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SIZE EFFECTS ASSOCIATED WITH SKEW
SYMMETRIC BURGERS TENSOR
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ABsTrRACT. This paper investigates size effect phenomena associated with
the divergence of the transpose of plastic distortion in plastically deformed
isotropic materials. The principle of virtual power, balance of energy, second
law of thermodynamics, and codirectionality hypothesis are used to formulate
the governing microforce balance and thermodynamically consistent constitu-
tive relations for dissipative microscopic stresses associated with the plastic
distortion and skew part of the Burgers tensor. It is obtained that the de-
fect energy through the strictly skew Burgers tensor is converted to the defect
energy via the divergence of the plastic distortion. The presence of material
length scales in the obtained flow rule indicates that it is possible to appre-
hend size effects associated with the skew part of the Burgers tensor during
the inhomogeneous plastic flow of solid material. Finally and amongst other
things, it is shown that the dependency of the microscopic stress vector on
the divergence of plastic distortion rate leads to weakening and strengthening
effects in the flow rule.

1. Introduction

Studies have shown that, in the micron scale range of about 500 nanometers
to 50 micrometers, the strength of the metallic component during inhomogeneous
plastic flow is size-dependent [1]. This size effect is not captured by the classi-
cal plasticity theory due to its inability to accommodate intrinsic material length

scales. Gradient plasticity theories [2] have been developed to circumvent these
shortcomings.

There are many gradient plasticity theories in literature. For instance, Aifan-
tis [3,4] and Muhlhaus and Aifantis [5] developed gradient theories in which the
Laplacian of an effective strain measure is incorporated into the classical yield cri-
terion while Gudmundson [6], Gurtin |7, 8] and Gurtin and Anand [9] proposed

gradient theories which resulted in size-dependent non-local flow rules. Other
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recent gradient theories associated with plastic size effects were proposed by Aifan-
tis and his co-authors [10-14].

In 2008, Reddy et al. [15] showed the need to incorporate the divergence of
plastic strain into the system of kinematic variables with a view to determining
the qualitative properties of the solution to the flow rules arising in strain gradient
plasticity. Borokinni et al. [16] considered the divergence of plastic strain rate
in the gradient theory of plasticity and an associated power-conjugate known as
the microscopic stress vector, obtaining thermodynamically consistent constitutive
relations for the dissipative and energetic microscopic stresses. At the crystalline
level, the flow of dislocation in the material structure is measured through plastic
distortion and Burgers tensors [17]. Gurtin [8] used the Burgers tensor and its
power-conjugate to establish a flow rule for rate-dependent processes [2,18].

This work is concerned with a thermodynamically consistent formulation of
plasticity theory involving size effects. The formulation is based on the basic laws
of continuum mechanics, principle of virtual power, and the first and second laws
of thermodynamics. However, the departure from other works in literature con-
sists in the assumption that both the Burgers tensor and its internal microstress
energy conjugate are strictly skew-symmetric. In this case, the energy through the
Burgers tensor is converted to the energy via the divergence of plastic distortion
tensor. This then allows the development of a divergence-based plasticity theory
for investigating size effects in plastically deformed solids. The present theory has
both an advantage and a limitation. The merit is that it is efficient in the sense
that the internal microstress in plastically deformed solid bodies is measured by a
vector quantity (rank-one object) whereas in the usual gradient plasticity theory,
one uses a rank-three tensor (polar microstress tensor). The limitation is that the
theory is restricted to problems where the Burgers tensor and its energy conjugate
are strictly skew-symmetric.

Recently, Borokinni [19] investigated the difference between the well-known
Aifantis [3] and Gurtin-Anand theories [9], both of which ignore the plastic spin.
A point of departure is to remove the assumption of plastic irrotationality from the
outset of the present article so that the plastic distortion rate tensor is considered
as non-symmetric.

2. Notations

In component form, second-order tensor A is denoted by A;;, i,7 = 1,2,3
and the product Au of A and vector u is denoted by A;;u;, where the repeated
index indicates summation. The trace of A is denoted by tr A; the symmetric
and skew parts of A are given by sym A = (A + AT) and skw A = J(A — AT)
respectively, AT being the transpose of A; while the magnitude of A is given by
|A| = (A;;Ai;)*/?. The inner-product of nonzero second-order tensors A, B and
that of third order tensors A, B are defined by A : B = A;;B;; and A ‘B = AijrBijk
respectively. The deviatoric part of a second-order tensor A is defined by A, =
devA = A — %(tr A)I, where I is the second-order unit tensor. Furthermore,
given any nonzero vector a, the component form of second-order tensor (ax) is
(ax);; = €x;ax, where €;; is the permutation symbol. The partial derivative of
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any quantity (.) with respect to the spatial variable x; is defined by (-),; = %(z',).
Finally and in component forms, the gradients of a vector field a and tensor field A
are defined by (Va);; = a;; and (VA);;r = A;j i respectively; the divergences of
the same quantities are defined by Diva = ay j and (Div A); = A, i respectively;

while the curl of a tensor A is given by (Curl A);; = (V x A);j = €ipgAjg.p-

3. Kinematic relations

Let u denote the displacement vector of an arbitrary particle in a plastically
deformed polycrystalline solid body B undergoing infinitesimal deformation, then
the gradient of displacement vector u admits the additive decomposition

Vu=H*+H? trHP =0,

where H®, HP are the elastic and plastic components of Vu respectively, and tr HP
is the trace of the tensor HP. The elastic component H® = E€ + W€ characterizes
both the stretching E¢ and rotation W€ of the material lattice structure while the
plastic component HP = EP + WP accounts for an irreversible defect due to the
formation and motion of dislocations in the material lattice structure; EP is the
plastic strain and WP is the plastic rotation.

The Burgers tensor G is defined by

(3.1) G =V x H? = Curl H?.
THEOREM 3.1. Let the Burgers tensor G be a strictly skew-symmetric tensor,

then G assumes the form G = —1((DivHPT)x), where HP is the plastic distortion
tensor.

PROOF. Since G is skew-symmetric, there exists an axial vector ¢ such that
(3.2) G=gx.
The component form of Eq. (3.2) is
Gij = €ikj 9,
Using Eq. (3.1) we have
(3.3) Eiqufq,p = €ikjJk-
Multiplying both sides of Eq. (3.3) by permutation symbol €;,,; gives

p —
€imj€ipgH g, = €imj€ikj i,

(34) 25mkgk = _Hgm,q
where d,,, is the Kronecker-delta symbol.

Equation (3.4) implies that the vector § is

(3.5) §=—3(DivHT).
Substituting Eq. (3.5) into Eq. (3.2) yields the desired result
(3.6) G = —3((DivHPT)x).

This completes the proof. O
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In view of Eq. (3.6); the defect energy S : G due to the non-zero skew-

symmetric microstress tensor S = —yx = (x¥x)? via the Burgers tensor G takes
the form
(3.7) S:G =y (DivH!T),

where —y is an axial vector associated with the skew-symmetric microstress ten-
sor S.

The proof of relation in Eq. (3.7) is presented below.

Using Egs. (3.2)

S:G = (—xx):(gx) = —€ikj Xk€imjiIm,

(3.8) S: G = —€inj€imiXngm = —20miXrgm = —2X - §.
Using Eq. (3.5) in Eq. (3.8) establishes the relation
(3.9) S:G =y (DivH!T).

4. Internal Power Expenditure

The internal power expenditure of a system is the time derivative of the internal
work expenditure. In view of Gurtin [8], let the elastic stress T, plastic microstress
T?, and skew symmetric microstress S be power-conjugates to elastic distortion rate
He¢, plastic distortion rate H?, and Burgers tensor rate G = Curl H? respectively,
then the net internal power expenditure Wi, (P) within the subregion P of the
body is

Wini(P) = / (T:H°+ TP :HP +S:G)dV.
Introducing T : H® = T : (E€ fWe) =T : E° yields
(4.1) Wint (P) :/P(T "B+ TP HP +S: G)dV.
Substituting Eq. (3.9) into Eq. (4.1) gives

Wint (P) 2/ [T:E¢+ TP : HP + ¥ - DivH!]dV.
P

5. Microforce balance

The equilibrium equation (macroforce balance) at the points within the subre-
gion P of the body and the associated boundary condition (macrotraction condi-
tion) on the boundary OP of P, governing the mechanical behavior of the body at
macro scale, are [8,9]

DivT +b =0,
and
Tn = t(n),
respectively, where n is the outward unit normal on the boundary 0P of P, b is
the body force, and t(n) is the macrotraction.
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Let the virtual velocities v = (1, H®, H?) satisfy the conditions
(5.1) Va=H®+H?, trHP =0,

then the principle of virtual power implies that
(5.2) / [T:E°+ TP : H? + ¥ - DivHT]dV
P

= / [K(n) : H? + t(n) - @]dA +/ b-adV,
P P
where K(n) is the microtraction on boundary 0P. )
_ Since v = (u,H®, HP) are arbitrary; setting u = 0 in Eq. (5.1) gives H® =
—HP.
Substituting @ = 0 and H¢ = —H? in Eq. (5.2) yields

(5.3) / (TP —T):HP + ¥-DivH!T]dV = [ K(n): HPdA.
P oP

Using the divergence theorem
(5.4) / X-DivEPTdV = [ (Y®@n)T : HPdA - / (V)T : HPAV.
P oP P

Substituting Eq. (5.4) into Eq. (5.3) gives

(5.5) / [TP — T — (VY)T]: HPdV = / K — (v@n)T]: HPdA.

P aP
Using the fundamental lemma of calculus of variation and invoking the constraint
that TP is deviatoric (since H? is deviatoric), the solution to Eq. (5.5) gives both
the microforce balance

(5.6) T, =T? - (VX),,
and its associated microtraction condition
(5.7) K(n)=({® n)f

Here T, is the deviatoric part of the Cauchy stress. Within the framework of small
deformation for isotropic materials, the full Cauchy stress is a linear function of
the strain in the elastic regime. It is in fact written as

T = 2pE + Atr(E),

where p, A are the Lame’s constants, and E is the total strain. In the plastic regime,
T is constrained to account for yielding and irreversible restructuring in the plastic
material. It is during this process that the deviatoric stress T, is further required
to satisfy the microscopic force balance (5.6) in addition to satisfying T, = 2uES,
where E¢ is the deviatoric part of the elastic strain. In a plastically deformed body
with the strictly skew-symmetric Burgers tensor, Egs. (5.6) and (5.7) govern the
interaction between elastic and plastic responses in the body.
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6. Free energy imbalance and constitutive relations

Let % be the free energy of the body measured per unit volume. The second
law of thermodynamics, which states that the free energy cannot exceed power
expended on the body, implies [9]

z/}—T:Ee—Tp:Hp—S:GgO.
Introducing Eq. (3.9) into the above inequality gives
(6.1) ¢ —T:E°—TP:HP — - DivH!T <0.
In view of Eq. (3.6), the free energy takes the form
(6.2) ¢ = (B¢, G) = ¢(E®, DivHPT).
Let the skew symmetric microstress S assume the form S = S + Sdis; §en and
S4is heing energetic and dissipative components of S respectively, then
(6.3) S G =y DivHT
and

sdis . G = ¥ . DivHP?,

where ¥ and Y4 are the respective corresponding energetic and dissipative com-

ponents of ¥.
The application of the chain rule on free energy in Eq. (6.2) gives

- o e ai .
(6.4) b=m (B4 o5 G

Using Coleman—Noll procedure, the energetic microstress S°* and the elastic stress
T are given by

(6.5) s = % and T = g];be
Substituting Egs. (6.5) and (6.3) into Eq. (6.4) gives
(6.6) ¢ =T:E°+ y* . DivH?,
Since S = —x'x, the microstress ¥ assumes the form
(6.7) v = 7o 4 pdis,
Using Egs. (6.6) and (6.7) in Eq. (6.1) gives the dissipation inequality
(6.8) TP : HP + ¢ . DivHPT > 0.

The expression on the left-hand side of the inequality (6.8) is the local dissipation,
which is nonnegative. The term T : H? is the dissipation associated with plastic
microstress T?, and Y45 Div H? is the local dissipation associated with size effects.
The term prevailing in the dissipation inequality (6.8) will depend on the type of
physical problems being considered.

In the present theory, the effective distortion-rate d? is defined by

(6.9) @ = \/[I7[2 + ¢2| Div T2,
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The expression in Eq. (6.9) is consistent with the result in Gurtin and Anand [9].
The effective distortion rate is introduced to ensure that the constitutive relations
for the dissipative microscopic stresses are sufficiently consistent with the second
law of thermodynamics. The length scale ¢ is introduced to ensure dimension
consistency. An alternative form of Eq. (6.9), which is more general, is to replace
the term |¢2 DivH?|? with ¢2|VH?|2. The parameter ¢ is the dissipative length
scale associated with the divergence of transpose of plastic distortion.

Following Gurtin et. al [16] and Han and Reddy [20], we introduce a general-
ized plastic distortion rate HP

HP = (H”, ¢ Div HPT)

and a generalized flow direction NP involving the plastic spin

HP

ar’

We define a generalized plastic stress TP power-conjugate to HP by
TP = (TP, ¢~y 9").
The dissipation inequality (6.8) takes the form
§=TPeH" >0,

NP

where the product e is defined by
TP « HP = T? : HP 4 Y4 . DivHP?.

Suppose the direction of the generalized plastic stress and the direction of the flow
direction NP coincide, then there exists a scalar function Y (dP) such that

TP = Y (dP)NP.
Let Y7 (dP) assume the form Y;(dP) = Y;‘f), then one has the following dissipative
constitutive relations’
(6.10) TP =Y, (dP)HP, Y4 = ¢%Y;(dP) Div HPT.

7. Quadratic free energy

In view of Gurtin [8], the quadratic, isotropic free energy ¢ = ¥ (E¢, G) has
the form

(7.1) (B, G) = plES* + 3r| tr B + 1pQ° |G,
where () is the energetic length scale. The energetic and dissipative length scales

Q@ and ¢ are presumably small lying in the micron scale but essentially enter the
constitutive theory to ensure dimension consistency. Using Eq. (6.5), gives

gen — HJQ2G

LIn the absence of plastic rotation, Y; (dP) following Gurtin and Anand [9] can be chosen as
Yi(dP) = (‘;—p)md%, where d, is the initial flow rate and S is the flow resistance. By extension,
o

this can be chosen to account for the plastic spin.
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The energetic microstress vector " in terms of the Burgers tensor is obtained by?

€rij pQ?
X" = Q% (G — Gi) = == (€ijr€ina iy, — €ri€ipa Y )
_pe? pQ?
4 —(Hp = Hiy = Hyy o+ HY ) = 2 Hy, -
In invariant form, we have
2
(7.2) yeon = ”Q Div H?T.

Using Eq. (3.6)
|G|? = 1| DivHT ]2
The alternative form of Eq. (7.1) reads
(B, G) = (B, Div H'T) = §*(E°) + ¢ (Div H'T),
where . .
9 (BF) = ulBSJ? + §|trEe|2,
and
YP* (Div HPT) |D HPT 2,

The combination of ¢?*(Div HPT) =

Len oY
X ~ 9DivHIT'

8. Flow rule

and Eq. (7.2) implies that

The introduction of Eq. (6.7) into microforce balance Eq. (5.6) gives
(8.1) T, +(VX™)g =TV = (VX )5,
and the gradient of ¥ in Eq. (7.2) yields
o8
2

(8.2) VY = Vv Div HPT,

Substituting Eqgs. (6.10) and (8.2) into Eq. (8.1) gives the flow rule

(8.3) T, +LQ2(VD1VHPT) = Y1 (dP)HP — ¢*(V(Y1(dP) Div HPT )T

The symmetric deviatoric components of Eq. (8.3) give?
2 . .
T, + ﬂ sym, (V Div HPT) = Y (dP)E? — ¢* sym, V(Y7 (dP) Div HPT),
while the skew component of Eq. (8.3) is

2 .
—% skw(V DivHPT) = VWP + ¢? skw V(Y7 (dP) Div HPT).

2Recall that 8% = (Y°0x)T = —¥°x; so that X" = Jepi;SEP.

3 where we the denote sym, A as the symmetric-deviatoric part of a second order tensor A
and defined as sym, A = (A + ATy -1 3 tr(A)L
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REMARK 8.1. In special problems where plastic rotation WP = 0, the sym-
metric component of the flow rule reduces to

2 . .
T, + % sym, (V Div E?) = Y (d?)E? — ¢* sym, (V (Y3 (d”) Div EP))

and the corresponding skew component takes the form

uQ

(8.4) i skw(V Div EP) = ¢? skw(V(Y; (dP) Div EP)).

Furthermore, when V Div E? is symmetric and ¢ # 0, Eq. (8.4) vanishes.

9. Microscopic simple boundary conditions and variational formulation

In view of Eq. (5.7), the null-power expenditure on the boundary 0B of B
gives
(Y@n),): H =0.
Thus, we assume simple boundary conditions

H?=0 on TDyuq and (Xx®on)l' =0 on Thee,

where I'y,q and Tgee are complementary subsurfaces called microscopically hard
and free boundaries respectively.

To obtain the variational formulation of the flow rule, we assume null power
expenditure on the boundary 9B of the body B and that a portion of the boundary
is microscopically hard while the remaining is microscopically free so that

(9.1) H? =0 on Dha.

Let test field F satisfy Eq. (9.1). Invoking the constraint of null expenditure of
power, the weak form of the flow rule reads

(9.2) / (TP —T,): F+x-DivFT]dV = 0.
B
Using the divergence theorem, Eq. (9.2) becomes

/ (T? — T, — (V¥)T) : FdV + / (v ©n)!]: FdA = 0.
B

Cree
10. Plastic free-energy balance
The time derivative of the defect energy ¥? (Div HPT) is
(10.1) $?(Div HPT) = ¢°" . Div HP7.
Integrating Eq. (10.1) over the body gives

/wpdV / [xe" - Div HPT|dV.

In view of the null power expenditure on the boundary 9B of the body B, and the
expression for internal power expenditure, we have

/ [T - Div HpT]dV — / (T, —TP) : HPdV — / (x4 - Div HPT]dV.
B B b
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Thus, the plastic free-energy balance for the problem under consideration takes the
form

w2 & [ rav = [ wyivay - [ g DTy

Equation (10.2) confirms the well-known results that the rate of increase in the
defect energy cannot exceed the plastic working represented by [ 5 To : HPdV (that

is, & [LPdV < [, T, : HPAV).

11. Strengthening and weakening of the material

Here, we follow the style adopted by Gurtin and Anand [9] in determining the
effect of the flow stress T, on the strengthening and weakening of the material. We
assume that:

(1) the material is rate independent and
=5
where Y, is the constant coarse grain yield strength;
(2) @ =0, so that Y?(G) =0 and Y = 0;
(3) at no time is the plastic distortion rate homogeneous; and
(4) boundary conditions are microscopically simple.

Y1 (dP)

From plastic free-energy balance Eq. (10.2), we have

(11.1) / T, : HPdV = Yo/ \/\HPP + ¢2| Div HPT |24V
B B

For a fixed time, let max |T,| be the maximum value of |T,| over B, then by the
Cauchy—Schwarz inequality we have

/TD:deV’ </ |TO\|HP|dV<max|TO|/ [HP|dV.
B B B

Using Egs. (6.9) and (11.1)

YO/ [HP|dV < Y,,/ \/\HPP + ¢2| Div HPT |24V
B B
< maX|TO|/ |HP|dV.
B
Hence we have the standard inequality

(11.2) max |T,| > Y.

Equation (11.2) implies that at each time, there exists some nontrivial region of
the body which is strengthened by the plastic flow.
On the other hand, integrating both sides of the microforce balance Eq. (5.6)

over B we have
/ TodV = / TPV — / (Vy)lav.
B B B
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Using a microscopically simple boundary condition gives

(11.3) / T,dV = / TPdV —/ (¥ ®@n)ldA.
B B Thara
In view of assumption 2, we have
H? Div HPT
P _ . o 2
(11.4) TP =Y, i X=4a Y, PR

Using Eq. (11.4), we have
‘/ TpdV’ V‘ <Y,

where Vol(B) is the volume of the body B
Also, (notlng that H? = 0 on Tapq) using Eq. (11.4) we have

2(DivH @ n)?
’ / X ® 1’1 dA‘ 1v ® )o
Thara + q2| Div HpT|2

|H|dV‘ Y, Vol(B),

dA‘

Thara

Div HT),
_ Yoq/ (n® = Jol 14 < Y,q Area(Thard),
Thard | Div HpT|

where Area(I'naq) is the area of the microscopically hard boundary Thaq. In
obtaining this inequality, we have made use of the fact that given any second order
tensor A and vectors a and b we have

|A,| < |A] and
la®b| = [a]|b].
Thus we have

‘ / (X® n):;FdA’ < Y,q Area(T'hara)-
Thard

From Eq. (11.3), it is clear that

’/ T dV’ / T”dV’ + ‘/ (Y®@n)ldA
Thara
<Y, Vol(B) + Y,q Area(Thara) = Yo (1 + €para) Vol(B),

where
q Area(T'hara)

Vol(B)

1
T
‘Vow) /B odV

Using the microscopically free boundary condition, with epa,q = 0, we have

1
= [ mav|<v,
Vol(B) / ‘ <

where |VOI f g TodV| is known as the average flow stress.

€hard =

Clearly

< Yo(l + 6hard)~

(11.5)
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Equation (11.5) implies that if the boundary is microscopically free, then at
each time, there exists a nontrivial region of the body that is weakened by the
plastic flow.

12. Concluding remarks

This study shows that the defect energy via the strictly skew-symmetric Burgers
tensor is converted to defect energy via the divergence of plastic distortion in solid
bodies undergoing inhomogeneous plastic flow. It is obtained that the dependency
of the microscopic stress vector on the divergence of transpose of plastic distortion
rate leads to weakening and strengthening effects in the flow rule. Furthermore,
it is shown that, when the term V Div EP is symmetric and the dissipative length
scale ¢ # 0, the plastic strain rate is governed by the symmetric deviatoric flow
rule. The results in this work find numerous applications in the analysis of size
effects in plastically deformed solids for cases where the Burgers tensor is strictly
skew-symmetric. For future study and investigation, the present theory can be

extended to include surface/interface energy terms [21,22].
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E®EKTU BEJINMYNHE ITOBE3AHU CA KOCOCUMETPNUYHUM
BYPIEPCOBUM TEH30POM

PE3SUME. Y oBOM pajy ncTpaxyjy ce mojase edekara BeJIUINHE TOBE3AHUX Ca,
JIMBEPTEHIMjOM TPAHCIIOHOBAHOT IJIACTUYHUAX U300JINYEHa Y IJIACTHIHO J1eOPMU-
CaHMM U30TPOIHUM MarepujajinMa. [[puHIUI BUpTYesiHE CHare, paBHOTEXKE eHep-
rUje U ApYTH 3aKOH TEePMOJIUHAMEKE Ce KOPHUCTE 3a (DOPMYIINCAHE jeTHATNHA DaB-
HOTEYXKEe MUKPO-CHUJIA U TEPMOINHAMUIKIX KOH3NCTEHTHUX KOHCTUTYTHUBHUX OTHOCA
3a JINCUIIATHBHE MUKPOCKOIICKE HAIOHE MMOBE3aHe €A IIACTUYIHUM U300JUIeheM U
KOCOCUMETPUIHUM JejioM Byprepcosor Tenzopa. Jlobujeno je ma ce enepruja je-
dekTa Kpo3 crporo Kocu-ByprepcoB TeH30p mnperBapa y eHeprujy Jedexra Kpo3
JUBEPTEHIN]y IJIACTUIHOI U300/ mderma. [IpucycTBo ckaa IyKuHe MaTepujaia y
J00UjeHnM jeHaYnHAMA TOKA yKa3yje ma je moryhe onasutu edeKTe BeTUINHE KOjU
Cy TIOBE3AHU Ca KOCOCUMETPUIHUM JI€JIOM ByprepcoBor TeH30pa TOKOM HEXOMOT'€HOT
IJIACTUYHOT CTpyjarba IBpCTOr Marepujajia. Konauno n uamely ocrasior, mokasa-
JIO Ce JIa 3aBUCHOCT MUKPOCKOIICKOI BEKTODa HAIIPe3arba OJl JUBepreHiiuje Op3uHe
IJIACTUYHOT M300/IMYeha JTOBOHU J10 ciabibeba U jadama edekTa y jeHadnHaMa
TOKA.
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