
THEORETICAL AND APPLIED MECHANICS
Volume 47 (2020) Issue 1, 19–31 DOI: https://doi.org/10.2298/TAM200116005Z

HEREDITARINESS AND NON-LOCALITY
IN WAVE PROPAGATION MODELING

Dušan Zorica

Abstract. The classical wave equation is generalized within the framework
of fractional calculus in order to account for the memory and non-local effects
that might be material features. Both effects are included in the constitutive
equation, while the equation of motion of the deformable body and strain are
left unchanged. Memory effects in viscoelastic materials are modeled through
the distributed-order fractional constitutive equation that generalizes all linear
models having differentiation orders up to order one. The microlocal approach
in analyzing singularity propagation is utilized in the case of viscoelastic ma-
terial described by the fractional Zener model, as well as in the case of two
non-local models: non-local Hookean and fractional Eringen.

1. Introduction

This review article aims to present results previously published in [13,14,18]
related to the fractional wave equations including hereditary and non-local effects.

The classical wave equation for a one-dimensional infinite deformable body
positioned along the 𝑥-axis, for time 𝑡 > 0, considered as a system of: the equation
of motion

(1.1)
𝜕

𝜕𝑥
𝜎(𝑥, 𝑡) = 𝜌

𝜕2

𝜕𝑡2
𝑢(𝑥, 𝑡),

where 𝜎, 𝑢, and 𝜌 are stress, displacement, and material density; strain 𝜀 for small
local deformations

(1.2) 𝜀(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡);

and the Hooke law
𝜎(𝑥, 𝑡) = 𝐸𝜀(𝑥, 𝑡),

representing the connection between stress and strain local in both time and space,
where 𝐸 is the Young modulus of elasticity, is generalized by considering memory

2010 Mathematics Subject Classification: Primary 35Q79; 35R11; Secondary 80A20; 26A33.
Key words and phrases: wave equation, memory and non-local effects, distributed-order frac-

tional model, non-local Hookean model, fractional Eringen model.
19

https://doi.org/10.2298/TAM200116005Z


20 ZORICA

effects through the distributed-order fractional constitutive model

(1.3)
∫︁ 1

0

𝜑𝜎(𝛼) 0D
𝛼
𝑡 𝜎(𝑥, 𝑡)d𝛼 = 𝐸

∫︁ 1

0

𝜑𝜀(𝛼) 0D
𝛼
𝑡 𝜀(𝑥, 𝑡)d𝛼,

where 𝜑𝜎 and 𝜑𝜀 are constitutive functions or distributions, while the non-locality
effects are taken into account either through the non-local fractional Hooke law

(1.4) 𝜎(𝑥, 𝑡) =
𝐸

ℓ1−𝛼
ℰ𝛼
𝑥 𝑢(𝑥, 𝑡) =

𝐸

ℓ1−𝛼

1

2Γ(1− 𝛼)

1

|𝑥|𝛼
*𝑥 𝜀(𝑥, 𝑡),

or through the fractional Eringen constitutive equation

(1.5) 𝜎(𝑥, 𝑡)− ℓ𝛼D𝛼𝜎(𝑥, 𝑡) = 𝐸𝜀(𝑥, 𝑡), 𝛼 ∈ (1, 3),

where ℓ is the non-locality parameter.
Constitutive equations (1.3), (1.4), and (1.5) contain different types of frac-

tional derivatives: the Riemann–Liouville fractional derivative of order 𝛼 ∈ (0, 1),
defined by

0D
𝛼
𝑡 𝑦(𝑡) =

d

d𝑡

(︁ 𝑡−𝛼

Γ(1− 𝛼)
*𝑡 𝑦(𝑡)

)︁
, 𝑡 > 0,

see [15], with *𝑡 denoting the convolution in time: 𝑓(𝑡) *𝑡 𝑔(𝑡) =
∫︀ 𝑡

0
𝑓(𝜂)𝑔(𝑡− 𝜂)d𝜂,

𝑡 > 0, the Riesz symmetrized fractional derivative

ℰ𝛼
𝑥𝑤(𝑥) =

1

2Γ(1− 𝛼)

1

|𝑥|𝛼
*𝑥

d

d𝑥
𝑤(𝑥), 𝛼 ∈ (0, 1),

with *𝑥 denoting the convolution in space: 𝑓(𝑡) *𝑥 𝑔(𝑡) =
∫︀
R 𝑓(𝜂)𝑔(𝑥− 𝜂)d𝜂, 𝑥 ∈ R,

and two Riesz-type symmetrized fractional derivatives

D𝛼𝑤(𝑥) =
1

2Γ(2− 𝛼)

1

|𝑥|𝛼−1 *𝑥
d2

d𝑥2
𝑤(𝑥), 𝛼 ∈ (1, 2),

D𝛼𝑤(𝑥) =
1

2Γ(3− 𝛼)

sgn𝑥

|𝑥|𝛼−2 *𝑥
d3

d𝑥3
𝑤(𝑥), 𝛼 ∈ [2, 3),

taken so that in both cases if 𝛼 → 2, then D𝛼 → 𝜕2

𝜕𝑥2 .
The distributed-order constitutive stress-strain relation (1.3) generalizes integer

and fractional order constitutive models of linear viscoelasticity

(1.6)
𝑛∑︁

𝑖=1

𝑎𝑖 0D
𝛼𝑖
𝑡 𝜎(𝑥, 𝑡) = 𝐸

𝑚∑︁
𝑗=1

𝑏𝑖 0D
𝛽𝑗

𝑡 𝜀(𝑥, 𝑡),

having differentiation orders up to the first order, if the constitutive distributions
𝜑𝜎 and 𝜑𝜀 are chosen as

𝜑𝜎(𝛼) :=

𝑛∑︁
𝑖=1

𝑎𝑖𝛿(𝛼− 𝛼𝑖), 𝜑𝜀(𝛼) :=

𝑚∑︁
𝑗=1

𝑏𝑖𝛿(𝛼− 𝛽𝑗),

with model parameters: 𝑎𝑖, 𝑏𝑗 > 0 as generalized time constants, and 𝛼𝑖, 𝛽𝑗 ∈ (0, 1)
as orders of fractional differentiation, where 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚. Thermo-
dynamical consistency of linear fractional constitutive equation (1.6) is examined
in [3], where it is shown that there are four cases of (1.6) when the restrictions
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on model parameters guarantee its thermodynamical consistency. The power type
distributed-order model of the viscoelastic body

(1.7)
∫︁ 1

0

𝑎𝛼 0D
𝛼
𝑡 𝜎(𝑥, 𝑡)d𝛼 = 𝐸

∫︁ 1

0

𝑏𝛼 0D
𝛼
𝑡 𝜀(𝑥, 𝑡)d𝛼,

considered in [1] and revisited in [3], is obtained if the constitutive functions 𝜑𝜎

and 𝜑𝜀 are chosen as
𝜑𝜎(𝛼) := 𝑎𝛼, 𝜑𝜀(𝛼) := 𝑏𝛼,

with the time constants 𝑎, 𝑏 > 0 satisfying 𝑎 6 𝑏 guaranteeing the model’s dimen-
sional homogeneity and thermodynamical consistency.

Generalizations of the classical wave equation are considered on an infinite
domain in [16,17], where the constitutive equation, representing a single class of
thermodynamically consistent linear fractional constitutive equation (1.6), is chosen
to be either the fractional Zener model, or its generalization having an arbitrary
number of fractional derivatives of the same orders acting on both stress and strain.
Wave propagation speed is obtained from the support property of the fundamental
solution in [16,17], while in [13] tools of microlocal analysis were employed in order
to examine the singularity propagation properties in the case of the fractional Zener
wave equation. The fractional wave equation, with power type distributed order
model (1.7) as the constitutive equation, is considered on a finite domain in [5,6].
The fractional Zener wave equation on the bounded domain is analyzed in [20],
while the modified Zener and modified Maxwell wave equations are considered for
bounded and semi-bounded domains in [19,21]. Several other problems involving
generalizations of the classical wave equations are reviewed in [4,22].

The non-local wave equation, using the non-local fractional Hooke law (1.4), is
formulated in [7] in the context of fractionalization of the strain measure. Further,
it was used in [2], along with the time-fractional Zener model in order to account
for both the non-locality and memory effects. The wave equation that uses stress
and strain gradient variant of the Eringen constitutive equation is considered in [8]
for harmonic wave propagation in order to obtain a dispersion equation, used for
finding the optimal values of the model parameters by comparison with the Born–
Kármán model of lattice dynamics. By the same method, the optimal value of the
order of the fractional differentiation 𝛼, appearing in (1.5), is obtained in [9] as
well. A non-local wave equation with the fractional Eringen constitutive equation
(1.5) is formulated in [14] and analyzed using the tools of microlocal analysis.

2. Distributed-order fractional wave equation

The distributed-order fractional wave equation, modeling disturbance propa-
gation in the hereditary medium, consists of the equation of motion (1.1), strain
(1.2), and distributed-order constitutive equation (1.3) and it is analyzed in [18].

2.1. General results. Consider the Cauchy problem on the real line R, with
𝑡 > 0, for the dimensionless system of equations

(2.1)
𝜕

𝜕𝑥
𝜎(𝑥, 𝑡) =

𝜕2

𝜕𝑡2
𝑢(𝑥, 𝑡),
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0

𝜑𝜎(𝛼) 0D
𝛼
𝑡 𝜎(𝑥, 𝑡)d𝛼 =

∫︁ 1

0

𝜑𝜀(𝛼) 0D
𝛼
𝑡 𝜀(𝑥, 𝑡)d𝛼,(2.2)

𝜀(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡),(2.3)

subject to initial and boundary conditions:

𝑢(𝑥, 0) = 𝑢0(𝑥),
𝜕

𝜕𝑡
𝑢(𝑥, 0) = 𝑣0(𝑥), 𝜎(𝑥, 0) = 0, 𝜀(𝑥, 0) = 0,

lim
𝑥→±∞

𝑢(𝑥, 𝑡) = 0, lim
𝑥→±∞

𝜎(𝑥, 𝑡) = 0

obtained from the initial system of equations (1.1), (1.2), and (1.3) after introducing
dimensionless quantities.

The first result provides equivalence of system of equations (2.1)–(2.3) and
equation

(2.4)
𝜕2

𝜕𝑡2
𝑢(𝑥, 𝑡)− 𝐿(𝑡)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ R, 𝑡 > 0,

with 𝐿 being a linear operator of convolution type acting on 𝒮 ′(R), given below.
Equation (2.4) will be called the wave equation for distributed order type viscoelas-
tic media. Assume that the constitutive relation (2.2) is determined by compactly
supported distributions 𝜑𝜎, 𝜑𝜀 ∈ ℰ ′(R) with support in [0, 1], while the initial con-
ditions 𝑢0 and 𝑣0 are assumed to be elements of 𝒮 ′(R).

Theorem 2.1. Let 𝜑𝜎, 𝜑𝜀 ∈ ℰ ′(R) with support in [0, 1]. Set

Φ𝜎(𝑠) = ⟨𝜑𝜎(𝛼), 𝑠
𝛼⟩ and Φ𝜀(𝑠) = ⟨𝜑𝜀(𝛼), 𝑠

𝛼⟩, Re 𝑠 > 0.

Suppose that the following assumption holds.
(A1): ℒ−1

(︀Φ𝜀(𝑠)
Φ𝜎(𝑠)

)︀
exists as an element of 𝒮 ′

+(R).

Then system of equations (2.1)–(2.3) and equation (2.4) with 𝐿(𝑡) := ℒ−1
(︀Φ𝜀(𝑠)
Φ𝜎(𝑠)

)︀
*𝑡

are equivalent.

The generalized Cauchy problem for the operator 𝑃 takes the following form
𝑃𝑢(𝑥, 𝑡) = 𝑢0(𝑥)𝛿

′(𝑡) + 𝑣0(𝑥)𝛿(𝑡), or equivalently

(2.5)
𝜕2

𝜕𝑡2
𝑢(𝑥, 𝑡) = ℒ−1

(︁Φ𝜀(𝑠)

Φ𝜎(𝑠)

)︁
*𝑡

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) + 𝑢0(𝑥)𝛿

′(𝑡) + 𝑣0(𝑥)𝛿(𝑡).

The following theorem provides conditions that guarantee existence and uniqueness
of a solution to the generalized Cauchy problem (2.5).

Theorem 2.2. Let 𝑢0, 𝑣0 ∈ 𝒮 ′(R). Suppose that assumption (A1) holds. Fur-
ther, assume the following.

(A2): 𝑠2 Φ𝜎(𝑠)
Φ𝜀(𝑠)

∈ Cr (−∞, 0], for all 𝑠 ∈ C with Re 𝑠 > 0.

(A3): ℒ−1
(︀Φ𝜎(𝑠)
Φ𝜀(𝑠)

)︀
exists as an element of 𝒮 ′

+.

Then there exists a unique solution 𝑢 ∈ 𝒮 ′(R× R+) to (2.5) given by

𝑢(𝑥, 𝑡) = 𝑆(𝑥, 𝑡) *𝑥,𝑡 (𝑢0(𝑥)𝛿
′(𝑡) + 𝑣0(𝑥)𝛿(𝑡)),

where 𝑆 ∈ 𝒮 ′(R× R+) is a fundamental solution for the operator 𝑃 .



HEREDITARY AND NON-LOCAL WAVE EQUATIONS 23

In Theorem 2.2 the existence of the inverse Laplace transform of the funda-
mental solution is proved and solution 𝑢 as the convolution of fundamental solution
𝑆 with initial conditions is obtained. Closer inspection of the proof of the theo-
rem indicates that in order to calculate 𝑆 explicitly one needs to impose additional
assumptions. This is considered in the following statement.

Theorem 2.3. Suppose that assumptions (A1), (A2) and (A3) of Theorems
2.1 and 2.2 hold. Suppose in addition the following.

(A4): Multiform function

�̃�(𝑥, 𝑠) :=
1

2

√︃
Φ𝜎(𝑠)

Φ𝜀(𝑠)
𝑒
−|𝑥|𝑠

√︁
Φ𝜎(𝑠)
Φ𝜀(𝑠) , 𝑥 ∈ R, Re 𝑠 > 0,

has only two branch points 𝑠 = 0 and 𝑠 = ∞.
(A5): lim𝑅→∞

⃒⃒⃒√︁
Φ𝜎(𝑅𝑒𝑖𝜙)
Φ𝜀(𝑅𝑒𝑖𝜙)

⃒⃒⃒
= 𝑘,for 𝜙 ∈

(︀
𝜋
2 , 𝜋

)︀
∪
(︀
− 𝜋,−𝜋

2

)︀
and 𝑘 > 0.

(A6): lim𝜂→0

⃒⃒⃒
𝜂
√︁

Φ𝜎(𝜂𝑒𝑖𝜙)
Φ𝜀(𝜂𝑒𝑖𝜙)

⃒⃒⃒
= 0, for 𝜙 ∈ (−𝜋, 𝜋).

Then the solution 𝑢 reads

𝑢(𝑥, 𝑡) = 𝐾(𝑥, 𝑡) *𝑥,𝑡 (𝑢0(𝑥)𝛿(𝑡) + 𝑣0(𝑥)𝐻(𝑡)),

where the fundamental solution 𝐾 can be calculated as

(2.6) 𝐾(𝑥, 𝑡) =
1

4𝜋𝑖

∫︁ ∞

0

(︃√︃
Φ𝜎(𝑞e−𝑖𝜋)

Φ𝜀(𝑞e−𝑖𝜋)
e
|𝑥|𝑞

√︂
Φ𝜎(𝑞e−𝑖𝜋)

Φ𝜀(𝑞e−𝑖𝜋)

−

√︃
Φ𝜎(𝑞e𝑖𝜋)

Φ𝜀(𝑞e𝑖𝜋)
e
|𝑥|𝑞

√︂
Φ𝜎(𝑞e𝑖𝜋)

Φ𝜀(𝑞e𝑖𝜋)

)︃
e−𝑞𝑡d𝑞,

𝐾 ∈ 𝒮 ′(R×R+), and has the support in the cone |𝑥| < 𝑐𝑡, with 𝑐 = 1/𝑘. If |𝑥| > 𝑐𝑡,
then 𝐾 = 0.

2.2. Cases of the linear fractional and power type distributed-order
model. Thermodynamical restrictions for the linear fractional model of a viscoelas-
tic body (1.6) are studied in [3], where four admissible model classes are obtained.

Case 1.

(2.7) 𝜑𝜎(𝛼) :=

𝑛∑︁
𝑖=1

𝑎𝑖𝛿(𝛼− 𝛼𝑖), 𝜑𝜀(𝛼) :=

𝑛∑︁
𝑖=1

𝑏𝑖𝛿(𝛼− 𝛼𝑖),

with 0 6 𝛼1 < . . . < 𝛼𝑛 < 1, and 𝑎1

𝑏1
> 𝑎2

𝑏2
> . . . > 𝑎𝑛

𝑏𝑛
> 0;

Case 2.

(2.8) 𝜑𝜎(𝛼) :=

𝑛∑︁
𝑖=1

𝑎𝑖𝛿(𝛼− 𝛼𝑖), 𝜑𝜀(𝛼) :=

𝑛∑︁
𝑖=1

𝑏𝑖𝛿(𝛼− 𝛼𝑖) +

𝑚∑︁
𝑖=𝑛+1

𝑏𝑖𝛿(𝛼− 𝛽𝑖),

with 0 6 𝛼1 < . . . < 𝛼𝑛 < 𝛽𝑛+1 < . . . < 𝛽𝑚 < 1, and 𝑎1

𝑏1
> 𝑎2

𝑏2
> . . . > 𝑎𝑛

𝑏𝑛
> 0;
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Case 3.

(2.9) 𝜑𝜎(𝛼) :=

𝑚∑︁
𝑖=1

𝑎𝑖𝛿(𝛼− 𝛼𝑖) +

𝑛∑︁
𝑖=𝑚+1

𝑎𝑖𝛿(𝛼− 𝛼𝑖), 𝜑𝜀(𝛼) :=

𝑛∑︁
𝑖=𝑚+1

𝑏𝑖𝛿(𝛼− 𝛼𝑖),

with 0 6 𝛼1< . . . < 𝛼𝑚 < 𝛼𝑚+1 < . . . < 𝛼𝑛 < 1, and 𝑎𝑚+1

𝑏𝑚+1
> 𝑎𝑚+2

𝑏𝑚+2
> . . . > 𝑎𝑛

𝑏𝑛
> 0;

Case 4.

(2.10) 𝜑𝜎(𝛼) :=

𝑛∑︁
𝑖=1

𝑎𝑖𝛿(𝛼− 𝛼𝑖), 𝜑𝜀(𝛼) :=

𝑚∑︁
𝑗=1

𝑏𝑗𝛿(𝛼− 𝛽𝑗),

with 𝛼𝑖 ̸= 𝛽𝑗 , for all 𝑖 ̸= 𝑗, and 0 6 𝛼1 < . . . < 𝛼𝑛 < 𝛽1 < . . . < 𝛽𝑚 < 1.

In all four cases all coefficients 𝑎𝑖 and 𝑏𝑖 are supposed to be nonnegative.
Assumptions (A1)–(A6) are satisfied in the case of any of the four admissible

linear fractional models described above, implying the existence and uniqueness of
the solution to the corresponding hereditary wave equation, as well as the explicit
form of its fundamental solution.

Theorem 2.4. Let 𝑢0, 𝑣0 ∈ 𝒮 ′(R). Let the constitutive distributions 𝜑𝜎 and 𝜑𝜀

in the stress-strain relation (2.2) be determined by any of the cases (2.7), (2.8), (2.9)
or (2.10). Then there exists a unique solution 𝑢 ∈ 𝒮 ′(R × R+) to the generalized
Cauchy problem (2.5) given by (2.6).

The power type distributed-order model of the viscoelastic body, as a genuine
distributed-order model, in dimensionless form becomes∫︁ 1

0

𝜏𝛼 0D
𝛼
𝑡 𝜎(𝑥, 𝑡)d𝛼 =

∫︁ 1

0
0D

𝛼
𝑡 𝜀(𝑥, 𝑡)d𝛼,

yielding the corresponding generalized Cauchy problem in the form

(2.11)
𝜕2

𝜕𝑡2
𝑢(𝑥, 𝑡) = ℒ−1

(︁ 𝑠− 1

𝜏𝑠− 1

ln(𝜏𝑠)

ln 𝑠

)︁
*𝑡

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) + 𝑢0(𝑥)𝛿

′(𝑡) + 𝑣0(𝑥)𝛿(𝑡).

Again, assumptions (A1)–(A6) are satisfied in the case of the power type dis-
tributed-order, implying the existence and uniqueness of the solution to the corre-
sponding hereditary wave equation, as well as the explicit form of its fundamen-
tal solution.

Theorem 2.5. Suppose 𝜑𝜎(𝛼) = 𝜏𝛼, 𝜑𝜀(𝛼) = 1, with 0 < 𝜏 < 1, and 𝑢0, 𝑣0 ∈
𝒮 ′(R). Then there exists a unique solution 𝑢 ∈ 𝒮 ′(R × R+) to (2.11), supported
in the cone |𝑥| < 𝑐𝑡, and given by (2.6), with 𝑐 = 1√

𝜏
being the wave propagation

speed. Outside the cone, i.e., for |𝑥| > 𝑐𝑡, 𝑢 = 0.

The wave propagation speed is closely related to the material properties in creep
and stress relaxation through assumption (A5). Namely, the Laplace transform of
the constitutive equation (2.2), solved with respect to stress is

�̃�(𝑠) =
Φ𝜀(𝑠)

Φ𝜎(𝑠)
𝜀(𝑠).
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The creep compliance, i.e., strain in the creep experiment (stress is assumed to be
the Heaviside function), is

𝐽(𝑠) =
1

𝑠

Φ𝜎(𝑠)

Φ𝜀(𝑠)
.

Then, the glass compliance is

𝐽𝑔 := lim
𝑡→0

𝐽(𝑡) = lim
𝑠→∞

(𝑠𝐽(𝑠)) = lim
𝑠→∞

Φ𝜎(𝑠)

Φ𝜀(𝑠)
= 𝑘2 =

1

𝑐2
,

with 𝑘 from assumption (A5) and 𝐽(𝑡) = ℒ−1(𝐽(𝑠))(𝑡). The relaxation modulus,
i.e., stress in the stress relaxation experiment (strain is assumed to be the Heaviside
function), is connected to the creep compliance by

𝑠�̃�(𝑠) =
1

𝑠𝐽(𝑠)
=

Φ𝜀(𝑠)

Φ𝜎(𝑠)
,

so that the glass modulus is

𝐺𝑔 := lim
𝑡→0

𝐺(𝑡) = lim
𝑠→∞

(𝑠�̃�(𝑠)) =
1

𝐽𝑔
= lim

𝑠→∞

Φ𝜀(𝑠)

Φ𝜎(𝑠)
,

where 𝐺(𝑡) = ℒ−1(�̃�(𝑠))(𝑡). Hence, the wave speed in the distributed order frac-
tional viscoelastic media is obtained as

𝑐 =
√︀
𝐺𝑔 =

1√︀
𝐽𝑔

if the glass modulus (compliance) is finite (non-zero), i.e., the wave speed is de-
termined by the finite initial value of the stress (strain) in the stress relaxation
(creep) experiment. If the glass modulus (compliance) is infinite (zero), then we
only conclude that the fundamental solution takes the form (2.6) for all 𝑥 ∈ R,
and 𝑡 > 0, without a straightforward indication about the wave speed through the
solution support properties.

3. Microlocal approach in analyzing time- and
space-fractional wave equations

Tools of microlocal analysis are employed in order to investigate the propaga-
tion of singularities introduced by the initial conditions in case of the hereditary
type wave equation, represented by the Zener wave equation, as well as for the non-
local type of wave equations, represented by the non-local Hookean and Eringen
wave equations. These three wave equations are studied in [13,14].

3.1. Time-fractional Zener wave equation. The time-fractional Zener
wave equation, obtained from the system of equations (2.1)–(2.3) for the choice
of constitutive distributions

𝜑𝜎(𝛾) := 1 + 𝑎𝛿(𝛾 − 𝛼), 𝜑𝜀(𝛾) := 1 + 𝑏𝛿(𝛾 − 𝛼),

yielding constitutive equation (2.2) in the form

(1 + 𝑎 0D
𝛼
𝑡 )𝜎(𝑥, 𝑡) = (1 + 𝑏 0D

𝛼
𝑡 )𝜀(𝑥, 𝑡),
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is rewritten as

(3.1) 𝑍𝑢(𝑥, 𝑡) = 𝜕2
𝑡 𝑢(𝑥, 𝑡)− 𝐿𝛼

𝑡 𝜕
2
𝑥𝑢(𝑥, 𝑡) = 𝑢0(𝑥)⊗ 𝛿′(𝑡) + 𝑣0(𝑥)⊗ 𝛿(𝑡),

where the operator 𝐿𝛼
𝑡 , considered as a convolution operator in one variable, is

linear and bounded 𝐿𝑝(R) → 𝐿𝑝(R), 1 < 𝑝 < ∞, by the Hörmander’s multiplier
theorem, cf. [11, Corollary 8.11] or [12, Theorem 7.9.5], since 𝑙𝛼, defined by

𝑙𝛼(𝜏) =
1 + 𝑏 ei

𝛼𝜋
2 (𝜏 − i0)𝛼

1 + 𝑎 ei
𝛼𝜋
2 (𝜏 − i0)𝛼

=
1 + 𝑏 𝑖𝛼 sgn(𝜏)|𝜏 |𝛼

1 + 𝑎 𝑖𝛼 sgn(𝜏)|𝜏 |𝛼
,

is in 𝐿∞(R) ∩𝐶1(Rr {0}) with the derivative bounded by a constant times |𝜏 |−1.
Unique solvability of (3.1) by distributions supported in a forward cone has been
established in [16]. Here we show a kind of non-characteristic regularity of the
solution 𝑢 to problem (3.1).

The “Fourier symbol” of 𝑍 is 𝑧(𝜉, 𝜏) = −𝜏2+ 𝑙𝛼(𝜏)𝜉
2 to which we apply a conic

cut-off to obtain a smooth symbol in both variables (𝜉, 𝜏).

Lemma 3.1. Let Γ ⊆ R2 (representing the (𝜉, 𝜏)-plane) be the union of a closed
disc around (0, 0) and a closed narrow cone containing the 𝜉-axis and being sym-
metric with respect to both axes. Let Γ′ be a closed set of the same shape as Γ, but
with a slightly larger disc and opening angle of the cone. Let �̃� ∈ 𝑆0(R2 ×R2) such
that �̃�(𝑥, 𝑡, 𝜉, 𝜏) is real, constant with respect to (𝑥, 𝑡), homogenous of degree 0 with
respect to (𝜉, 𝜏) away from the disc contained in Γ′, and such that �̃�(𝑥, 𝑡, 𝜉, 𝜏) = 0,
if (𝜉, 𝜏) ∈ Γ, �̃�(𝑥, 𝑡, 𝜉, 𝜏) = 1, if (𝜉, 𝜏) ̸∈ Γ′. Then 𝑝 := �̃�𝑧 is a symbol belonging to
the class 𝑆2(R2 × R2).

Theorem 3.1. For the wave front set of 𝑢+, the restriction of the solution 𝑢
to (3.1) to forward time 𝑡 > 0, we have the inclusion

WF(𝑢+) ⊆
{︁
(𝑥, 𝑡; 𝜉, 𝜏) | 𝑥 ∈ R, 𝑡 > 0, 𝜉 ̸= 0, 𝜏2 =

𝑏

𝑎
𝜉2 or 𝜏 = 0

}︁
.

3.2. Non-local Hookean wave equation. Consider the system of governing
equations consisting of the equation of motion (2.1), non-local fractional Hooke law
(1.4) as a constitutive equation, written as

𝜎(𝑥, 𝑡) = ℰ𝛼
𝑥 𝑢(𝑥, 𝑡) =

1

2Γ(1− 𝛼)

1

|𝑥|𝛼
*𝑥 𝜀(𝑥, 𝑡),

in dimensionless form, and strain (2.3). We consider the solution to the non-local
Hookean wave equation rewritten as

(3.2) 𝑍𝑢(𝑥, 𝑡) = 𝜕2
𝑡 𝑢(𝑥, 𝑡)− 𝜕𝑥ℰ𝛽

𝑥 𝑢(𝑥, 𝑡) = 𝑢0(𝑥)⊗ 𝛿′(𝑡) + 𝑣0(𝑥)⊗ 𝛿(𝑡).

with 𝑢0, 𝑣0 ∈ ℰ ′(R), when 0 < 𝛽 < 1, which takes the form

𝑢 = 𝑢0 *𝑥 ℱ−1
𝜉→𝑥

[︀
cos
(︀
𝑏𝛽 |𝜉|

1+𝛽
2 𝑡
)︀
𝐻(𝑡)

]︀⏟  ⏞  
𝐸0

+𝑣0 *𝑥 ℱ−1
𝜉→𝑥

[︂
sin
(︀
𝑏𝛽 |𝜉|

1+𝛽
2 𝑡
)︀

𝑏𝛽 |𝜉|
1+𝛽
2

𝐻(𝑡)

]︂
⏟  ⏞  

𝐸1

,

where 𝑏𝛽 :=
√︁
sin 𝛽𝜋

2 , with supp(𝑢) ⊆ {𝑡 > 0}.
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Lemma 3.2. For 𝑗 = 0, 1, let 𝐸+
𝑗 denote the restriction of 𝐸𝑗 to the open

half-space {𝑡 > 0}. Then the wave front sets are given by

WF(𝐸+
0 ) = WF(𝐸+

1 ) = {(0, 𝑡; 𝜉, 0) | 𝑡 > 0, 𝜉 ̸= 0} =: 𝑊0.

Based on the results of Lemma 3.2 we will investigate the influence of the
singularities in the initial data 𝑢0 and 𝑣0 on the wave front set of the solution
𝑢 to (3.2).

Theorem 3.2. Let 𝑢0, 𝑣0 ∈ ℰ ′(R) and denote by 𝑢+ the restriction of the solu-
tion 𝑢 to (3.2) to the half-space of future time R×]0,∞[, then WF(𝑢+) is invariant
under translations (𝑥, 𝑡) ↦→ (𝑥, 𝑡+ 𝑠) with 𝑠 > 0 and

WF(𝑢+) ⊆ {(𝑥, 𝑡; 𝜉, 0) | 𝑡 > 0, (𝑥, 𝜉) ∈ WF(𝑢0) or (𝑥, 𝜉) ∈ WF(𝑣0)}.

Moreover, in case 𝑣0 is smooth we have a more precise statement

WF(𝑢+) = {(𝑥, 𝑡; 𝜉, 0) | 𝑡 > 0, (𝑥, 𝜉) ∈ WF(𝑢0)},

and similarly WF(𝑢+) = {(𝑥, 𝑡; 𝜉, 0) | 𝑡 > 0, (𝑥, 𝜉) ∈ WF(𝑣0)}, if 𝑢0 is smooth.

For the proof of the theorem we need a technical lemma on “symbol corrections”.

Lemma 3.3. Let 𝜎 ∈ (0, 1) and 𝑦(𝜉, 𝜏) = −𝜏+𝑏𝛽 |𝜉|𝜎. Let Γ ⊆ R2 (representing
the (𝜉, 𝜏)-plane) be the union of a closed disc around (0, 0) and a closed narrow cone
containing the 𝜏 -axis and being symmetric with respect to both axes. Let Γ′ be a
closed set of the same shape as Γ, but with slightly larger disc and opening angle of
the cone. Let �̃� ∈ 𝑆0(R2 ×R2) such that �̃�(𝑥, 𝑡, 𝜉, 𝜏) is real, constant with respect to
(𝑥, 𝑡), homogenous of degree 0 with respect to (𝜉, 𝜏) away from the disc contained
in Γ′, and such that �̃�(𝑥, 𝑡, 𝜉, 𝜏) = 0, if (𝜉, 𝜏) ∈ Γ, �̃�(𝑥, 𝑡, 𝜉, 𝜏) = 1, if (𝜉, 𝜏) ̸∈ Γ′.
Then 𝑦�̃� is a symbol belonging to the class 𝑆1(R2 × R2).

Remark 3.1. The result on the wave front set of 𝑢+ in the above theorem
implies, in particular, smoothness of 𝑢+ considered as a map from time into distri-
butions on space (cf. [10, (23.65.5)]), i.e., 𝑢+ ∈ 𝐶∞(]0,∞[,𝒟′(R)); in addition, we
have 𝑢+(𝑡) ∈ 𝒮 ′(R) for every 𝑡 > 0.

3.3. Eringen wave equation. Consider the system of governing equations
consisting of the equation of motion (2.1), fractional Eringen model (1.5) as a
constitutive equation, written as

𝜎(𝑥, 𝑡)−D𝛼𝜎(𝑥, 𝑡) = 𝜀(𝑥, 𝑡), 𝛼 ∈ (1, 3),

in dimensionless form, and strain (2.3). The fractional Eringen wave equation takes
the form

(3.3) 𝜕2
𝑡 𝑢(𝑥, 𝑡)− 𝐿𝛼

𝑥𝜕
2
𝑥𝑢(𝑥, 𝑡) = 0,

where

𝐿𝛼
𝑥𝑤(𝑥, 𝑡) = ℱ−1

𝜉→𝑥

(︂
1√︀

1 + 𝑎𝛼|𝜉|𝛼

)︂
*𝑥 𝑤(𝑥, 𝑡), 𝛼 ∈ (1, 3),

with constant 𝑎𝛼 = − cos 𝛼𝜋
2 .
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Suppose we had a classical solution 𝑢cl to (3.3), which is 𝐶2 for 𝑡 > 0 and of
class 𝐶1 for 𝑡 > 0, with initial data

𝑢cl |𝑡=0= 𝑢0 ∈ 𝐶1(R), 𝜕𝑡𝑢cl |𝑡=0= 𝑣0 ∈ 𝐶(R),

and we put 𝑢cl(𝑥, 𝑡) = 0 for 𝑡 < 0. Then we might define the distribution

𝑢(𝑥, 𝑡) = 𝑢cl(𝑥, 𝑡)𝐻(𝑡), 𝑥, 𝑡 ∈ R,

where 𝐻 denotes the Heaviside function, so that 𝑢 has support in 𝑡 > 0 and satisfies
the fractional Eringen wave equation in the form

𝜕2
𝑡 𝑢(𝑥, 𝑡)− 𝐿𝛼

𝑥𝜕
2
𝑥𝑢(𝑥, 𝑡) = 𝑢0(𝑥)⊗ 𝛿′(𝑡) + 𝑣0(𝑥)⊗ 𝛿(𝑡), (𝑥, 𝑡) ∈ R2,

with supp(𝑢) being contained in forward time 𝑡 > 0. If 𝑢0 and 𝑣0 are also temperate
then by the Fourier transform one has

𝜕2
𝑡 �̂�+

𝜉2

1 + 𝑎𝛼|𝜉|𝛼
�̂� = 𝑣0 ⊗ 𝛿 + 𝑢0 ⊗ 𝛿′.

Considered as an ordinary differential equation in 𝑡 with parameter 𝜉, the latter is
solved by

�̂�(𝑡) =

⎛⎝𝑢0(𝜉) cos

(︂
|𝜉|𝑡√︀

1 + 𝑎𝛼|𝜉|𝛼

)︂
+ 𝑣0(𝜉)

sin
(︁

|𝜉|𝑡√
1+𝑎𝛼|𝜉|𝛼

)︁
|𝜉|√

1+𝑎𝛼|𝜉|𝛼

⎞⎠𝐻(𝑡).

We recall the standard Sobolev spaces 𝐻𝑠(R) = ℱ−1𝐿2
𝑠(R), where 𝑠 ∈ R and 𝐿2

𝑠(R)
is the set of 𝐿2-functions 𝑤 such that 𝜉 ↦→ (1 + 𝜉2)𝑠/2𝑤(𝜉) belongs to 𝐿2 as well.
Let us consider the operator 𝑃 acting on elements 𝑢 ∈ 𝐿1

loc(R, 𝐻𝑠(R)) ∩ 𝒮 ′(R2) by

𝑃𝑢 := 𝜕2
𝑡 𝑢− 𝐿𝛼

𝑥𝜕
2
𝑥𝑢 = 𝜕2

𝑡 𝑢−ℱ−1
𝜉→𝑥

(︂
1√︀

1 + 𝑎𝛼|𝜉|𝛼

)︂
*𝑥 𝜕2

𝑥𝑢.

Theorem 3.3. Let 𝑠 ∈ R, 𝑢0 ∈ 𝐻𝑠(R), and 𝑣0 ∈ 𝐻𝑠+1−𝛼/2(R). Then

𝑃𝑢 = 𝑢0 ⊗ 𝛿′ + 𝑣0 ⊗ 𝛿

has a unique solution 𝑢 ∈ 𝐿1
loc(R, 𝐻𝑠(R)) ∩ 𝒮 ′(R2) with supp𝑢 ⊆ {(𝑥, 𝑡) ∈ R2 | 𝑡 >

0} and 𝑢 ∈ 𝐶∞((0,∞);𝒮 ′(R)) ∩ 𝐶((0,∞);𝐻𝑠(R)), given by

𝑢(𝑡) = 𝑢0 *𝑥 𝐸0(𝑡) + 𝑣0 *𝑥 𝐸1(𝑡),

where

𝐸0(𝑡) := ℱ−1
𝜉→𝑥

[︂
cos

(︂
|𝜉|𝑡√︀

1 + 𝑎𝛼|𝜉|𝛼

)︂
𝐻(𝑡)

]︂
,

𝐸1(𝑡) := ℱ−1
𝜉→𝑥

⎡⎣ sin
(︁

|𝜉|𝑡√
1+𝑎𝛼|𝜉|𝛼

)︁
(︁

|𝜉|√
1+𝑎𝛼|𝜉|𝛼

)︁ 𝐻(𝑡)

⎤⎦.
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Remark 3.2. Both 𝐸0 and 𝐸1 are weakly smooth with respect to 𝑡 when 𝑡 ̸= 0,
which implies the property 𝑢 ∈ 𝐶∞((0,∞);𝒮 ′(R)) for the solution given in the the-
orem above. Note that, in addition, we have that 𝑡 ↦→ 𝐸1(𝑡) is continuous R𝑡𝒮 ′(R)
with 𝐸1(0) = 0, whereas lim𝑡→0+ 𝐸0(𝑡) = 𝛿 ̸= 0 = lim𝑡→0− 𝐸0(𝑡). However, 𝐸0 is
weakly measurable with respect to 𝑡 ∈ R.
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ИСТОРИJСКИ И НЕЛОКАЛНИ ЕФЕКТИ
У МОДЕЛИМА ПРОСТИРАЊА ТАЛАСА

Резиме. Класична таласна jедначина jе уопштена у оквиру теориjе фрак-
ционог рачуна узимањем у обзир мемориjских и нелокалних своjстава матери-
jала. Оба своjства су укључена кроз конститутивну jедначину, док jедначина
кретања jеднодимензионог континуума и деформациjа нису уопштаване. Мемо-
риjски ефекти вискоеластичних материjала су моделирани фракционим изво-
дима расподељеног реда, тако да конститутивна релациjа уопштава све моделе
линеарне вискоеластичности уколико редови извода не прелазе први извод.
Простирање сингуларитета анализирано jе коришћењем алата микролокалне
анализе у случаjу фракционог Ценеровог модела вискоеластичног материjала,
као и у случаjевима нелокалних материjала моделираних нелокалним Хуковим
законом, као и фракционим Ерингеновим моделом.
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