𝜕𝑓

𝜕𝑡
= 0.

Solving the equations 𝑇 = 𝐸 and 𝑓 = 0 for 𝜔1 and 𝜔2, we obtain

𝜔1 =

√
𝐴− (𝑔(𝑡)𝐼13 + 𝐼23)𝜔3

𝐶
𝑔(𝑡), 𝜔2 =

√
𝐴− (𝑔(𝑡)𝐼13 + 𝐼23)𝜔3

𝐶
,

where

𝐴 = 2𝐸𝐶 −𝐵𝜔2
3 , 𝐶 = 𝑔(𝑡)2𝐼11 + 2𝑔(𝑡)𝐼12 + 𝐼22,

𝐵 = 𝑔(𝑡)2(𝐼11𝐼33 − 𝐼213) + 2𝑔(𝑡)(𝐼12𝐼33 − 𝐼13𝐼23) + 𝐼22𝐼33 − 𝐼223.

Substituting these solutions into the equation of motion for 𝜔3, we obtain a nonau-
tonomous differential equation with separable variables

(2.3)
𝑑𝜔3

𝑑𝑡
=

((1− 𝑔2)𝐼12 + 𝑔(𝐼11 − 𝐼22))𝐴

𝐵𝐶

− (((1 + 𝑔2)𝜔3 − 𝑔′)
√
𝐴− 𝑔′𝜔3(𝑔𝐼13 + 𝐼23))(𝑔(𝐼11𝐼23 − 𝐼12𝐼13) + 𝐼12𝐼23 − 𝐼13𝐼22)

𝐵𝐶
,
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where 𝑔 = 𝑔(𝑡) and 𝑔′ = 𝑑𝑔(𝑡)/𝑑𝑡. Similarly to the Euler case, it can be rewritten
in a square-free form

(2.4)
(︁𝑑𝜔3

𝑑𝑡
− ((1− 𝑔2)𝐼12 + 𝑔(𝐼11 − 𝐼22))𝐴

𝐵𝐶

− (𝑔′𝜔3(𝑔𝐼13 + 𝐼23))(𝑔(𝐼11𝐼23 − 𝐼12𝐼13) + 𝐼12𝐼23 − 𝐼13𝐼22)

𝐵𝐶

)︁2

=
((1 + 𝑔2)𝜔3 − 𝑔′)2(𝑔(𝐼11𝐼23 − 𝐼12𝐼13) + 𝐼12𝐼23 − 𝐼13𝐼22)

2𝐴

𝐵𝐶
.

Bilimovich reduced a similar equation for rheonomic nonholonomic pendulum to
elliptic quadrature after a suitable change of time [3]. We suppose that this equation
(2.4) could also be reduced to elliptic quadrature. If one integrates this equation,
then the remaining components of the angular velocity vector, 𝜔1(𝑡) and 𝜔2(𝑡), can
be found from the equations 𝑇 = 𝐸 and 𝑓 = 0.

Thus, we obtain formal quadrature (2.4) for the abstract rheonomic Lagrangian
system with constraint (2.1). Of course, in general we have to define more exactly
the physical properties of the constraints, which impose restrictions to the set of
possible values of the constraint forces and to the admissible path. In order to do
it, we need a realistic physical realization of the constraints, which is absent for the
Bilimovich system.

In [2] Bilimovich studied tensor of inertia

(2.5) 𝐼 =

⎛⎝A 0 0
0 A 0
0 0 C

⎞⎠ ,

and proved that integration of the equations of motion (2.2) is reduced to the
simultaneous integration of the following equations in terms of the Euler angles

𝜓̇ sin𝜑[− cos 𝜃 + 𝑔(𝑡) sin 𝜃] + 𝜑̇[sin 𝜃 + 𝑔(𝑡) cos 𝜃] = 0,

𝜓̇ cos𝜑+ 𝜃 = Γ,

A(𝜓̇2 sin2 𝜑+ 𝜑̇2) = 2𝐸 − CΓ2,

where Γ is an arbitrary constant. Of course, we can also rewrite our quadrature
(2.3) in terms of the Euler angles using change of variables

𝜔1 = 𝑝 = −𝜓̇ sin𝜑 cos 𝜃 + 𝜑̇ sin 𝜃,

𝜔2 = 𝑞 = 𝜓̇ sin𝜑 sin 𝜃 + 𝜑̇ cos 𝜃,

𝜔3 = 𝑟𝜓̇ cos𝜑+ 𝜃

from the Bilimovich paper [2]. If 𝑔(𝑡) = 𝛼 ∈ R the constraint (2.1) can be written
in the form

𝑓 = (𝑎, 𝜔) = 0, 𝑎 = (1,−𝛼, 0),
where 𝑎 is the eigenvector of tensor 𝐼 given by (2.5) and at the level of the angular
velocity we have 𝜔̇ = 0. Thus, we actually deal with the Suslov problem [25].
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Let us briefly discuss solutions to (2.3) in other partial cases. For example, if
the tensor of inertia has the form

𝐼 =

⎛⎝𝐼11 𝐼12 0
𝐼12 𝐼22 0
0 0 𝐼33

⎞⎠ ,

then the second term in (2.3) disappears and the separated equation becomes square
root free

𝑑𝜔3

𝑑𝑡
=

(2𝐸 − 𝐼33𝜔
2
3)(𝐼12(1− 𝑔(𝑡)2) + (𝐼11 − 𝐼22)𝑔(𝑡))

𝐼33(𝐼11𝑔(𝑡)2 + 2𝐼12𝑔(𝑡) + 𝐼22)
.

The general solution to this equation is

𝜔3(𝑡) =

√︂
2𝐸

𝐼33
tan

(︂√︂
2𝐸

𝐼33

(︂
𝑐−

∫︁
(𝐼12(1− 𝑔(𝑡)2) + (𝐼11 − 𝐼22)𝑔(𝑡))

𝐼11𝑔(𝑡)2 + 2𝐼12𝑔(𝑡) + 𝐼22
𝑑𝑡

)︂)︂
,

where 𝑐 is the constant of integration.
For example, at 𝐸 = 1, 𝐼33 = 4, 𝐼11 = 2, 𝐼22 = 1 and 𝐼12 = 𝐼13 = 𝐼23 = 0,

solutions to the separated equation (2.3) with 𝑔(𝑡) = cos(𝑡) and 𝑔(𝑡) = 𝛼 are
presented in Figure 1.

Figure 1. Graphs of 𝜔3(𝑡) at 𝐼12 = 𝐼13 = 𝐼23 = 0.

The red curve denotes a graph for the scleronomic constraint 𝑔(𝑡) = 0.4, and
the blue curve is a solution graph for the rheonomic constraint with the periodic
function 𝑔(𝑡) = cos 𝑡.

If at the same parameter values the off-diagonal moment of inertia 𝐼12 is not
zero, for example, 𝐼12 = 0.05, then the solutions to the separated equation (2.3)
with 𝑔(𝑡) = cos(𝑡) and 𝑔(𝑡) = 𝛼 have the following form:
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Figure 2. Graphs of 𝜔3(𝑡) at 𝐼12 = 0.05, 𝐼13 = 𝐼23 = 0.

For the rheonomic constraint we have the following corresponding phase portrait

Figure 3. Dependence 𝜔1 on 𝜔3 at 𝐼12 = 0.05, 𝐼13 = 𝐼23 = 0.

If 𝐼13 ̸= 0 and 𝐼23 ̸= 0, the solutions to the separated equations (2.3) or (2.4) can be
obtained numerically. For instance, if 𝐼12 = 0.05 and 𝐼13 = −1, then the numerical
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solutions to the separated equation (2.3) with 𝑔(𝑡) = cos(𝑡) and 𝑔(𝑡) = 𝛼 have the
following form at 𝐴 > 0

Figure 4. Graphs of 𝜔3(𝑡) at 𝐼12 = 0.05, 𝐼13 = −1 and 𝐼23 = 0.

For the rheonomic constraint we have the following corresponding phase portrait

Figure 5. Dependence 𝜔1 on 𝜔3 at 𝐼12 = 0.05, 𝐼13 = −1 and 𝐼23 = 0.
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After some time the motion becomes almost periodic. Here 𝐼13 ̸= 0, but equation
(2.3) can be integrated numerically because 𝐴 > 0 under selected initial conditions.
At the other values of parameters and initial conditions we have to solve second-
order nonlinear equation (2.4), which cannot be converted to an explicit first-order
system.

The off-diagonal moments of inertia almost do not change the motion pattern
in the case of the scleronomic constraint. In the case of the rheonomic constraint,
the motion pattern depends on the values of the off-diagonal moments of inertia
rather strongly. In what follows, we will show how in the scleronomic case the
off-diagonal moments of inertia are related to the existence of an invariant measure
and to the Hamiltonian property of equations of motion.

2.1. Scleronomic deformations of the Euler equations. If we assume
that the function 𝑔(𝑡) is constant, 𝑔(𝑡) = 𝛼, then the system of three differential
equations (2.2)

𝑋 =

⎛⎝𝜔̇1

𝜔̇2

𝜔̇3

⎞⎠ = 𝐼−1(𝐼𝜔 × 𝜔) + 𝜆𝐼−1

⎛⎝ 1
−𝛼
0

⎞⎠
defines a dynamical system on the plane

(2.6) 𝐷 = {𝑓 = (𝑎, 𝜔) = 𝜔1 − 𝛼𝜔2 = 0}
with the integral 𝑇 . This is Suslov problem and the solution can be found in [11]
for the case 𝑎 = (0, 0, 1). After a suitable choice of coordinate system, the solution
from [11] can be directly used for 𝑎 = (1,−𝛼, 0).

This makes it possible to reduce the order of this system by two and to obtain
one differential equation (2.3), which in this case has the form

𝑑𝜔3

𝑑𝑡
= 𝐹 (𝜔3, 𝐸, 𝛼)(2.7)

=
(𝛼2𝐼12 − 𝛼(𝐼11 − 𝐼22)− 𝐼12)𝐴

𝐵𝐶

+
(𝛼2 + 1)(𝛼(𝐼11𝐼23 − 𝐼12𝐼13) + 𝐼12𝐼23 − 𝐼13𝐼22)𝜔3

√
𝐴

𝐵𝐶
,

where

𝐴 = 𝐵𝜔2
3 + 2𝐸𝐶, 𝐶 = (𝛼2𝐼11 + 2𝛼𝐼12 + 𝐼22),

𝐵 = 𝛼2(𝐼213 − 𝐼11𝐼33−) + 2𝛼(𝐼13𝐼23 − 𝐼12𝐼33)− 𝐼22𝐼33 + 𝐼223.

Note that calculations simplify considerably at

(2.8) 𝛼(𝐼11𝐼23 − 𝐼12𝐼13) + 𝐼12𝐼23 − 𝐼13𝐼22 = 0

when in the definition of the function 𝐹 (2.7) the root
√
𝐴 is absent and

𝐹 =
(𝛼2𝐼12 − 𝛼(𝐼11 − 𝐼22)− 𝐼12)𝐴

𝐵𝐶
.

Under the condition det 𝐼 ̸= 0 this simplification occurs in the unique case 𝐼13 =
𝐼23 = 0, which we will consider below in more detail.
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When 𝐼13 = 𝐼23 = 0, the Lagrange multiplier is

𝜆 = −
𝜔2𝜔3

(︀
(𝐼211−𝐼11𝐼33+𝐼212)𝜔

2
1+2𝜔1𝜔2𝐼12(𝐼11+𝐼22−𝐼33)𝜔2+(𝐼212+𝐼222−𝐼22𝐼33)𝜔

2
2

)︀
𝐼11𝜔2

1+2𝐼12𝜔1𝜔2+𝐼22𝜔2
2

.

Substituting 𝜆 into the equations of motion (2.2), we obtain the vector field in R3

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︀
𝜔2
1𝐼12 − 𝜔2(𝐼11 − 𝐼22)𝜔1 − 𝜔2

2𝐼12
)︀
𝜔1𝜔3

𝜔2
1𝐼11 + 2𝜔1𝜔2𝐼12 + 𝜔2

2𝐼22(︀
𝜔2
1𝐼12 − 𝜔2(𝐼11 − 𝐼22)𝜔1 − 𝜔2

2𝐼12
)︀
𝜔2𝜔3

𝜔2
1𝐼11 + 2𝜔1𝜔2𝐼12 + 𝜔2

2𝐼22

−𝜔2
1𝐼12 + 𝜔2(𝐼11 − 𝐼22)𝜔1 + 𝜔2

2𝐼12
𝐼33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which possesses first integrals 𝑇 (𝜔), ℎ(𝜔) = 𝜔1/𝜔2 and invariant multiplier

𝜌(𝜔) =
1

𝜔1𝜔2
,

which satisfies the standard Jacobi equation in R3

𝜕(𝜌𝑋1)

𝜕𝜔1
+
𝜕(𝜌𝑋2)

𝜕𝜔2
+
𝜕(𝜌𝑋3)

𝜕𝜔3
= 0.

This invariant multiplier defines the invariant singular measure in R3

𝜇 = 𝜌(𝜔) 𝑑𝜔1 ∧ 𝑑𝜔2 ∧ 𝑑𝜔3.

The Suslov problem is defined on the plane 𝐷 ⊂ R3 (2.6) that corresponds to the
invariants set of first integral ℎ(𝜔) = 𝛼.

According to the referee comment, it is interesting since there are various ex-
tensions. For example, if we extend the system such that 𝑓(𝜔) is the integral, then
the kinetic energy 𝑇 is no more the first integral of the system, and the system
cannot be written in the Hamiltonian form with the Hamiltonian 𝑇 (the corre-
sponding vector field slightly differs from 𝑋 although it coincides with 𝑋 on 𝐷 and
one can easily be confused). In the current extension 𝑇 is the first integral and
the Hamiltonian form exists. Indeed, it is easy to see that the vector field 𝑋 is
Hamiltonian

𝑋 = 𝑃𝑑𝑇

with respect to the Hamiltonian 𝑇 and the Poisson bivector

𝑃 = 𝜔1𝜔2

⎛⎝ 0 𝐼3𝜔3 −𝐼12𝜔1 − 𝐼2𝜔2

−𝐼3𝜔3 0 𝐼12𝜔1 + 𝐼1𝜔1

𝐼12𝜔1 + 𝐼2𝜔2 −𝐼12𝜔1 − 𝐼1𝜔1 0

⎞⎠
− 𝜔2

1𝐼12 − 𝜔1𝜔2𝐼11 + 𝜔1𝜔2𝐼22 − 𝜔2
2𝐼12

(𝜔2
1𝐼11 + 2𝜔1𝜔2𝐼12 + 𝜔2

2𝐼22)𝐼33

⎛⎝ 0 0 𝜔1

0 0 𝜔2

−𝜔1 −𝜔2 0

⎞⎠ .

Function ℎ(𝜔) is the Casimir function of this Poisson bivector 𝑃 , i.e. 𝑃𝑑ℎ(𝜔) = 0.
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For nonphysical solutions to equation (2.8), for example,

𝐼 =

⎛⎝𝐼11 0 𝐼13
0 0 0
𝐼13 0 𝐼33

⎞⎠ ,

an invariant measure also exists, and the equations of motion are Hamiltonian.
If vector 𝑎 in 𝑓 = (𝑎, 𝜔) is not the eigenvector of tensor 𝐼, then the system

has no smooth invariant measure. The general problem is studied in [12,16]. The
next derivation of a singular measure for the Suslov problem was proposed by the
referee. Let us take vector field 𝑋 on R3 and restrict 𝑋 on a plane 𝐷 (2.6). The
singular measure 𝜇 should be restricted to 𝐷 in order to have the measure for the
Suslov problem. We have

𝜇 = 𝜌𝑑𝜔1 ∧ 𝑑𝜔2 ∧ 𝑑𝜔3 = 𝜌𝑑𝑓 ∧ Ω,

where
Ω =

1

1 + 𝛼2
(𝛼𝑑𝜔1 + 𝑑𝜔2) ∧ 𝑑𝜔3.

Thus, the singular invariant measure of the Suslov problem is 𝜌Ω|𝐷.

3. Conclusion

In [3] Bilimovich found solutions for the rheonomic constrained Lagrangian
system in terms of elliptic quadratures. It is the first example of explicit integration
of equations of motion of nonholonomic systems with rheonomic constraints.

In [2] Bilimovich studied rheonomic nonholonomic deformations of the Euler
equations and very briefly discussed explicit integration of this system in the par-
tial axially symmetric case. In this note we present explicit integration of these
equations of motion in generic cases.

It will be interesting to study inhomogeneous Bilimovich systems with con-
straint

𝑓 = 𝜔1 − 𝑔(𝑡)𝜔2 = 𝑎, 𝑎 ∈ R.
It is a nonideal constraint and the corresponding constrained equations of motion
do not preserve total energy 𝑇 . However, the corresponding two-dimensional flow
could preserve some integral in partial cases similar to the inhomogeneous Suslov
problem [13].
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БИЛИМОВИЋЕВЕ РЕОНОМНЕ НЕХОЛОНОМНЕ
ДЕФОРМАЦИJЕ ОJЛЕРОВИХ JЕДНАЧИНА

Резиме. А. Д. Билимовић jе 1913. приметио да су реономне хомогене ли-
неарне везе по генералисаним брзанама идеалне. Као типичан пример, разма-
трао jе реономну нехолономну деформациjу Оjерових jедначина, чиjа jе скре-
лономна верзиjа еквивалентна Сусловљевом проблему. Jедначине Билимови-
ћевог система су сведене на квадратуре, при чему jе дискутован реономни и
склерономни случаj.
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