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ABSTRACT. In this paper, a circular thick plate made of poroelastic piezoelec-
tric ceramic is studied. The porosities of the plate vary through the thickness
and axisymmetric behavior of a piezoelectric disk exhibiting hexagonal mate-
rial symmetry of class 6 mm. Additionally, external mechanical loads which
are in axi-symmetric general form act on the plate. The material properties
of the plate vary exponentially as functions of the z variable in cylindrical
coordinates. Based on an elasticity solution in terms of radial and axial dis-
placements (u, w), the governing partial differential equations are derived and
solved analytically; mechanical stresses and electric displacements are then
calculated. Finally an example which illustrates the application of the derived
formulas is presented.

1. Introduction

Axisymmetric problems of piezoelectric materials are enormously popular with
researchers. A. B. Dobrucki et al. presented a theory of axisymmetric piezoelectric
bimorph which consists of two or more layers placed asymmetrically to the middle

surface of the structures [1]. They solved the derived equations by finite element
method. H. J. Ding et al. investigated the transient responses of axisymmet-
ric plane strain problems for a piezoelectric hollow cylinder [2]. They transferred

the partial differential equations to an integral equation about a function with re-
spect to time and solved them successfully by means of interpolation method. W.
7Zi-Kung et al. presented a general solution and the application of space axisym-
metric piezoelectric using the method of introducing potential functions one by
one [3]. S. Kapuria et al. put forth a 3D-solution for a simply supported piezo-
electric cylindrical shell subjected to axisymmetric electromechanical load. They
employed Fourier and power series and an exponential function to solve governing
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differential equations [4]. N. Kharouf and P. R. Heyliger studied a numerical ap-
proximate solution to static and axisymmetric vibration problems for piezoelectric
cylinders, including those composed of more than one material [5]. F. Ebrahimi
et al. presented an analytical solution for axisymmetric free vibrations of an FG
thick circular plate integrated with piezoelectric (PZT4) layers based on Mindlin
plate theory [6]. They solved the differential equations analytically for clamped
and simply-supported edge. F. Ashida et al. examined the transient solution for a
piezothermoelastic circular disk under axisymmetric heating. They used a potential
function to find the exact solution for equilibrium and electrostatic equations [7].
S. Kapuria et al. found the exact solution for an axisymmetric piezothermoelastic
simply-supported hybrid cylindrical shell made of cross-ply composite laminate and
piezoelectric layers [8]. J. Sladek et al. used the meshless local Petrov—Galerkin
(MLPG) method to investigate the 3D-dynamic response of axisymmetric piezoelec-
tric solids with continuously nonhomogeneous material properties. They consider a
3D axisymmetric body created by revolution of cross section around an axis of sym-
metry with mechanical and thermal loads [9]. S. Dong et al. studied an analytical
solution to calculate the transverse deflection shape of circular axisymmetric piezo-
electric metal composite unimorph actuators. Their solutions account for both the
influence of an applied electric field and a concentrated or uniformly distributed me-
chanical load [10]. W. X. Zhang et al. present an exact solution for the deformation
and stress field in a finite cylinder under axisymmetric boundary conditions. They
formulated the problem based on the state space formulation for a transversely
isotropic piezoelectric material [11]. P. Zhang et al. introduced precise integration
algorithm (PIA) to formulate an axisymmetric multi-layered transversely isotropic
piezoelectric body [12]. S. S. Volkvo et al. studied an FG piezoelectric electroe-
lastic half-space [13]. They consider elastic moduli and dielectric permeabilities
of the coating, which vary independently with depth according to arbitrary func-
tions. M. Ishihara et al. analyzed the thermoelectro elastic solid cylinder with D
symmetry under axisymmetric mechanical and thermal loading [14]. They consider
distributed torsional shear stress as a mechanical load and nonuniform temperature
distribution as a thermal disturbance. J. Liu et al. found a solution for a multi-
layered transversely isotropic piezoelectric system based on the precise integration
algorithm (PIA) and the technique of dual vector under axisymmetric load [15].
T. J. Liu et al. studied an axisymmetric indentation problem of a perfect rigid
electrical insulator indenter on an FG piezoelectric coating bonded to a piezoelec-
tric substrate. They consider material properties to be exponentially varied along
the thickness [16]. X. Zhao et al. put forth an axisymmetric analytical solution
for a heterogeneous transversely isotropic multi-ferroic circular plate subjected to
electric loading. They considered the coupling magneto-electro-elastic fields which
exactly satisfy the upper and lower boundary conditions and approximately meet
the cylindrical boundary condition [17]. Porous piezoelectric ceramics have many
applications in industry such as nondestructive tests, medical ultrasonic devices,
low frequency hydrophones, contact microphones, underwater acoustics, vibratory
sensors, and so forth [18-22]. M. L. Dunn and M. Taya forwarded a theoretical ap-
proach to predict the electromechanical properties of porous piezoelectric ceramics.
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They accounted for the effects of porosity shape and concentration [23]. E. Ron-
cari et al. examined the piezoelectric porous lead zirconate titanate ceramics. They
studied the effect of polymer volume and sintering temperature on microstructure
samples [24].

In this paper, a circular thick disk made of poroelastic piezoelectric material
(hexagonal material symmetry of class 6 mm) is considered. General mechanical
and electrical loads act at lower and upper surfaces of the disk. The plate is
considered undrained and saturated from a poroelastic point of view. The porosities
of disk vary through the thickness; thus, material properties are considered as
exponential functions of the axial variable “z” in cylindrical coordinates. The
method of derivation of the governing equation is based on elasticity approach in
terms of displacements and electrical potential function. These equations are solved
directly without using Love stress functions, which facilitates handling any general
boundary conditions.

2. Mathematics

The axisymmetric behavior of a porous piezoelectric circular thick disk ex-
hibiting hexagonal material symmetry of class 6 mm is illustrated schematically in
Figure 1.
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v

FIGURE 1. Schematic of a poroelastic circular thick disk

The constitutive relations for the elastic field, expressed in cylindrical coordi-
nates, for a circular plate are

Opp = C11Err + C12E600 + C13€2, — €31, —yp

099 = C12Err + C22€99 + C23E,, — €32, — yp

(2 1) 02z = C13Err 1 C23€09 + C33E22 — 633Ez — P
Ory = 205557"2 - elSEr
o¢ ¢
E,=—— E,=———
" aor i 0z
where 0;;, €;;(4,5 = r,0,2), Cij, e, Ei, v, p, ¢ are the stress tensor, strain

tensor, elastic stiffnesses, Piezoelectric coefficients, electric field intensities, Biot’s
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coeflicient of effective stress, pressure in the porous media, and electric potential,
respectively. Here p is related to Biot’s modulus, volumetric strain, and the varia-
tion of fluid content. The under undrained condition as

(22) P = 7M’7(5rr + €00 + 622)
and
(2.3) M= 20 (vy, — v) Ey

21 -20)(1—2v.) T 200 +v)
where M, u, v, v, Ey are Biot’s modulus, shear modulus, poisson’s ratio, undrained
poisson’s ratio, and material constant, respectively. And

cnt+ My =ci o+ My =cfy az+ My =ci,

(24) Coo+My? =chy coa3+My? =ch; e+ My =cly o5 =cig
Thus

Oprp = CTlgrr + CT2509 + CTgezz - 631E‘z
(25) 09 = Clo€rr + Coo€9p + Co3€.. — €32F;

* * *
Ozz = C13Erp + Co3E00 + C33E2z — eZ’)B-Ez
*
Orz = 20555rz - 615Er

The strains are related to the displacements u and w by

(26) Erp = Uy £ = %’U, Ezz2 =Wz Epz = %(w,r + u,z) Erg = €6z = 0

where (, ) denotes the partial derivative. The constitutive equations for the electric
field are

(2.7) D, = 2e156,, + N1 By D, = e3164 + €32609 + €336, + N33 E;

where D;; are electric displacement components and 7);; are dielectric permittivities.
The equilibrium equations in radial and axial directions, disregarding the body
forces, are

0oy 00y, 1 0o, 00,
or 0z + ;(Uw —o09) =0 or 0z
dD,. 0D,, 1
or + 0z + r(Drr) =0

To obtain the equilibrium equations in terms of the displacement components for
the porous piezoelectric circular plate, the functional relationship of the material
properties must be known. Therefore, the plate material is assumed to be porous
across the z-direction and the modulus is elasticity are assumed to be described by
the exponential functions as

(2.9) Cz*] = Wijem(%) eij = éijem(

1
+ =0, = 0
(2.8) "

B
B

) nij = 'F]ijem( )
In the relations (2.9), C*;;, &;;, ;; are the material constants at a lower surface
in z = 0. For the isotropic and hexagonal symmetry of class 6 mm, the following

relations are considered as
* * * * * * * * *
(2.10) Cf; =05, =C34 Cly =05 =C3 =05 =03 =C5 €31 = €32
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Using the relations (2.1)—(2.10), the Navier equations in terms of the displacement
components are

1 1
(211) U rpr + ;u,r - ﬁu + dlu,z + d2u,zz + dSw,rz + dlw,r + d4¢,rz + d5¢,r =0

1 1 1
(2.12) w,p + ;w,r +dew , + drw ., + dg (u,rz + ;uz) + dg (u,r + ;u)
1
+ dio (b + =6, ) + A1z +d126,0 = 0
(2.13)
1 1
¢,rr + ;d),r + d13¢,zz + d14¢,z - d15w,zz - d16w,z —di7 (w,rr + ;w,r)

1 1
- d18 (u,rz + *U,z) + d19 (U,r =+ *’UJ) =0
r T

where constants d; to djg are given in Appendix. Egs. (2.11), (2.12) and (2.13)
are a system of homogeneous partial differential equations with variable coeflicients
(functions of radial variable 7).

3. Solution

Since the coefficients of Egs. (2.11), (2.12) and (2.13) are independent of the
variable z, the exponential function form of the coordinate z may be assumed for
the general solution as

(3.1a) u(r,z) = U(r)el*
(3.1b) w(r,z) = W(r)ef? + Fi(2)
(3.1c) B(r, 2) = ®(r)el’* + Fy(z)

Substituting (3.1) in the Navier Egs. (2.11), (2.12), (2.13) gives
1 1
(3.2) U’ + ;U’ - 5U+ (doP? + d1 P)U + (d3P + dy )W’
+ (d4P +d5)® =0

(3.3) (W' +2W' +(d7r P2 +de P)W+(ds P+do) (U’ +1U)+d10 (8" +1 &)+ (d, o P2+d11 P)®]

+[d7 FY' (2)+de F{ (2)+d12 Fy/ (2)+d11 Fj(2)]e” F#=0

(3.4) (@413 +(di3 PP +d14 P)—(d15 P2 +d16 P)W —d1r (W + L W') —(d1s P+dio) (U'+1U))
+d1s Fy (2)+d1a Fy(2)—dis Fy' (2) —di6 F{ (2)]e " P*=0

Eq. (3.3), can be written in two distinct equations as
1 1
(85) W'+ W'+ (dP?+dsP)W + (dsP +do) (U' + ~U)
1
+ le ((I)H + ;Q)/> + (d12p2 + dllP)(p =0

(36) d7F1”(Z) + dGFll(Z) + dlgFQH(Z) + dllFQI(Z) =0



196 ABJADI, JABBARI, AND KHORSHIDVAND

and Eq. (3.4) can be written in two distinct equations as

(3.7) @'+ %fb’ 4 (di3P? + dyaP)® — (d15P? + dig P)W — d17(W” + %W’)
0

_(d18P+d19)(U/ + %U) =

(38) d13F2”(Z) + d14F2/(Z) - d15F1N(Z) — dlﬁFll(Z) =0

Egs. (3.6), (3.8) are a system of homogeneous ordinary differential equations with
constant coefficients and the following solution is guessed as

(3.9a) Fi(z) = ce'™
(3.9b) Fy(z) = éel®
Substituting (3.9) into Eqgs. (3.6), (3.8) leads to

d7F2 + deI” d12F2 + d11F:| |:C:| . |:O:|
¢

(3.10) —(dysT? + dyoT)  dysT% +diaT| |&] — |0

The nontrivial solution to Eq. (3.10) is obtained by setting the determinant of
this equation equal to zero as

(3.11) T2[(d7D + dg)(disT + dia) + (di2D + di1)(disI + dig)] = 0
where

(3.12a) dool? + do1 T+ dgg = 0

(3.12b) I?=0

coefficients dag, do1 and dos in Eq. (3.12a) are given in Appendix. Eq. (3.12) gives

r . —d21 + \/ d%l — 4d20d22
1,2 —

(3.13a) i 5oy
(3.13b) T34=0
Thus
Fi(2) = c1e"% + cpel2* 4¢3
(3.14) Fy(z) = doscretF + dogeae’ 2 + ¢y

Substituting (3.14) into Eq. (3.6), the relation between ¢ and ¢ is obtained as

b _ d7T' + ds .
 dpl+diy
~ d7F1 + d6 d7F1 + d6
“ d12'y + diy “ 24 » dioI'y + dny
3.15 —_Gretds g oy — —27 21 06
(3.15) “ diol's + diy @@= duez o dn diol's 4 d11
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Moreover, Egs. (3.2), (3.5) and (3.7) are a system of linear homogeneous ordinary
differential equations with variable coefficients and the following solution is assumed
as

(3.16a) U(r) = AJy(Br)

(3.16b) W (r) = BJo(Br)

(3.16¢) ®(r) = CJo(fr)

Substituting (3.14) and (3.16) into Eq. (3.1) leads to

(3.17a) u(r,z) = AJy(Br)eP?

(3.17Db) w(rz) = BJo(Br)eP? 4+ Cret* 4 Cret?* 4 O3

(3.17¢) o(r.2) = CJo(Br)eP” + dpsCre' ' + dpsCae'>* + Cy
Substituting (3.17a), (3.17b) and (3.17¢) into Egs. (3.2), (3.5) and (3.7) results in
(3.182) ([=B?+(da P?+dy P)| A—[B(ds P+dy )+C (da P+ds )|} J1 (Br)=0
(3.18b) ([ B2+ (dr P?+dg P)| B+AB(ds P+do )+ — B2dro+(dra P2-+d11 P)|C'} o (Br)=0
(3.18¢) {[=B*+(d13P*+d14 P)|C+[B*d17—(d15 P> +d16 P)| B—B(d1s P+di9) A} Jo(Br) =0

Egs. (3.18) show that (3.17a), (3.17b) and (3.17c) can be the solutions to the system
of Egs. (3.2), (3.5) and (3.7) if and only if

(3.19)
—B*+(d2P*+d1 P) —B(d3P + dy) —B(dsP + ds) Al [0
B(dsP + do) —B2 4 (d7P? 4+ dsP) —PBdio+(di2P*+d11P)||B|=10
—B(digP + dio)  B2dir—(d1sP?+digP) —B% + (di3P? +d1aP) ||C 0

The nontrivial solution to Eq. (3.19) is obtained by setting the determinant of
this equation equal to zero as
(3.20) (a1 -a22-as3) + (ai2 - azs - az1) + (a13 - az; - asz)
— (a13 - azz - az1) — (a12 - 21 - asz) — (a11 - az3 - asx) =0

Eq. (3.20) is a six order polynomial in term p; it gives six roots P;—Ps and coeffi-
cients a;; in Eq. (3.20) which are given in Appendix. Additionally, Eq. (3.19) gives
a relation between A and B, as well as A and C. So

(3.21) Bpm=Npn- Ay  Cp=M, A,
where
13021 — A11G23 12021 — Q11022
(3.22) N, = —=— M, = ———=—=
12023 — A13022 130422 — A12023

Application of the homogeneous boundary conditions. We assume zero
displacement in radial direction at r = a

(3.23) u(a,z) =0 —  Ji(Ba)=0

Eq. (3.23) gives infinite roots for 3,,. It needs to be noted that Eq. (3.20) gives six
values of P(Py,, to Pgy,) for each 5. The boundary conditions in axial direction at
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r = a are assumed to be
(3.24a) w(a,0) =w(a,h) =0
(3.24b) #(a,0) = ¢(a,h) =0
The application of boundary condition (3.24a) to Eq. (3.17) leads to the following
equations:
(3.258)  Jo(Bma)[AimNim + Az2mNom + Azm Nam + Aam Nam
+ AsmNsm + Aem Nem] + Cim + Com + C3m =0

(325b) Jo(ﬂma)[Allemeplmh + A2mN2m€P2mh + A3mN3m€P3mh + A4mN4meP4mh
+ A5mN5meP5mh + AGmNG'mepsmh} + Clmerlh + C?merzh + C3m =0

(325C) JO (ﬂma)[Allim + AQmMQm + A3mM3m + A4mM4m
+ A5mM57rL + AGmMﬁnL] + d23017n + d2402m + C47n =0

(325d) JO(ﬁma)[AllimePh”h + A2mM2meP2mh + ASmM3m6P3mh + A4mM4meP4mh

+ Asmn Mspmesmh 4 Ag Mgme om? | + dosCrme™ " 4 doaCame™" + Carm = 0
The constant coefficients dos to dog are given in Appendix. Considering the fact
that there is an infinite number of 3,,, there will be an infinite number of C; and
Cy as C4,, and Cy,,, respectively:

1-— eFlh 1-— €F2h :| |:Clm:| _ |:d26 — d25:|

(326) (1 _ €F1h)d23 (1 _ 6F2h)d24 Com dag — dar

Thus
(dag — das)(daa — da3) — (dag — da7)+das(das — das)
(1 —elrh)(dag — das)

(dog — do7)—da3(das — das)

(1 —el2h)(dog — da3)
By substituting C1,,, Ca, and the constant coefficients dos to dag into Eqs. (3.25a)
and (3.25¢), the values of Cs,;, and Cy, are obtained. Finally, the solution to the
Navier equations will be

Clm =

CZm =

(3.27a) wu(r,z) = Z i (ﬁmr)[AlmeP“"’z + Agpel™* + Ag,,eFsm?

m=1

+A4mep4m,z +A5meP5mz +A6meP67nz

oo
(3:27b)  w(r,z) = Y Jo(Bmr)[A1m Nime™™* + Agp Nype>m*

m=1

+ A3mN3meP3mz + A4mN4meP4mz + A5mN5m€P5mz
+ AGmN6m6P6mz] + Clmerlz + 02m8F2Z + C3m
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(3.27¢) ¢(r,z) = Z Jo(ﬁmr)[AllimeP“"Z + Aoy Mo, e 2m?

m=1
+ ASmMBmepsmz + A4mM4meP4mz + A5mM5meP5mz
+ AgmMeme™* ] + dasCrpme" ™ + dosCome*? + Cupm
Remaining coefficients A;,, will be indicated using boundary conditions in z direc-

tion. We assume the most general boundary conditions on the upper and lower
surfaces of the plate as

Ky, [u,r(r, 0) + %u(r, 0)} + Kipw(r,0) + Kizw . (r,0)

+K14T(r,0) + K15:(r,0) = S1(r)

Kou(r,0) + Kaou ,(r,0) + Kogw - (1,0) + Koy (r,0) = Sa(r)

(3.28) K3 [u,r(r, h) + %u(r, h)] + Ksow(r, h) + Kszw ,(r, h)
+K34T(r, h) + K350, (r,h) = S3(r)

Kau(r,h) + Kagu o (1, h) + Kagw (1, h) + Kaapr (1, h) = Sa(r)

K519(r,0) + Ks20.(r,0) = S5(r)

Ke1¢(r,h) + Kez¢-(r,h) = Se()

where K;; are constants; by assigning different values to them, different types of
boundary conditions may be obtained; S;(r) are known functions. Substituting
Egs. (3.28) into Egs. (2.5), (2.6) and (2.7), the stresses and electric displacements
are obtained.

4. Results and discussion

As shown in Figure 2, a circular thick disk of radius “a” and thickness “h” is
made of undrained porous piezoelectric hexagonal material symmetry of class 6 mm,
whose properties are shown in Table 1. Mainly to simulate practical problems, the
upper surface of the plate is partially exposed to mechanical load varying with the
linear law, P(r) = 0,, = —FPyr; Py = 100MPa. Shear stress is considered zero
on the upper and lower surfaces. Moreover, the axial normal stress is considered
zero on the lower surface. The boundary is assumed to be fixed such that the
mechanical boundary condition at radius a is u(a, z) = 0, and axial displacement
in the boundary surface is limited at the upper and lower band, w(a,0) = 0 and
w(a,h) =

Material constants are considered for a cadmium selenide plate which possesses
class 6 mm symmetry [7] as shown in Table 1.
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Mechanical load

P =0, = —Pyr

VA
Py =100 MPa
Low porosity

. High porosity

FIGURE 2. Geometry of a piezoelectric poroelastic circular thick
disk under the mechanical load and boundary conditions

TABLE 1
Parameter Numerical
C11 74.1 GPa
C12 45.2 GPa
C13 45.2 GPa
Co9 74.1 GPa
Cs5 16.2 GPa
Ey 107 GPa
ol 0.75
e1s —0.138(:%)
v 0.2
Uy 0.3

mi 826 x 1072 (505)
N33 90.3 x 10_12%)

€31 70160(72)
es2 ~0.160(-5;)
633 0347(%)

Results for this problem are shown in Figures 3 to 20.
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FIGURE 3. (a) Radial displacement in the cross section of circular
thick disk; (b) radial displacement versus r/a at z/h = 0.5;(c)
radial displacement versus z/h at r/a = 0.5
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FIGURE 4. (a) Axial displacement in the cross section of a circular
thick disk; (b) axial displacement versus r/a at z/h = 0.5;(c) axial
displacement versus z/h at r/a = 0.5
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FIGURE 5. (a) Electric potential in the cross section of a circular
thick disk; (b) electric potential versus r/a at z/h = 0.5; (c) electric
potential versus z/h at r/a = 0.5
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FIGURE 6. (a) Radial mechanical stress in the cross section of
a circular thick disk; (b) distribution of radial mechanical stress
versus r/a at z/h = 0.5; (c) distribution of radial mechanical stress

versus z/h at r/a = 0.5
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FIGURE 7. (a) Axial mechanical stress in the cross section of a cir-
cular thick disk; (b) distribution of axial mechanical stress versus
r/a at z/h = 0.5; (c) distribution of axial mechanical stress versus
z/h at r/a=0.5
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FIGURE 10. (a) Radial electric displacement in the cross section
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versus r/a at z/h = 0.5; (c) variation of radial electric displacement
versus z/h at r/a = 0.5



AXI-SYMMETRIC ELASTICITY SOLUTION OF AN UNDRAINED SATURATED...

M
“““"“‘\‘«3;‘\\:‘:& P o
Wi
\\[11 “‘s’;;’,, >

=

06 0.8
0.2 rla
00 0.2
a)
1.2 ‘ _ZIh=0.5
1 ——m,=0
—t+—m,=0.3
0.8 —o—m,=06
0.6
g 0.4
No.2
Ao
0
-0.2
-0.4
-0.6
0 01 02030405060708 09 1
r/a
(b)
0.4 r/a=0.5
0.3 )
0.2
0.1
g 0
No.1
A0
-0.2
0.3 —a—m,=0
—t—m,=0.3
0.4
—o—m,=06
0.

0 0.1 0.2 03 04 0506 0.7 08 09 1
(c)

FIGURE 11. (a) Axial electric displacement in the cross section
of a circular thick disk; (b) variation of axial electric displacement
versus r/a at z/h = 0.5; (c¢) variation of axial electric displacement
versus z/h at r/a = 0.5

209



210 ABJADI, JABBARI, AND KHORSHIDVAND

a t/a=0.5

2.5 %10 Z/h=0.5 3 x10
—+—B=05
|| —+—B=065
—O—B=0.85

0 01 0.203 04 05 0.6 0.7 0809 1
rla

() (b)

0 01 020.30405060708 09 1
Z/h

FIGURE 12. (a) Radial displacement versus r/a at z/h = 0.5 for
different values of the compressibility coefficient B; (b) radial dis-
placement versus z/h at r/a = 0.5 for different values of the com-
pressibility coefficient B

Here, B is a compressibility coefficient, sometimes called the Skempton pore
pressure coefficient, which is related to poisson’s ratio, and undrained poisson’s
ratio. The under undrained condition as
(Bvy, — v)

_—— <B«<l1
(1—-2v)(1+w,)’ 0

(4.1) B=

24.5 Z/Ih=0.5 16 r/a=0.5
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FIGURE 13. (a) Axial displacement versus r/a at z/h = 0.5 for
different values of the compressibility coefficient; (b) axial displace-
ment versus z/h at r/a = 0.5 for different values of the compress-
ibility coefficient
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FIGURE 14. (a) Electric potential versus r/a at z/h = 0.5 for dif-
ferent values of the compressibility coefficient; (b) electric potential
versus z/h at r/a = 0.5 for different values of the compressibility

coefficient
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FIGURE 15. (a) Radial mechanical stress versus r/a at z/h =
0.5 for different values of the compressibility coefficient; (b) radial
mechanical stress versus z/h at r/a = 0.5 for different values of
the compressibility coefficient
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FIGURE 16. (a) Axial mechanical stress versus r/a at z/h = 0.5
for different values of the compressibility coefficient; (b) axial me-
chanical stress versus z/h at r/a = 0.5 for different values of the
compressibility coefficient
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FIGURE 17. (a) Hoop mechanical stress versus r/a at z/h = 0.5
for different values of the compressibility coefficient; (b) hoop me-
chanical stress versus z/h at r/a = 0.5 for different values of the
compressibility coefficient
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FIGURE 18. (a) Shear mechanical stress versus r/a at z/h = 0.5
for different values of the compressibility coefficient; (b) shear me-
chanical stress versus z/h at r/a = 0.5 for different values of the
compressibility coefficient
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FIGURE 19. (a) Radial electric displacement versus r/a at z/h =
0.5 for different values of the compressibility coefficient; (b) radial
electric displacement versus z/h at r/a = 0.5 for different values
of the compressibility coefficient
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FIGURE 20. (a) Axial electric displacement versus r/a at z/h =
0.5 for different values of the compressibility coefficient; (b) axial
electric displacement versus z/h at r/a = 0.5 for different values
of the compressibility coefficient

The suggested solutions for displacement, electric potential, and stress field are
of the series form and by summing up 30 successive terms have a truncation error
of the order of 107°. Figure 3a shows the resulting radial displacement due to
mechanical load. The radial displacement versus r/a is shown in Figure 3b. The
maximum radial displacement falls in half of the radius and it is zero at the cen-
ter due to the axisymmetric condition of the problem. Figure 3¢ shows the radial
displacement varying in axial direction. The considerable point is that for different
values of mo there is a unique zero displacement point which is somewhere between
0.45 and 0.55 of dimensionless thickness; this point is interestingly the location
of the neutral axis. Figure 4a shows the resulting axial displacement caused by
mechanical load. Figure 4b shows the axial displacement varying in radial direc-
tion, where the maximum deflection, due to mechanical load, is in the center of the
plate and it is zero at the outer radius of the plate where we imposed a supported
boundary condition. Axial displacement versus z/h is shown in Figure 4c. The
maximum axial displacement occurs near the dimensionless thickness of 0.5. Fig-
ure 5a demonstrates the resulting electric potential related to the mechanical load.
The electric potential versus r/a is shown in Figure 5b. It shows that the maximum
electric potential falls in the center of the plate and that it is zero at r/a = 1 due
to the axisymmetric condition of the problem. Figure 5c¢ indicates that the electric
potential varies in axial direction and that it is maximum near the dimensionless
thickness of 0.5. Figures 6a, 7a, 8a and 9a show the radial, axial, circumferential,
and shear mechanical stresses in the cross section of the circular thick disk, respec-
tively. Figures 6b, 7b, 8b and 9b are the plots of stresses versus r/a at z/h = 0.5.
It is shown that as ms increases so do the radial, axial, hoop, and shear mechanical
stresses. Figures 6¢, 7c and 8c show that the radial, axial, and circumferential me-
chanical stresses follow a harmonic pattern along the dimensionless thickness. The
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shear mechanical stress versus z/h is shown in Figure 9c. It shows that the max-
imum shear stress is near the dimensionless thickness of 0.5. The resulting radial
and axial electric displacements D,,. and D,, are shown in Figures 10a and 11a,
respectively. Figure 10b indicates that the maximum D,, displacement falls in
r/a = 0.4. Moreover, it is shown that as mso increases so does the radial electric
displacement. It is noted that, due to the assumed boundary conditions, D,.,. is
zero at r/a = 0 and r/a = 1. Figure 10c shows the radial electric displacement
versus z/h. It is shown that the maximum D,., falls in z/h = 0.6. Figure 11b shows
that the maximum D,, displacement falls in r/a = 0 and r/a = 1. Moreover, it is
zero in r/a = 0.6. Figure 11c demonstrates that as ms increases, the axial electric
displacement also increases. Figures 12a, 13a and 14a present the distribution of
the radial and axial displacements and the electric potential along the radius for
different values of the pore compressibility coefficient B. Figures 12b, 13b and 14b
also show the distribution of these displacements and the electric potential along
the thickness, respectively, for different values of the pore compressibility coeffi-
cient B. Figures 15a, 16a, 17a and 18a demonstrate the distribution of the radial,
axial, hoop, and shear mechanical stresses along the radius, respectively, where the
pore compressibility coefficient B is changed and the other parameters are fixed.
Figures 15b, 16b, 17b and 18b show the distribution of the same stresses along the
thickness, for different values of the pore compressibility coefficient B. Figures 19a
and 20a present the variation of the radial and axial electric displacements along
the radius where the pore compressibility coefficient B is changed and the other pa-
rameters are fixed. Figures 19b and 20b indicate the variation of the same electric
displacements along the thickness, for different values of the pore compressibility
coefficient B.

5. Conclusions

This paper presents an analytical solution for the calculation of the axisym-
metric mechanical stresses in a piezoelectric poroelastic circular thick disk. The
material properties through the porous direction are assumed to be nonlinear with
an exponential law distribution. The mechanical stresses are obtained through the
direct method of solution for the Navier equation. In the present study, a linear
varying distributed external axisymmetric mechanical load acts on the plate and
the boundary is assumed to be fixed. It is concluded that:

(i) The neutral axis and plane of the plate will not fall in the midsurface.
(ii) Greater mgy will pass the neutral axis far from the mid-plane of the plate.
(iii) Axial and radial displacement through the thickness and radius of the

plate is not constant and linear.
(iv) Radial displacement in radial direction is affected considerably near the
center of the plate.

(v) Electric potential through the thickness and radius of the plate is not

constant and linear.
(vi) It is interesting to see that except for the shear stress other stresses follow a
harmonic pattern along the thickness of the plate due to mechanical loads.
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(vii) There is a zero point for the radial, axial and circumferential mechanical
stresses across the thickness which is near 0.3 of the dimensionless thick-
ness. Because of the porosity distribution profile, this point is the neutral
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axis of the plate.

(viii) Axial electric displacement follows a harmonic pattern along the dimen-

sionless thickness.
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Appendix A.
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OCHOCUMETPUYHO PEIIEIBE 3A EJIACTUYHOCT
HEJIAPEHAKMNPAHOT BACUKREHOT
ITIOPO-IINE3OEJIACTNYHOTI JINCKA

PE3UME. ¥V oBoMm pajiy mpoydaBa ce KpyKHa ILUIo4Ya u3pabheHa o] mopoesa-
CTHYHe NHe30eJIeKTpuYHe Kepamuke. I[loposHocTn miode Bapupajy y 3aBHUCHOCTH
o1, 1ebJpUHE W OCHOCHMETPUYHOL ITOHAIIAKA MHE30€JIEKTPUIHOT JINCKA KOjU UMAa
XEeKCArOHAJIHY MaTepHujajHy cuMerpujy kKiaace 6 mm. Ilopesn Tora, Ha mwiody meiry-
jy crospHa OoCcHOCHMETpHYHA MexaHmdka onrepehema y ommrem obsmky. CBojcTBa
MaTepHujaja IJIovue eKCIIOHEHIINjATHO Bapupajy Kao (yHKINje TPOMEH/bUBE 2 Y IIH-
JINHJIDUYHUM KoopauHaTaMma. Ha ocHOBY pemnema 3a €JJaCTHYHOCT Y OJTHOCY Ha pa-
JujasiHa ¥ aKCujasiHa moMepama (u, w), 106ujajy ce U pemaBajy aHAJUTUIKA [ap-
nujasHe audepeHnujaine jeJHadnHe CACTEMA. 3ATUM Ce U3PATyHABA]Y MEXaHUIKH
HaIOHU ¥ eJeKTpuvHu momepaju. Ha Kpajy, mpukazan je mpuMep KOju WIyCTpyje
[IpUMEHY U3BeIeHNX (POpMYyJIa.
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