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SIZE EFFECTS ASSOCIATED WITH SKEW
SYMMETRIC BURGERS TENSOR
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A. P. Akinola, and B. A. Olokuntoye

Abstract. This paper investigates size effect phenomena associated with
the divergence of the transpose of plastic distortion in plastically deformed
isotropic materials. The principle of virtual power, balance of energy, second
law of thermodynamics, and codirectionality hypothesis are used to formulate
the governing microforce balance and thermodynamically consistent constitu-
tive relations for dissipative microscopic stresses associated with the plastic
distortion and skew part of the Burgers tensor. It is obtained that the de-
fect energy through the strictly skew Burgers tensor is converted to the defect
energy via the divergence of the plastic distortion. The presence of material
length scales in the obtained flow rule indicates that it is possible to appre-
hend size effects associated with the skew part of the Burgers tensor during
the inhomogeneous plastic flow of solid material. Finally and amongst other
things, it is shown that the dependency of the microscopic stress vector on
the divergence of plastic distortion rate leads to weakening and strengthening
effects in the flow rule.

1. Introduction

Studies have shown that, in the micron scale range of about 500 nanometers
to 50 micrometers, the strength of the metallic component during inhomogeneous
plastic flow is size-dependent [1]. This size effect is not captured by the classi-
cal plasticity theory due to its inability to accommodate intrinsic material length
scales. Gradient plasticity theories [2] have been developed to circumvent these
shortcomings.

There are many gradient plasticity theories in literature. For instance, Aifan-
tis [3,4] and Muhlhaus and Aifantis [5] developed gradient theories in which the
Laplacian of an effective strain measure is incorporated into the classical yield cri-
terion while Gudmundson [6], Gurtin [7, 8] and Gurtin and Anand [9] proposed
gradient theories which resulted in size-dependent non-local flow rules. Other
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recent gradient theories associated with plastic size effects were proposed by Aifan-
tis and his co-authors [10–14].

In 2008, Reddy et al. [15] showed the need to incorporate the divergence of
plastic strain into the system of kinematic variables with a view to determining
the qualitative properties of the solution to the flow rules arising in strain gradient
plasticity. Borokinni et al. [16] considered the divergence of plastic strain rate
in the gradient theory of plasticity and an associated power-conjugate known as
the microscopic stress vector, obtaining thermodynamically consistent constitutive
relations for the dissipative and energetic microscopic stresses. At the crystalline
level, the flow of dislocation in the material structure is measured through plastic
distortion and Burgers tensors [17]. Gurtin [8] used the Burgers tensor and its
power-conjugate to establish a flow rule for rate-dependent processes [2,18].

This work is concerned with a thermodynamically consistent formulation of
plasticity theory involving size effects. The formulation is based on the basic laws
of continuum mechanics, principle of virtual power, and the first and second laws
of thermodynamics. However, the departure from other works in literature con-
sists in the assumption that both the Burgers tensor and its internal microstress
energy conjugate are strictly skew-symmetric. In this case, the energy through the
Burgers tensor is converted to the energy via the divergence of plastic distortion
tensor. This then allows the development of a divergence-based plasticity theory
for investigating size effects in plastically deformed solids. The present theory has
both an advantage and a limitation. The merit is that it is efficient in the sense
that the internal microstress in plastically deformed solid bodies is measured by a
vector quantity (rank-one object) whereas in the usual gradient plasticity theory,
one uses a rank-three tensor (polar microstress tensor). The limitation is that the
theory is restricted to problems where the Burgers tensor and its energy conjugate
are strictly skew-symmetric.

Recently, Borokinni [19] investigated the difference between the well-known
Aifantis [3] and Gurtin-Anand theories [9], both of which ignore the plastic spin.
A point of departure is to remove the assumption of plastic irrotationality from the
outset of the present article so that the plastic distortion rate tensor is considered
as non-symmetric.

2. Notations

In component form, second-order tensor A is denoted by 𝐴𝑖𝑗 , 𝑖, 𝑗 = 1, 2, 3
and the product Au of A and vector u is denoted by 𝐴𝑖𝑗𝑢𝑗 , where the repeated
index indicates summation. The trace of A is denoted by trA; the symmetric
and skew parts of A are given by symA = 1

2 (A +A𝑇 ) and skwA = 1
2 (A −A𝑇 )

respectively, A𝑇 being the transpose of A; while the magnitude of A is given by
|A| = (𝐴𝑖𝑗𝐴𝑖𝑗)

1/2. The inner-product of nonzero second-order tensors A, B and
that of third order tensors A, B are defined by A : B = 𝐴𝑖𝑗𝐵𝑖𝑗 and A

...B = 𝐴𝑖𝑗𝑘𝐵𝑖𝑗𝑘

respectively. The deviatoric part of a second-order tensor A is defined by A𝑜 =
devA = A − 1

3 (trA)I, where I is the second-order unit tensor. Furthermore,
given any nonzero vector a, the component form of second-order tensor (a×) is
(a×)𝑖𝑗 = 𝜖𝑖𝑘𝑗𝑎𝑘, where 𝜖𝑖𝑘𝑗 is the permutation symbol. The partial derivative of
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any quantity ( . ) with respect to the spatial variable 𝑥𝑖 is defined by ( · ),𝑖 = 𝜕( · )
𝜕𝑥𝑖

.
Finally and in component forms, the gradients of a vector field a and tensor field A
are defined by (∇a)𝑖𝑗 = 𝑎𝑖,𝑗 and (∇A)𝑖𝑗𝑘 = 𝐴𝑖𝑗,𝑘 respectively; the divergences of
the same quantities are defined by Div a = 𝑎𝑘,𝑘 and (DivA)𝑖 = 𝐴𝑖𝑘,𝑘 respectively;
while the curl of a tensor A is given by (CurlA)𝑖𝑗 = (∇×A)𝑖𝑗 = 𝜖𝑖𝑝𝑞𝐴𝑗𝑞,𝑝.

3. Kinematic relations

Let u denote the displacement vector of an arbitrary particle in a plastically
deformed polycrystalline solid body 𝐵 undergoing infinitesimal deformation, then
the gradient of displacement vector u admits the additive decomposition

∇u = H𝑒 +H𝑝, trH𝑝 = 0,

where H𝑒, H𝑝 are the elastic and plastic components of ∇u respectively, and trH𝑝

is the trace of the tensor H𝑝. The elastic component H𝑒 = E𝑒 +W𝑒 characterizes
both the stretching E𝑒 and rotation W𝑒 of the material lattice structure while the
plastic component H𝑝 = E𝑝 + W𝑝 accounts for an irreversible defect due to the
formation and motion of dislocations in the material lattice structure; E𝑝 is the
plastic strain and W𝑝 is the plastic rotation.

The Burgers tensor G is defined by

(3.1) G = ∇×H𝑝 = CurlH𝑝.

Theorem 3.1. Let the Burgers tensor G be a strictly skew-symmetric tensor,
then G assumes the form G = − 1

2 ((DivH𝑝𝑇 )×), where H𝑝 is the plastic distortion
tensor.

Proof. Since G is skew-symmetric, there exists an axial vector �⃗� such that

(3.2) G = �⃗� × .

The component form of Eq. (3.2) is

𝐺𝑖𝑗 = 𝜖𝑖𝑘𝑗𝑔𝑘,

Using Eq. (3.1) we have

(3.3) 𝜖𝑖𝑝𝑞𝐻
𝑝
𝑗𝑞,𝑝 = 𝜖𝑖𝑘𝑗𝑔𝑘.

Multiplying both sides of Eq. (3.3) by permutation symbol 𝜖𝑖𝑚𝑗 gives

𝜖𝑖𝑚𝑗𝜖𝑖𝑝𝑞𝐻
𝑝
𝑗𝑞,𝑝 = 𝜖𝑖𝑚𝑗𝜖𝑖𝑘𝑗𝑔𝑘,

(3.4) 2𝛿𝑚𝑘𝑔𝑘 = −𝐻𝑝
𝑞𝑚,𝑞

where 𝛿𝑚𝑛 is the Kronecker-delta symbol.
Equation (3.4) implies that the vector �⃗� is

(3.5) �⃗� = − 1
2 (DivH𝑝𝑇 ).

Substituting Eq. (3.5) into Eq. (3.2) yields the desired result

(3.6) G = − 1
2 ((DivH𝑝𝑇 )×).

This completes the proof. �
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In view of Eq. (3.6); the defect energy S : G due to the non-zero skew-
symmetric microstress tensor S = −�⃗�× = (�⃗�×)𝑇 via the Burgers tensor G takes
the form

(3.7) S : G = �⃗� · (DivH𝑝𝑇 ),

where −�⃗� is an axial vector associated with the skew-symmetric microstress ten-
sor S.

The proof of relation in Eq. (3.7) is presented below.
Using Eqs. (3.2)

S : G = (−�⃗�×) : (�⃗�×) = −𝜖𝑖𝑘𝑗𝜒𝑘𝜖𝑖𝑚𝑗𝑔𝑚,

(3.8) S : G = −𝜖𝑖𝑘𝑗𝜖𝑖𝑚𝑗𝜒𝑘𝑔𝑚 = −2𝛿𝑚𝑘𝜒𝑘𝑔𝑚 = −2�⃗� · �⃗�.

Using Eq. (3.5) in Eq. (3.8) establishes the relation

(3.9) S : G = �⃗� · (DivH𝑝𝑇 ).

4. Internal Power Expenditure

The internal power expenditure of a system is the time derivative of the internal
work expenditure. In view of Gurtin [8], let the elastic stress T, plastic microstress
T𝑝, and skew symmetric microstress S be power-conjugates to elastic distortion rate
Ḣ𝑒, plastic distortion rate Ḣ𝑝, and Burgers tensor rate Ġ = Curl Ḣ𝑝 respectively,
then the net internal power expenditure 𝑊int(𝑃 ) within the subregion 𝑃 of the
body is

𝑊int(𝑃 ) =

∫︁
𝑃

(T : Ḣ𝑒 +T𝑝 : Ḣ𝑝 + S : Ġ)𝑑𝑉.

Introducing T : H𝑒 = T : (E𝑒 +W𝑒) = T : E𝑒 yields

(4.1) 𝑊int(𝑃 ) =

∫︁
𝑃

(T : Ė𝑒 +T𝑝 : Ḣ𝑝 + S : Ġ)𝑑𝑉.

Substituting Eq. (3.9) into Eq. (4.1) gives

𝑊int(𝑃 ) =

∫︁
𝑃

[T : Ė𝑒 +T𝑝 : Ḣ𝑝 + �⃗� ·Div Ḣ𝑝𝑇 ]𝑑𝑉 .

5. Microforce balance

The equilibrium equation (macroforce balance) at the points within the subre-
gion 𝑃 of the body and the associated boundary condition (macrotraction condi-
tion) on the boundary 𝜕𝑃 of 𝑃 , governing the mechanical behavior of the body at
macro scale, are [8,9]

DivT+ b = 0,

and
Tn = t(n),

respectively, where n is the outward unit normal on the boundary 𝜕𝑃 of 𝑃 , b is
the body force, and t(n) is the macrotraction.
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Let the virtual velocities 𝜈 = (ũ, H̃𝑒, H̃𝑝) satisfy the conditions

(5.1) ∇ũ = H̃𝑒 + H̃𝑝, tr H̃𝑝 = 0,

then the principle of virtual power implies that

(5.2)
∫︁
𝑃

[T : Ẽ𝑒 +T𝑝 : H̃𝑝 + �⃗� ·Div H̃𝑝𝑇 ]𝑑𝑉

=

∫︁
𝜕𝑃

[K(n) : H̃𝑝 + t(n) · ũ]𝑑𝐴+

∫︁
𝑃

b · ũ𝑑𝑉 ,

where K(n) is the microtraction on boundary 𝜕𝑃 .
Since 𝜈 = (ũ, H̃𝑒, H̃𝑝) are arbitrary; setting ũ = 0 in Eq. (5.1) gives H̃𝑒 =

−H̃𝑝.
Substituting ũ = 0 and H̃𝑒 = −H̃𝑝 in Eq. (5.2) yields

(5.3)
∫︁
𝑃

[(T𝑝 −T) : H̃𝑝 + �⃗� ·Div H̃𝑝𝑇 ]𝑑𝑉 =

∫︁
𝜕𝑃

K(n) : H̃𝑝𝑑𝐴.

Using the divergence theorem

(5.4)
∫︁
𝑃

�⃗� ·Div H̃𝑝𝑇 𝑑𝑉 =

∫︁
𝜕𝑃

(�⃗�⊗ n)𝑇 : H̃𝑝𝑑𝐴−
∫︁
𝑃

(∇�⃗�)𝑇 : H̃𝑝𝑑𝑉.

Substituting Eq. (5.4) into Eq. (5.3) gives

(5.5)
∫︁
𝑃

[T𝑝 −T− (∇�⃗�)𝑇 ] : H̃𝑝𝑑𝑉 =

∫︁
𝜕𝑃

[K− (�⃗�⊗ n)𝑇 ] : H̃𝑝𝑑𝐴.

Using the fundamental lemma of calculus of variation and invoking the constraint
that T𝑝 is deviatoric (since H𝑝 is deviatoric), the solution to Eq. (5.5) gives both
the microforce balance

(5.6) T𝑜 = T𝑝 − (∇�⃗�)𝑇𝑜 ,

and its associated microtraction condition

(5.7) K(n) = (�⃗�⊗ n)𝑇𝑜 .

Here T𝑜 is the deviatoric part of the Cauchy stress. Within the framework of small
deformation for isotropic materials, the full Cauchy stress is a linear function of
the strain in the elastic regime. It is in fact written as

T = 2𝜇E+ 𝜆 tr(E)I,

where 𝜇, 𝜆 are the Lame’ s constants, and E is the total strain. In the plastic regime,
T is constrained to account for yielding and irreversible restructuring in the plastic
material. It is during this process that the deviatoric stress T𝑜 is further required
to satisfy the microscopic force balance (5.6) in addition to satisfying T𝑜 = 2𝜇E𝑒

𝑜,
where E𝑒

𝑜 is the deviatoric part of the elastic strain. In a plastically deformed body
with the strictly skew-symmetric Burgers tensor, Eqs. (5.6) and (5.7) govern the
interaction between elastic and plastic responses in the body.
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6. Free energy imbalance and constitutive relations

Let 𝜓 be the free energy of the body measured per unit volume. The second
law of thermodynamics, which states that the free energy cannot exceed power
expended on the body, implies [9]

�̇� −T : Ė𝑒 −T𝑝 : Ḣ𝑝 − S : Ġ 6 0.

Introducing Eq. (3.9) into the above inequality gives

(6.1) �̇� −T : Ė𝑒 −T𝑝 : Ḣ𝑝 − �⃗� ·Div Ḣ𝑝𝑇 6 0.

In view of Eq. (3.6), the free energy takes the form

(6.2) 𝜓 = 𝜓(E𝑒,G) = 𝜓(E𝑒,DivH𝑝𝑇 ).

Let the skew symmetric microstress S assume the form S = Sen + Sdis; Sen and
Sdis being energetic and dissipative components of S respectively, then

(6.3) Sen : Ġ = �⃗� en ·Div Ḣ𝑝𝑇

and
Sdis : Ġ = �⃗� dis ·Div Ḣ𝑝𝑇 ,

where �⃗� en and �⃗� dis are the respective corresponding energetic and dissipative com-
ponents of �⃗�.

The application of the chain rule on free energy in Eq. (6.2) gives

(6.4) �̇� =
𝜕𝜓

𝜕E𝑒
: Ė𝑒 +

𝜕𝜓

𝜕G
: Ġ.

Using Coleman–Noll procedure, the energetic microstress Sen and the elastic stress
T are given by

(6.5) Sen =
𝜕𝜓

𝜕G
and T =

𝜕𝜓

𝜕E𝑒
.

Substituting Eqs. (6.5) and (6.3) into Eq. (6.4) gives

(6.6) �̇� = T : Ė𝑒 + �⃗� en ·Div Ḣ𝑝𝑇 .

Since S = −�⃗�×, the microstress �⃗� assumes the form

(6.7) �⃗� = �⃗� en + �⃗� dis.

Using Eqs. (6.6) and (6.7) in Eq. (6.1) gives the dissipation inequality

(6.8) T𝑝 : Ḣ𝑝 + �⃗� dis ·Div Ḣ𝑝𝑇 > 0.

The expression on the left-hand side of the inequality (6.8) is the local dissipation,
which is nonnegative. The term T : Ḣ𝑝 is the dissipation associated with plastic
microstress T𝑝, and �⃗� dis ·Div Ḣ𝑝 is the local dissipation associated with size effects.
The term prevailing in the dissipation inequality (6.8) will depend on the type of
physical problems being considered.

In the present theory, the effective distortion-rate 𝑑𝑝 is defined by

(6.9) 𝑑𝑝 =

√︁
|Ḣ𝑝|2 + 𝑞2|Div Ḣ𝑝𝑇 |2.
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The expression in Eq. (6.9) is consistent with the result in Gurtin and Anand [9].
The effective distortion rate is introduced to ensure that the constitutive relations
for the dissipative microscopic stresses are sufficiently consistent with the second
law of thermodynamics. The length scale 𝑞 is introduced to ensure dimension
consistency. An alternative form of Eq. (6.9), which is more general, is to replace
the term |𝑞2 Div Ḣ𝑝|2 with 𝑞2|∇Ḣ𝑝|2. The parameter 𝑞 is the dissipative length
scale associated with the divergence of transpose of plastic distortion.

Following Gurtin et. al [16] and Han and Reddy [20], we introduce a general-
ized plastic distortion rate Ḣ𝑝

Ḣ𝑝 = (Ḣ𝑝, 𝑞Div Ḣ𝑝𝑇 )

and a generalized flow direction N𝑝 involving the plastic spin

N𝑝 =
Ḣ𝑝

𝑑𝑝
.

We define a generalized plastic stress T𝑝 power-conjugate to Ḣ𝑝 by

T𝑝 = (T𝑝, 𝑞−1�⃗� dis).

The dissipation inequality (6.8) takes the form

𝛿 = T𝑝 ∙ Ḣ𝑝 > 0,

where the product ∙ is defined by

T𝑝 ∙ Ḣ𝑝 = T𝑝 : Ḣ𝑝 + �⃗� dis ·Div Ḣ𝑝𝑇 .

Suppose the direction of the generalized plastic stress and the direction of the flow
direction N𝑝 coincide, then there exists a scalar function 𝑌 (𝑑𝑝) such that

T𝑝 = 𝑌 (𝑑𝑝)N𝑝.

Let 𝑌1(𝑑𝑝) assume the form 𝑌1(𝑑
𝑝) = 𝑌 (𝑑𝑝)

𝑑𝑝 , then one has the following dissipative
constitutive relations1

(6.10) T𝑝 = 𝑌1(𝑑
𝑝)Ḣ𝑝, �⃗� dis = 𝑞2𝑌1(𝑑

𝑝)Div Ḣ𝑝𝑇 .

7. Quadratic free energy

In view of Gurtin [8], the quadratic, isotropic free energy 𝜓 = 𝜓(E𝑒,G) has
the form

(7.1) 𝜓(E𝑒,G) = 𝜇|E𝑒
𝑜|2 + 1

2𝜅| trE
𝑒|2 + 1

2𝜇𝑄
2|G|2,

where 𝑄 is the energetic length scale. The energetic and dissipative length scales
𝑄 and 𝑞 are presumably small lying in the micron scale but essentially enter the
constitutive theory to ensure dimension consistency. Using Eq. (6.5)a gives

Sen = 𝜇𝑄2G.

1 In the absence of plastic rotation, 𝑌1(𝑑𝑝) following Gurtin and Anand [9] can be chosen as
𝑌1(𝑑𝑝) = ( 𝑑

𝑝

𝑑𝑜
)𝑚 𝑆

𝑑𝑝
, where 𝑑𝑜 is the initial flow rate and 𝑆 is the flow resistance. By extension,

this can be chosen to account for the plastic spin.
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The energetic microstress vector �⃗� en in terms of the Burgers tensor is obtained by2

𝜒en
𝑟 =

𝜖𝑟𝑖𝑗
4
𝜇𝑄2(𝐺𝑖𝑗 −𝐺𝑗𝑖) =

𝜇𝑄2

4
(𝜖𝑖𝑗𝑟𝜖𝑖𝑝𝑞𝐻

𝑝
𝑗𝑞,𝑝 − 𝜖𝑗𝑟𝑖𝜖𝑗𝑝𝑞𝐻

𝑝
𝑖𝑞,𝑝)

=
𝜇𝑄2

4
(𝐻𝑝

𝑝𝑟,𝑝 −𝐻𝑝
𝑞𝑞,𝑟 −𝐻𝑝

𝑞𝑞,𝑟 +𝐻𝑝
𝑝𝑟,𝑝) =

𝜇𝑄2

2
𝐻𝑝

𝑝𝑟,𝑝.

In invariant form, we have

(7.2) �⃗� en =
𝜇𝑄2

2
DivH𝑝𝑇 .

Using Eq. (3.6)
|G|2 = 1

2 |DivH𝑝𝑇 |2.
The alternative form of Eq. (7.1) reads

𝜓(E𝑒,G) = 𝜓(E𝑒,DivH𝑝𝑇 ) = 𝜓𝑒(E𝑒) + 𝜓𝑝*(DivH𝑝𝑇 ),

where
𝜓𝑒(E𝑒) = 𝜇|E𝑒

𝑜|2 +
𝜅

2
| trE𝑒|2,

and

𝜓𝑝*(DivH𝑝𝑇 ) =
𝜇𝑄2

4
|DivH𝑝𝑇 |2.

The combination of 𝜓𝑝*(DivH𝑝𝑇 ) = 𝜇𝑄2

4 |DivH𝑝𝑇 |2 and Eq. (7.2) implies that

�⃗� en =
𝜕𝜓𝑝*

𝜕DivH𝑝𝑇
.

8. Flow rule

The introduction of Eq. (6.7) into microforce balance Eq. (5.6) gives

(8.1) T𝑜 + (∇�⃗� en)𝑇𝑜 = T𝑝 − (∇�⃗� dis)𝑇𝑜 ,

and the gradient of �⃗� en in Eq. (7.2) yields

(8.2) ∇�⃗� en =
𝜇𝑄2

2
∇DivH𝑝𝑇 .

Substituting Eqs. (6.10) and (8.2) into Eq. (8.1) gives the flow rule

(8.3) T𝑜 +
𝜇𝑄2

2
(∇DivH𝑝𝑇 )𝑇𝑜 = 𝑌1(𝑑

𝑝)Ḣ𝑝 − 𝑞2(∇(𝑌1(𝑑
𝑝)Div Ḣ𝑝𝑇 ))𝑇𝑜 .

The symmetric deviatoric components of Eq. (8.3) give3

T𝑜 +
𝜇𝑄2

2
sym𝑜(∇DivH𝑝𝑇 ) = 𝑌1(𝑑

𝑝)Ė𝑝 − 𝑞2 sym𝑜 ∇(𝑌1(𝑑
𝑝)Div Ḣ𝑝𝑇 ).

while the skew component of Eq. (8.3) is

−𝜇𝑄
2

2
skw(∇DivH𝑝𝑇 ) = 𝑌1Ẇ

𝑝 + 𝑞2 skw∇(𝑌1(𝑑
𝑝)DivH𝑝𝑇 ).

2 Recall that Sen = (�⃗� en×)𝑇 = −�⃗� en×; so that 𝜒en
𝑟 = 1

2
𝜖𝑟𝑖𝑗𝑆

en
𝑖𝑗 .

3 where we the denote sym𝑜 A as the symmetric-deviatoric part of a second order tensor A

and defined as sym𝑜 A = 1
2
(A+A𝑇 )− 1

3
tr(A)I.
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Remark 8.1. In special problems where plastic rotation W𝑝 = 0, the sym-
metric component of the flow rule reduces to

T𝑜 +
𝜇𝑄2

2
sym𝑜(∇DivE𝑝) = 𝑌1(𝑑

𝑝)Ė𝑝 − 𝑞2 sym𝑜(∇(𝑌1(𝑑
𝑝)Div Ė𝑝))

and the corresponding skew component takes the form

(8.4) − 𝜇𝑄2

2
skw(∇DivE𝑝) = 𝑞2 skw(∇(𝑌1(𝑑

𝑝)Div Ė𝑝)).

Furthermore, when ∇DivE𝑝 is symmetric and 𝑞 ̸= 0, Eq. (8.4) vanishes.

9. Microscopic simple boundary conditions and variational formulation

In view of Eq. (5.7), the null-power expenditure on the boundary 𝜕𝐵 of 𝐵
gives

(�⃗�⊗ n)𝑇𝑜 ) : Ḣ
𝑝 = 0.

Thus, we assume simple boundary conditions

Ḣ𝑝 = 0 on Γhard and (�⃗�⊗ n)𝑇𝑜 = 0 on Γfree,

where Γhard and Γfree are complementary subsurfaces called microscopically hard
and free boundaries respectively.

To obtain the variational formulation of the flow rule, we assume null power
expenditure on the boundary 𝜕𝐵 of the body 𝐵 and that a portion of the boundary
is microscopically hard while the remaining is microscopically free so that

(9.1) Ḣ𝑝 = 0 on Γhard.

Let test field F satisfy Eq. (9.1). Invoking the constraint of null expenditure of
power, the weak form of the flow rule reads

(9.2)
∫︁
𝐵

[(T𝑝 −T𝑜) : F+ �⃗� ·DivF𝑇 ]𝑑𝑉 = 0.

Using the divergence theorem, Eq. (9.2) becomes∫︁
𝐵

(T𝑝 −T𝑜 − (∇�⃗�)𝑇 ) : F𝑑𝑉 +

∫︁
Γfree

[(�⃗�⊗ n)𝑇𝑜 ] : F𝑑𝐴 = 0.

10. Plastic free-energy balance

The time derivative of the defect energy 𝜓𝑝(DivH𝑝𝑇 ) is

(10.1) ˙̂
𝜓𝑝(DivH𝑝𝑇 ) = �⃗� en ·Div Ḣ𝑝𝑇 .

Integrating Eq. (10.1) over the body gives
𝑑

𝑑𝑡

∫︁
𝐵

𝜓𝑝𝑑𝑉 =

∫︁
𝐵

[�⃗� en ·Div Ḣ𝑝𝑇 ]𝑑𝑉.

In view of the null power expenditure on the boundary 𝜕𝐵 of the body 𝐵, and the
expression for internal power expenditure, we have∫︁

𝐵

[�⃗� en ·Div Ḣ𝑝𝑇 ]𝑑𝑉 =

∫︁
𝐵

(T𝑜 −T𝑝) : Ḣ𝑝𝑑𝑉 −
∫︁
𝐵

[�⃗� dis ·Div Ḣ𝑝𝑇 ]𝑑𝑉.
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Thus, the plastic free-energy balance for the problem under consideration takes the
form

(10.2)
𝑑

𝑑𝑡

∫︁
𝐵

𝜓𝑝𝑑𝑉 =

∫︁
𝐵

T𝑜 : Ḣ𝑝𝑑𝑉 −
∫︁
𝐵

[T𝑝 : Ḣ𝑝 + �⃗� dis ·Div Ḣ𝑝𝑇 ]𝑑𝑉 .

Equation (10.2) confirms the well-known results that the rate of increase in the
defect energy cannot exceed the plastic working represented by

∫︀
𝐵
T𝑜 : Ḣ𝑝𝑑𝑉 (that

is, 𝑑
𝑑𝑡

∫︀
𝐵
𝜓𝑝𝑑𝑉 6

∫︀
𝐵
T𝑜 : Ḣ𝑝𝑑𝑉 ).

11. Strengthening and weakening of the material

Here, we follow the style adopted by Gurtin and Anand [9] in determining the
effect of the flow stress T𝑜 on the strengthening and weakening of the material. We
assume that:

(1) the material is rate independent and

𝑌1(𝑑
𝑝) =

𝑌𝑜
𝑑𝑝
,

where 𝑌𝑜 is the constant coarse grain yield strength;
(2) 𝑄 = 0, so that 𝜓𝑝(G) = 0 and �⃗� en ≡ 0;
(3) at no time is the plastic distortion rate homogeneous; and
(4) boundary conditions are microscopically simple.

From plastic free-energy balance Eq. (10.2), we have

(11.1)
∫︁
𝐵

T𝑜 : Ḣ𝑝𝑑𝑉 = 𝑌𝑜

∫︁
𝐵

√︁
|Ḣ𝑝|2 + 𝑞2|Div Ḣ𝑝𝑇 |2𝑑𝑉.

For a fixed time, let max |T𝑜| be the maximum value of |T𝑜| over 𝐵, then by the
Cauchy–Schwarz inequality we have⃒⃒⃒⃒ ∫︁

𝐵

T𝑜 : Ḣ𝑝𝑑𝑉

⃒⃒⃒⃒
6

∫︁
𝐵

|T𝑜||Ḣ𝑝|𝑑𝑉 6 max |T𝑜|
∫︁
𝐵

|Ḣ𝑝|𝑑𝑉.

Using Eqs. (6.9) and (11.1)

𝑌𝑜

∫︁
𝐵

|Ḣ𝑝|𝑑𝑉 < 𝑌𝑜

∫︁
𝐵

√︁
|Ḣ𝑝|2 + 𝑞2|Div Ḣ𝑝𝑇 |2𝑑𝑉

6 max |T𝑜|
∫︁
𝐵

|Ḣ𝑝|𝑑𝑉.

Hence we have the standard inequality

(11.2) max |T𝑜| > 𝑌𝑜.

Equation (11.2) implies that at each time, there exists some nontrivial region of
the body which is strengthened by the plastic flow.

On the other hand, integrating both sides of the microforce balance Eq. (5.6)
over 𝐵 we have ∫︁

𝐵

T𝑜𝑑𝑉 =

∫︁
𝐵

T𝑝𝑑𝑉 −
∫︁
𝐵

(∇�⃗�)𝑇𝑜 𝑑𝑉.



SIZE EFFECTS ASSOCIATED WITH SKEW SYMMETRIC BURGERS TENSOR 109

Using a microscopically simple boundary condition gives

(11.3)
∫︁
𝐵

T𝑜𝑑𝑉 =

∫︁
𝐵

T𝑝𝑑𝑉 −
∫︁
Γhard

(�⃗�⊗ n)𝑇𝑜 𝑑𝐴.

In view of assumption 2, we have

(11.4) T𝑝 = 𝑌𝑜
Ḣ𝑝

𝑑𝑝
; �⃗� = 𝑞2𝑌𝑜

Div Ḣ𝑝𝑇

𝑑𝑝
.

Using Eq. (11.4)a we have⃒⃒⃒⃒ ∫︁
𝐵

T𝑝𝑑𝑉

⃒⃒⃒⃒
= 𝑌𝑜

⃒⃒⃒⃒ ∫︁
𝐵

Ḣ𝑝

𝑑𝑝
𝑑𝑉

⃒⃒⃒⃒
< 𝑌𝑜

⃒⃒⃒⃒ ∫︁
𝐵

Ḣ𝑝

|Ḣ𝑝|
𝑑𝑉

⃒⃒⃒⃒
6 𝑌𝑜Vol(𝐵),

where Vol(𝐵) is the volume of the body 𝐵.
Also, (noting that Ḣ𝑝 = 0 on Γhard) using Eq. (11.4) we have⃒⃒⃒⃒ ∫︁

Γhard

(�⃗�⊗ n)𝑇𝑜 𝑑𝐴

⃒⃒⃒⃒
= 𝑌𝑜

⃒⃒⃒⃒ ∫︁
Γhard

𝑞2(Div Ḣ𝑝𝑇 ⊗ n)𝑇𝑜√︁
|Ḣ𝑝|2 + 𝑞2|Div Ḣ𝑝𝑇 |2

𝑑𝐴

⃒⃒⃒⃒

< 𝑌𝑜𝑞

∫︁
Γhard

|(n⊗Div Ḣ𝑝𝑇 )𝑜|
|Div Ḣ𝑝𝑇 |

𝑑𝐴 6 𝑌𝑜𝑞Area(Γhard),

where Area(Γhard) is the area of the microscopically hard boundary Γhard. In
obtaining this inequality, we have made use of the fact that given any second order
tensor A and vectors a and b we have

|A𝑜| 6 |A| and
|a⊗ b| = |a||b|.

Thus we have ⃒⃒⃒⃒ ∫︁
Γhard

(�⃗�⊗ n)𝑇𝑜 𝑑𝐴

⃒⃒⃒⃒
< 𝑌𝑜𝑞Area(Γhard).

From Eq. (11.3), it is clear that⃒⃒⃒⃒ ∫︁
𝐵

T𝑜𝑑𝑉

⃒⃒⃒⃒
6

⃒⃒⃒⃒ ∫︁
𝐵

T𝑝𝑑𝑉

⃒⃒⃒⃒
+

⃒⃒⃒⃒ ∫︁
Γhard

(�⃗�⊗ n)𝑇𝑜 𝑑𝐴

⃒⃒⃒⃒
< 𝑌𝑜 Vol(𝐵) + 𝑌𝑜𝑞Area(Γhard) = 𝑌𝑜(1 + 𝜖hard)Vol(𝐵),

where

𝜖hard =
𝑞Area(Γhard)

Vol(𝐵)
.

Clearly ⃒⃒⃒⃒
1

Vol(𝐵)

∫︁
𝐵

T𝑜𝑑𝑉

⃒⃒⃒⃒
< 𝑌𝑜(1 + 𝜖hard).

Using the microscopically free boundary condition, with 𝜖hard = 0, we have

(11.5)
⃒⃒⃒⃒

1

Vol(𝐵)

∫︁
𝐵

T𝑜𝑑𝑉

⃒⃒⃒⃒
< 𝑌𝑜,

where | 1
Vol(𝐵)

∫︀
𝐵
T𝑜𝑑𝑉 | is known as the average flow stress.
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Equation (11.5) implies that if the boundary is microscopically free, then at
each time, there exists a nontrivial region of the body that is weakened by the
plastic flow.

12. Concluding remarks

This study shows that the defect energy via the strictly skew-symmetric Burgers
tensor is converted to defect energy via the divergence of plastic distortion in solid
bodies undergoing inhomogeneous plastic flow. It is obtained that the dependency
of the microscopic stress vector on the divergence of transpose of plastic distortion
rate leads to weakening and strengthening effects in the flow rule. Furthermore,
it is shown that, when the term ∇DivE𝑝 is symmetric and the dissipative length
scale 𝑞 ̸= 0, the plastic strain rate is governed by the symmetric deviatoric flow
rule. The results in this work find numerous applications in the analysis of size
effects in plastically deformed solids for cases where the Burgers tensor is strictly
skew-symmetric. For future study and investigation, the present theory can be
extended to include surface/interface energy terms [21,22].
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ЕФЕКТИ ВЕЛИЧИНЕ ПОВЕЗАНИ СА КОСОСИМЕТРИЧНИМ
БУРГЕРСОВИМ ТЕНЗОРОМ

Резиме. У овом раду истражуjу се поjаве ефеката величине повезаних са
дивергенциjом транспонованог пластичних изобличења у пластично деформи-
саним изотропним материjалима. Принцип виртуелне снаге, равнотеже енер-
гиjе и други закон термодинамике се користе за формулисање jедначина рав-
нотеже микро-сила и термодинамичких конзистентних конститутивних односа
за дисипативне микроскопске напоне повезане са пластичним изобличењем и
кососиметричним делом Бургерсовог тензора. Добиjено jе да се енергиjа де-
фекта кроз строго коси-Бургерсов тензор претвара у енергиjу дефекта кроз
дивергенциjу пластичног изобличења. Присуство скала дужине материjала у
добиjеним jедначинама тока указуjе да jе могуће опазити ефекте величине коjи
су повезани са кососиметричним делом Бургерсовог тензора током нехомогеног
пластичног струjања чврстог материjала. Коначно и између осталог, показа-
ло се да зависност микроскопског вектора напрезања од дивергенциjе брзине
пластичног изобличења доводи до слабљења и jачања ефекта у jедначинама
тока.
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