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HEREDITARINESS AND NON-LOCALITY
IN WAVE PROPAGATION MODELING

Dusan Zorica

ABsTrRACT. The classical wave equation is generalized within the framework
of fractional calculus in order to account for the memory and non-local effects
that might be material features. Both effects are included in the constitutive
equation, while the equation of motion of the deformable body and strain are
left unchanged. Memory effects in viscoelastic materials are modeled through
the distributed-order fractional constitutive equation that generalizes all linear
models having differentiation orders up to order one. The microlocal approach
in analyzing singularity propagation is utilized in the case of viscoelastic ma-
terial described by the fractional Zener model, as well as in the case of two
non-local models: non-local Hookean and fractional Eringen.

1. Introduction

This review article aims to present results previously published in [13,14, 18|
related to the fractional wave equations including hereditary and non-local effects.
The classical wave equation for a one-dimensional infinite deformable body
positioned along the x-axis, for time ¢ > 0, considered as a system of: the equation
of motion
2

0

where o, u, and p are stress, displacement, and material density; strain e for small
local deformations

(1.2) e(xz,t) = é%u(ﬂc,ﬁ);

and the Hooke law

o(x,t) = Fe(x,t),
representing the connection between stress and strain local in both time and space,
where E is the Young modulus of elasticity, is generalized by considering memory
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effects through the distributed-order fractional constitutive model

(1.3) / bs(0) D0z, t)da = F / b2 () oDfe(a, t)da,

where ¢, and ¢. are constitutive functions or distributions, while the non-locality
effects are taken into account either through the non-local fractional Hooke law

E 1 1
ERENEDIT
or through the fractional Eringen constitutive equation

(1.5) o(x,t) — D% (z,t) = Fe(x,t), «€(1,3),

where ¢ is the non-locality parameter.

Constitutive equations (1.3), (1.4), and (1.5) contain different types of frac-
tional derivatives: the Riemann-Liouville fractional derivative of order a € (0,1),
defined by

(L4) o(2,t) = —Eulz,t) =

glozZ

—

D) = 3 (g #90): >0

a)
see [15], with #; denoting the convolution in time: f(¢) *; g(t fo —n)dn,
t > 0, the Riesz symmetrized fractional derivative
1 1 d
6a = P N Y T Ty 3 e 07 1 )
20(e) = g5 ey o e @) @€ 01
with %, denoting the convolution in space: f(t) fR g(x —n)dn, z € R,
and two Riesz-type symmetrized fractional derlvatlves
1 1 d?
D« = — 1,2
'LU(SC) 2F(2 _ Oé) |gj|a_1 *3? dmgw(x)7 «@ 6 ( 9 )7
1 sgn x d3
Da - r 4 3 ) 2,3 ’
R EEmIFTE TR

taken so that in both cases if & — 2, then D* — 5)2
The distributed-order constitutive stress-strain relation (1.3) generalizes integer

and fractional order constitutive models of linear viscoelasticity

n m
(1.6) > aioDfo(a,t) = B bioDy e(x,t),

i=1 j=1
having differentiation orders up to the first order, if the constitutive distributions
¢, and ¢. are chosen as

a) = Zaﬁ(a —;), ¢(a):= Zbié(a - Bj)s

with model parameters: a;,b; > 0 as generalized time constants, and o, 5; € (0, 1)
as orders of fractional differentiation, where i = 1,...,n, j = 1,...,m. Thermo-
dynamical consistency of linear fractional constitutive equation (1.6) is examined
in [3], where it is shown that there are four cases of (1.6) when the restrictions
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on model parameters guarantee its thermodynamical consistency. The power type
distributed-order model of the viscoelastic body

1 1
(1.7 / a® oD o(x,t)da = E/ b oDie(z, t)da,
0 0
considered in [1] and revisited in [3], is obtained if the constitutive functions ¢,
and ¢. are chosen as

¢0(a) =a“, ¢€(a) =07,
with the time constants a,b > 0 satisfying a < b guaranteeing the model’s dimen-
sional homogeneity and thermodynamical consistency.

Generalizations of the classical wave equation are considered on an infinite
domain in [16,17], where the constitutive equation, representing a single class of
thermodynamically consistent linear fractional constitutive equation (1.6), is chosen
to be either the fractional Zener model, or its generalization having an arbitrary
number of fractional derivatives of the same orders acting on both stress and strain.
Wave propagation speed is obtained from the support property of the fundamental
solution in [16,17], while in [13] tools of microlocal analysis were employed in order
to examine the singularity propagation properties in the case of the fractional Zener
wave equation. The fractional wave equation, with power type distributed order
model (1.7) as the constitutive equation, is considered on a finite domain in [5, 6].
The fractional Zener wave equation on the bounded domain is analyzed in [20],
while the modified Zener and modified Maxwell wave equations are considered for
bounded and semi-bounded domains in [19,21]. Several other problems involving
generalizations of the classical wave equations are reviewed in [4,22].

The non-local wave equation, using the non-local fractional Hooke law (1.4), is
formulated in [7] in the context of fractionalization of the strain measure. Further,
it was used in [2], along with the time-fractional Zener model in order to account
for both the non-locality and memory effects. The wave equation that uses stress
and strain gradient variant of the Eringen constitutive equation is considered in [8]
for harmonic wave propagation in order to obtain a dispersion equation, used for
finding the optimal values of the model parameters by comparison with the Born—
Karméan model of lattice dynamics. By the same method, the optimal value of the
order of the fractional differentiation «, appearing in (1.5), is obtained in [9] as
well. A non-local wave equation with the fractional Eringen constitutive equation
(1.5) is formulated in [14] and analyzed using the tools of microlocal analysis.

2. Distributed-order fractional wave equation

The distributed-order fractional wave equation, modeling disturbance propa-
gation in the hereditary medium, consists of the equation of motion (1.1), strain
(1.2), and distributed-order constitutive equation (1.3) and it is analyzed in [18].

2.1. General results. Consider the Cauchy problem on the real line R, with
t > 0, for the dimensionless system of equations
0 0?
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1 1
(2.2) /0 ¢o() o)Dfo(z,t)da :/0 o () oDye(z, t)day,

0
(23) &‘(Jj, t) = %u(xv t))
subject to initial and boundary conditions:
0
u(z,0) = ugp(z), au(w,()) =uvo(z), o(z,0)=0, e&(z,0)=0,

AR M) =0 L o) =0

obtained from the initial system of equations (1.1), (1.2), and (1.3) after introducing
dimensionless quantities.

The first result provides equivalence of system of equations (2.1)—(2.3) and
equation

2 2

0
@U(%t) - L@)@

with L being a linear operator of convolution type acting on S'(R), given below.
Equation (2.4) will be called the wave equation for distributed order type viscoelas-
tic media. Assume that the constitutive relation (2.2) is determined by compactly
supported distributions ¢,, ¢. € £'(R) with support in [0, 1], while the initial con-
ditions uy and vy are assumed to be elements of S'(R).

(2.4) u(z,t) =0, ze€R, t>0,

THEOREM 2.1. Let ¢, ¢ € E'(R) with support in [0,1]. Set
D,(s) = (Po(),s*y and D.(s) = (p(),s*), Res>0.
Suppose that the following assumption holds.

(Al): Eil(gzgz))) exists as an element of S’ (R).

Then system of equations (2.1)—(2.3) and equation (2.4) with L(t) := L‘_l(is((i%)*t
are equivalent.

The generalized Cauchy problem for the operator P takes the following form
Pu(z,t) = ug(xz)d’(t) + vo(x)d(t), or equivalently
0? <I>E(s)> 0?

(2.5) Sl t) = L7 ((I)O_ ) g+ uo(x)8' (£) + vo(2)3(1).

The following theorem provides conditions that guarantee existence and uniqueness
of a solution to the generalized Cauchy problem (2.5).

THEOREM 2.2. Let ug,vg € S'(R). Suppose that assumption (Al) holds. Fur-
ther, assume the following.
(A2): s? i‘;éj)) € C\ (=00,0], for all s € C with Res > 0.
(A3): £71 (i:g:))) exists as an element of S .
Then there exists a unique solution u € S'(R x Ry) to (2.5) given by

(@, t) = S(@,t) *5 ¢ (up(x)d' () + vo(x)d(1)),
where S € §'(R x Ry) is a fundamental solution for the operator P.
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In Theorem 2.2 the existence of the inverse Laplace transform of the funda-
mental solution is proved and solution u as the convolution of fundamental solution
S with initial conditions is obtained. Closer inspection of the proof of the theo-
rem indicates that in order to calculate S explicitly one needs to impose additional
assumptions. This is considered in the following statement.

THEOREM 2.3. Suppose that assumptions (A1), (A2) and (A3) of Theorems
2.1 and 2.2 hold. Suppose in addition the following.

(A4): Multiform function

f((:c,s) = 1 P, (s) 6—|m|s

P5(5)
Pe(s) zeR, Res >0
9 q)g(s) ) ’ ’

has only two branch points s =0 and s = c©.

(A5): limp_ 0o ‘ %ﬁ:; = k,for ¢ € (g,ﬂ) U ( —w,—g) and k > 0.

o (net®)
. (net?)

=0, for p € (—m,m).

(A6): lim, o ’77
Then the solution u reads
u(z,t) = K(x,t) %3¢ (uo(x)d(t) +vo(x)H(t)),

where the fundamental solution K can be calculated as

L ([ ®g(gei™) folay/ 2ol
26) K(z,t) = — Lolge™™) Jrlay Gt
20 Keo=- [ <\/¢E(qe_m)e
T o (qei™)
. (I)a(qe' )e|T|‘I\/:€(qeiw) e_qtdq7
P (ge'™)

K € S'(RxR,), and has the support in the cone |z| < ct, with ¢ = 1/k. If |z| > ct,
then K = 0.

2.2. Cases of the linear fractional and power type distributed-order
model. Thermodynamical restrictions for the linear fractional model of a viscoelas-

tic body (1.6) are studied in [3], where four admissible model classes are obtained.
CaskE 1.
(2.7) ¢o(a) := Z aid(a — i),  e(a) = Z bid(a — i),
i=1 i=1
with()goq<...<ozn<1,and%2%2...2“—:20;
CASE 2.
(28) do(a) =Y aidla—ai), ¢e(@):=> bidla—ai)+ > bid(a—B),
i=1 i=1 i=n+1

With0<a1<...<an</3n+1<...<Bm<l,and‘;—i2%2...2@20;
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CASE 3.
(29) do(a) ==Y aidla—a)+ > adla—m), ¢la)= >  bidla—a),
i=1 i=m-+1 i=m-+1

with0<a1<...<am<am+1<...<an<1,and%>w>...>a" > 0;

CASE 4.
(2.10) Po(a) = Zaié(a —;), ¢c(a):= Z bjo(a — f;),

with a; # B, forall i # j,and 0 < oy < ... <, <1 < ... < By < L.

In all four cases all coefficients a; and b; are supposed to be nonnegative.

Assumptions (A1)—(A6) are satisfied in the case of any of the four admissible
linear fractional models described above, implying the existence and uniqueness of
the solution to the corresponding hereditary wave equation, as well as the explicit
form of its fundamental solution.

THEOREM 2.4. Let ug,vg € S'(R). Let the constitutive distributions ¢, and ¢
in the stress-strain relation (2.2) be determined by any of the cases (2.7), (2.8), (2.9)
or (2.10). Then there exists a unique solution u € 8'(R x R,.) to the generalized
Cauchy problem (2.5) given by (2.6).

The power type distributed-order model of the viscoelastic body, as a genuine
distributed-order model, in dimensionless form becomes

1 1
/ 70Dy (z,t)da = / oDye(z, t)da,
0 0

yielding the corresponding generalized Cauchy problem in the form

0? 0?

(211)  Ssule,t) = 5*1( 5t (e, t) + uo(a)d (£) + vola)3(1).
Again, assumptions (A1)—(A6) are satisfied in the case of the power type dis-

tributed-order, implying the existence and uniqueness of the solution to the corre-

sponding hereditary wave equation, as well as the explicit form of its fundamen-

tal solution.

s—1 ln(Ts))
7s—1 Ins

THEOREM 2.5. Suppose ¢o(a) = 7%, ¢-(a) =1, with 0 < 7 < 1, and ug, vy €
S'(R). Then there exists a unique solution u € S'(R x Ry) to (2.11), supported
in the cone |z| < ct, and given by (2.6), with ¢ = % being the wave propagation
speed. Outside the cone, i.e., for |x| > ct, u = 0.

The wave propagation speed is closely related to the material properties in creep
and stress relaxation through assumption (A5). Namely, the Laplace transform of
the constitutive equation (2.2), solved with respect to stress is

&(s) = :Ifizig(s).
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The creep compliance, i.e., strain in the creep experiment (stress is assumed to be
the Heaviside function), is

= 1d,(s)
Ts) = s P.(s)
Then, the glass compliance is
T T = IRT (I’J(S)_Q_l
Jo = lim J(8) = lim (sJ(s)) = lim, O.(s) M=%

with & from assumption (A5) and J(t) = £7(J(s))(t). The relaxation modulus,
i.e., stress in the stress relaxation experiment (strain is assumed to be the Heaviside
function), is connected to the creep compliance by
~ 1 )
sG(s) = —— = E(s),
sJ(s) ®o(s)

so that the glass modulus is

G, = lim G(t) = lim (sG(s)) = 1 lim Pe(s)

t—0 s—00 Jg  s—ooo @U(S)’

where G(t) = £L71(G(s))(t). Hence, the wave speed in the distributed order frac-
tional viscoelastic media is obtained as

1
:Gzi
YT,

if the glass modulus (compliance) is finite (non-zero), i.e., the wave speed is de-
termined by the finite initial value of the stress (strain) in the stress relaxation
(creep) experiment. If the glass modulus (compliance) is infinite (zero), then we
only conclude that the fundamental solution takes the form (2.6) for all x € R,
and ¢t > 0, without a straightforward indication about the wave speed through the
solution support properties.

3. Microlocal approach in analyzing time- and
space-fractional wave equations

Tools of microlocal analysis are employed in order to investigate the propaga-
tion of singularities introduced by the initial conditions in case of the hereditary
type wave equation, represented by the Zener wave equation, as well as for the non-
local type of wave equations, represented by the non-local Hookean and Eringen
wave equations. These three wave equations are studied in [13,14].

3.1. Time-fractional Zener wave equation. The time-fractional Zener
wave equation, obtained from the system of equations (2.1)—(2.3) for the choice
of constitutive distributions

$o(7) :=1+ad(y—a), ¢=(y):=14bi(y - a),

yielding constitutive equation (2.2) in the form

(1 + aOD?)U($7t) = (1 + boD?)E(.’L’,t)7
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is rewritten as
(3.1) Zu(x,t) = 0?u(x,t) — LEOu(z,t) = uo(z) ® &' (t) 4+ vo(z) @ 6(2),

where the operator Lj', considered as a convolution operator in one variable, is
linear and bounded LP(R) — LP(R), 1 < p < oo, by the Hérmander’s multiplier
theorem, cf. [11, Corollary 8.11] or [12, Theorem 7.9.5], since I, defined by

lo(T)

C 14be"Y (7 —10)* 14 bi%sgn(r)|T]*

T 1+adF(r—i0)*  1+aivsgn(r)|r]*’
is in L>°(R) N C(R \ {0}) with the derivative bounded by a constant times |7|~1.
Unique solvability of (3.1) by distributions supported in a forward cone has been
established in [16]. Here we show a kind of non-characteristic regularity of the
solution u to problem (3.1).

The “Fourier symbol” of Z is 2(&,7) = —72 +14(7)£? to which we apply a conic

cut-off to obtain a smooth symbol in both variables (&, 7).

LEMMA 3.1. Let T' C R? (representing the (£, T)-plane) be the union of a closed
disc around (0,0) and a closed narrow cone containing the -axis and being sym-
metric with respect to both azes. Let T be a closed set of the same shape as T', but
with a slightly larger disc and opening angle of the cone. Let be SO(R? x R?) such
that B((E,t,f,’]’) is real, constant with respect to (x,t), homogenous of degree O with
respect to (€, 7) away from the disc contained in I, and such that B(z,t,{,r) =0,
if (&,7) €T, blx,t,&,7) =1, if (€,7) €T’. Then p := bz is a symbol belonging to
the class S*(R? x R?).

THEOREM 3.1. For the wave front set of u™, the restriction of the solution u
to (3.1) to forward time t > 0, we have the inclusion

WF(u™) C {(x,t;f,T) |z €R,t >0, #0,7° = 952 07"7':0}.
a

3.2. Non-local Hookean wave equation. Consider the system of governing
equations consisting of the equation of motion (2.1), non-local fractional Hooke law
(1.4) as a constitutive equation, written as

1 1 (
— L kg €
2I'(1 — a) |z 7
in dimensionless form, and strain (2.3). We consider the solution to the non-local
Hookean wave equation rewritten as

(3.2) Zu(z,t) = O2u(x,t) — 0,Eu(x,t) = ug(x) @ &' (t) + vo(x) @ 8(t).

with ug,vg € £'(R), when 0 < 8 < 1, which takes the form

sin (bg €] 27 ¢)
bsle| 5"

By

oz, t) = Egu(x,t) = x,t),

U = ug *z fg_lm [ cos (b5\£|#t)H(t)] +vg *g .7-'{_1”: H(t)|,

Eo

where bg := y/sin 67”, with supp(u) C {t > 0}.
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LEMMA 3.2. For j = 0,1, let Ej denote the restriction of E; to the open
half-space {t > 0}. Then the wave front sets are given by

WF(Ef) = WF(E) = {(0,£€,0) | ¢ > 0, # 0} =: Wy,

Based on the results of Lemma 3.2 we will investigate the influence of the
singularities in the initial data uy and vy on the wave front set of the solution
u to (3.2).

THEOREM 3.2. Let ug,vg € E'(R) and denote by u™ the restriction of the solu-
tion u to (3.2) to the half-space of future time Rx]0, co[, then WF (u™) is invariant
under translations (x,t) — (z,t + s) with s > 0 and

WF(u™) C{(z,&,0) | t >0, (z,&) € WF(ug) or (z,£) € WF(uvg)}.
Moreover, in case vy is smooth we have a more precise statement
WF(u) = {(z,t£,0) | t >0, (z,€) € WF(ug)},
and similarly WF(u™) = {(x,#£,0) | t > 0, (2,£) € WF(vo)}, if uo is smooth.
For the proof of the theorem we need a technical lemma on “symbol corrections”.

LEMMA 3.3. Leto € (0,1) and y(£,7) = —7+bg|&|7. Let T C R? (representing
the (&, 7)-plane) be the union of a closed disc around (0,0) and a closed narrow cone
containing the T-axis and being symmetric with respect to both axes. Let TV be a
closed set of the same shape as T, but with slightly larger disc and opening angle of
the cone. Let b e SO(R? x R2) such that b(x,t,€,7) is real, constant with respect to
(z,t), homogenous of degree 0 with respect to (§,7) away from the disc contained
in T', and such that b(z,t,&,7) = 0, if (£,7) € T, ba,t,&,7) =1, if (§,7) & I,
Then yb is a symbol belonging to the class S*(R? x R2).

REMARK 3.1. The result on the wave front set of u™ in the above theorem
implies, in particular, smoothness of u* considered as a map from time into distri-
butions on space (cf. [10, (23.65.5)]), i.e., u™ € C°°(]0, 00[, D'(R)); in addition, we
have u™t(t) € 8'(R) for every t > 0.

3.3. Eringen wave equation. Consider the system of governing equations
consisting of the equation of motion (2.1), fractional Eringen model (1.5) as a
constitutive equation, written as

o(x,t) — DY (z,t) = e(x,t), «€(1,3),
in dimensionless form, and strain (2.3). The fractional Eringen wave equation takes
the form
(3.3) O2u(x,t) — L20%u(x,t) = 0,

where

_ 1
L;‘UJ(JZ‘, t) = ]:gsz (14‘@|€|0‘> *x U)(Ql‘,t), o€ (15 3)7

with constant a, = — cos 5.
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Suppose we had a classical solution ug to (3.3), which is C? for ¢t > 0 and of
class C! for t > 0, with initial data
Ut [i=0= g € C'(R),  ytie[1=o= vo € C(R),
and we put uc(z,t) =0 for ¢t < 0. Then we might define the distribution
u(z,t) = ualz,t)H(t), =,t€eR,

where H denotes the Heaviside function, so that u has support in ¢ > 0 and satisfies
the fractional Eringen wave equation in the form

OPu(xw,t) — L20%u(x,t) = up(x) @ &' (t) +vo(x) @ 8(t), (x,t) € R?

with supp(u) being contained in forward time ¢ > 0. If up and vy are also temperate
then by the Fourier transform one has

U=y RF6+1uy 6.

Considered as an ordinary differential equation in ¢ with parameter £, the latter is
solved by

S oG
T+ alée 0 l€] ‘
L+ aalt] V1taalgl®

We recall the standard Sobolev spaces H*(R) = F~1L2(R), where s € R and L%(R)
is the set of L?-functions w such that & — (1 + £2)*/?w(¢) belongs to L? as well.
Let us consider the operator P acting on elements u € Li (R, H*(R)) N S'(R?) by

loc

a(t) = [ 1io(€) cos (

Pu = 0?u — L20%u = 9}u — F; ! (1) %5 O2u.

VI + ao g
THEOREM 3.3. Let s € R, ug € H¥(R), and vo € H*T1=%/2(R). Then
Pu=uy®d +vo®46
has a unique solution u € L{ (R, H*(R)) NS’ (R?) with suppu C {(z,t) e R? |t >

loc

0} and u € C((0,00); S'(R)) N C((0,00); H*(R)), given by
U(t) = UQ *4 Eo(t) + Vo *g E1 (t),
where

Eo(t) == Fl, [cos (%)H(ﬂ}

sin (——L&t
El(t) = F, <— WH(t) .
()
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REMARK 3.2. Both Fjy and F; are weakly smooth with respect to ¢ when ¢ # 0,

which implies the property v € C*°((0,00); S'(R)) for the solution given in the the-
orem above. Note that, in addition, we have that ¢ — F4(t) is continuous RtS’(R)
with E1(0) = 0, whereas lim; o+ Eo(t) = 0 # 0 = lim;_,o_ Eo(t). However, Ej is
weakly measurable with respect to t € R.
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NCTOPNJCKU N HEJIOKAJIHN EQEKTU
Y MOJZEJINMA ITPOCTUPAIBA TAJIACA

PE3uME. Knacuuna TajacHa jeqHadnHa je YOIIITEHA Y OKBUPY Teopuje dppak-
[IMOHOI' PaYyHa y3UMameM y 003Up MEMOPHUjCKUX U HEJIOKAJHUX CBOjCTaBa MaTepu-
jama. Oba cBojcTBa Cy yKJ/bydeHA KPO3 KOHCTUTYTHBHY jEeHAYUHY, JOK jeTHAUNHA
KpeTarmba jeJHOAMMEH3NOHOr KOHTUHYYMa U jiedpopMarnuja Hucy yormrasane. Memo-
pujcku edeKTH BUCKOSJIACTUIHAX MATEPHjaJIa Cy MOJeIupanu (bPAKIMOHIM H3BO-
JIIMa PaCIOE/HEHOT PEJIa, TAKO JTa KOHCTUTYTUBHA PEJIAIlHja YOIIIIITaBa CBe MOJIee
JINHEeApHe BUCKOEJACTUYHOCTU YKOJIMKO PEJIOBU WM3BOJa He IIpeJia3e IIPBU U3BOJ.
IIpocTtupame cuHTYyIapUTETa AHAJM3UPAHO je KOPUIINEHmEM ajiaTa MUKDPOJIOKAJIHE
aHaju3e y ciy4ajy ¢gppakimonor IlenepoBor Moesia BUCKOEIACTUIHOD MaTepUjaa,
KAa0 U y CJIy4YajeBUMa HeJIOKAJHUX MATePHjaia MOIEINPAHNX HEJIOKATHUM XyKOBAM
3aKOHOM, Kao ¥ (PpaKInoHnM EPUHTEeHOBUM MOIEIOM.
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