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Abstract. In this paper, a circular thick plate made of poroelastic piezoelec-

tric ceramic is studied. The porosities of the plate vary through the thickness
and axisymmetric behavior of a piezoelectric disk exhibiting hexagonal mate-

rial symmetry of class 6mm. Additionally, external mechanical loads which

are in axi-symmetric general form act on the plate. The material properties
of the plate vary exponentially as functions of the 𝑧 variable in cylindrical

coordinates. Based on an elasticity solution in terms of radial and axial dis-
placements (𝑢, 𝑤), the governing partial differential equations are derived and

solved analytically; mechanical stresses and electric displacements are then

calculated. Finally an example which illustrates the application of the derived
formulas is presented.

1. Introduction

Axisymmetric problems of piezoelectric materials are enormously popular with
researchers. A. B. Dobrucki et al. presented a theory of axisymmetric piezoelectric
bimorph which consists of two or more layers placed asymmetrically to the middle
surface of the structures [1]. They solved the derived equations by finite element
method. H. J. Ding et al. investigated the transient responses of axisymmet-
ric plane strain problems for a piezoelectric hollow cylinder [2]. They transferred
the partial differential equations to an integral equation about a function with re-
spect to time and solved them successfully by means of interpolation method. W.
Zi-Kung et al. presented a general solution and the application of space axisym-
metric piezoelectric using the method of introducing potential functions one by
one [3]. S. Kapuria et al. put forth a 3D-solution for a simply supported piezo-
electric cylindrical shell subjected to axisymmetric electromechanical load. They
employed Fourier and power series and an exponential function to solve governing
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differential equations [4]. N. Kharouf and P. R. Heyliger studied a numerical ap-
proximate solution to static and axisymmetric vibration problems for piezoelectric
cylinders, including those composed of more than one material [5]. F. Ebrahimi
et al. presented an analytical solution for axisymmetric free vibrations of an FG
thick circular plate integrated with piezoelectric (PZT4) layers based on Mindlin
plate theory [6]. They solved the differential equations analytically for clamped
and simply-supported edge. F. Ashida et al. examined the transient solution for a
piezothermoelastic circular disk under axisymmetric heating. They used a potential
function to find the exact solution for equilibrium and electrostatic equations [7].
S. Kapuria et al. found the exact solution for an axisymmetric piezothermoelastic
simply-supported hybrid cylindrical shell made of cross-ply composite laminate and
piezoelectric layers [8]. J. Sladek et al. used the meshless local Petrov–Galerkin
(MLPG) method to investigate the 3D-dynamic response of axisymmetric piezoelec-
tric solids with continuously nonhomogeneous material properties. They consider a
3D axisymmetric body created by revolution of cross section around an axis of sym-
metry with mechanical and thermal loads [9]. S. Dong et al. studied an analytical
solution to calculate the transverse deflection shape of circular axisymmetric piezo-
electric metal composite unimorph actuators. Their solutions account for both the
influence of an applied electric field and a concentrated or uniformly distributed me-
chanical load [10]. W. X. Zhang et al. present an exact solution for the deformation
and stress field in a finite cylinder under axisymmetric boundary conditions. They
formulated the problem based on the state space formulation for a transversely
isotropic piezoelectric material [11]. P. Zhang et al. introduced precise integration
algorithm (PIA) to formulate an axisymmetric multi-layered transversely isotropic
piezoelectric body [12]. S. S. Volkvo et al. studied an FG piezoelectric electroe-
lastic half-space [13]. They consider elastic moduli and dielectric permeabilities
of the coating, which vary independently with depth according to arbitrary func-
tions. M. Ishihara et al. analyzed the thermoelectro elastic solid cylinder with D∞
symmetry under axisymmetric mechanical and thermal loading [14]. They consider
distributed torsional shear stress as a mechanical load and nonuniform temperature
distribution as a thermal disturbance. J. Liu et al. found a solution for a multi-
layered transversely isotropic piezoelectric system based on the precise integration
algorithm (PIA) and the technique of dual vector under axisymmetric load [15].
T. J. Liu et al. studied an axisymmetric indentation problem of a perfect rigid
electrical insulator indenter on an FG piezoelectric coating bonded to a piezoelec-
tric substrate. They consider material properties to be exponentially varied along
the thickness [16]. X. Zhao et al. put forth an axisymmetric analytical solution
for a heterogeneous transversely isotropic multi-ferroic circular plate subjected to
electric loading. They considered the coupling magneto-electro-elastic fields which
exactly satisfy the upper and lower boundary conditions and approximately meet
the cylindrical boundary condition [17]. Porous piezoelectric ceramics have many
applications in industry such as nondestructive tests, medical ultrasonic devices,
low frequency hydrophones, contact microphones, underwater acoustics, vibratory
sensors, and so forth [18–22]. M. L. Dunn and M. Taya forwarded a theoretical ap-
proach to predict the electromechanical properties of porous piezoelectric ceramics.
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They accounted for the effects of porosity shape and concentration [23]. E. Ron-
cari et al. examined the piezoelectric porous lead zirconate titanate ceramics. They
studied the effect of polymer volume and sintering temperature on microstructure
samples [24].

In this paper, a circular thick disk made of poroelastic piezoelectric material
(hexagonal material symmetry of class 6mm) is considered. General mechanical
and electrical loads act at lower and upper surfaces of the disk. The plate is
considered undrained and saturated from a poroelastic point of view. The porosities
of disk vary through the thickness; thus, material properties are considered as
exponential functions of the axial variable “𝑧” in cylindrical coordinates. The
method of derivation of the governing equation is based on elasticity approach in
terms of displacements and electrical potential function. These equations are solved
directly without using Love stress functions, which facilitates handling any general
boundary conditions.

2. Mathematics

The axisymmetric behavior of a porous piezoelectric circular thick disk ex-
hibiting hexagonal material symmetry of class 6mm is illustrated schematically in
Figure 1.

Figure 1. Schematic of a poroelastic circular thick disk

The constitutive relations for the elastic field, expressed in cylindrical coordi-
nates, for a circular plate are

(2.1)

𝜎𝑟𝑟 = 𝑐11𝜀𝑟𝑟 + 𝑐12𝜀𝜃𝜃 + 𝑐13𝜀𝑧𝑧 − 𝑒31𝐸𝑧 − 𝛾𝑝

𝜎𝜃𝜃 = 𝑐12𝜀𝑟𝑟 + 𝑐22𝜀𝜃𝜃 + 𝑐23𝜀𝑧𝑧 − 𝑒32𝐸𝑧 − 𝛾𝑝

𝜎𝑧𝑧 = 𝑐13𝜀𝑟𝑟 + 𝑐23𝜀𝜃𝜃 + 𝑐33𝜀𝑧𝑧 − 𝑒33𝐸𝑧 − 𝛾𝑝

𝜎𝑟𝑧 = 2𝑐55𝜀𝑟𝑧 − 𝑒15𝐸𝑟

𝐸𝑟 = −𝜕𝜑

𝜕𝑟
𝐸𝑧 = −𝜕𝜑

𝜕𝑧

where 𝜎𝑖𝑗 , 𝜀𝑖𝑗(𝑖, 𝑗 = 𝑟, 𝜃, 𝑧), 𝐶𝑖𝑗 , 𝑒𝑖𝑗 , 𝐸𝑖, 𝛾, 𝑝, 𝜑 are the stress tensor, strain
tensor, elastic stiffnesses, Piezoelectric coefficients, electric field intensities, Biot’s
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coefficient of effective stress, pressure in the porous media, and electric potential,
respectively. Here 𝑝 is related to Biot’s modulus, volumetric strain, and the varia-
tion of fluid content. The under undrained condition as

(2.2) 𝑃 = −𝑀𝛾(𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝑧𝑧)

and

(2.3) 𝑀 =
2𝜇(𝑣𝑢 − 𝑣)

𝛾2(1− 2𝑣)(1− 2𝑣𝑢)
𝜇 =

𝐸0

2(1 + 𝑣)

where𝑀 , 𝜇, 𝜈, 𝜈𝑢, 𝐸0 are Biot’s modulus, shear modulus, poisson’s ratio, undrained
poisson’s ratio, and material constant, respectively. And

(2.4)
𝑐11 +𝑀𝛾2 = 𝑐*11 𝑐12 +𝑀𝛾2 = 𝑐*12 𝑐13 +𝑀𝛾2 = 𝑐*13

𝑐22 +𝑀𝛾2 = 𝑐*22 𝑐23 +𝑀𝛾2 = 𝑐*23 𝑐33 +𝑀𝛾2 = 𝑐*33 𝑐55 = 𝑐*55

Thus

(2.5)

𝜎𝑟𝑟 = 𝑐*11𝜀𝑟𝑟 + 𝑐*12𝜀𝜃𝜃 + 𝑐*13𝜀𝑧𝑧 − 𝑒31𝐸𝑧

𝜎𝜃𝜃 = 𝑐*12𝜀𝑟𝑟 + 𝑐*22𝜀𝜃𝜃 + 𝑐*23𝜀𝑧𝑧 − 𝑒32𝐸𝑧

𝜎𝑧𝑧 = 𝑐*13𝜀𝑟𝑟 + 𝑐*23𝜀𝜃𝜃 + 𝑐*33𝜀𝑧𝑧 − 𝑒33𝐸𝑧

𝜎𝑟𝑧 = 2𝑐*55𝜀𝑟𝑧 − 𝑒15𝐸𝑟

The strains are related to the displacements 𝑢 and 𝑤 by

(2.6) 𝜀𝑟𝑟 = 𝑢,𝑟 𝜀𝜃𝜃 = 1
𝑟𝑢 𝜀𝑧𝑧 = 𝑤,𝑧 𝜀𝑟𝑧 = 1

2 (𝑤,𝑟 + 𝑢,𝑧) 𝜀𝑟𝜃 = 𝜀𝜃𝑧 = 0

where ( , ) denotes the partial derivative. The constitutive equations for the electric
field are

(2.7) 𝐷𝑟𝑟 = 2𝑒15𝜀𝑟𝑧 + 𝜂11𝐸𝑟 𝐷𝑧𝑧 = 𝑒31𝜀𝑟𝑟 + 𝑒32𝜀𝜃𝜃 + 𝑒33𝜀𝑧𝑧 + 𝜂33𝐸𝑧

where 𝐷𝑖𝑖 are electric displacement components and 𝜂𝑖𝑖 are dielectric permittivities.
The equilibrium equations in radial and axial directions, disregarding the body
forces, are

(2.8)

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜕𝜎𝑟𝑧

𝜕𝑧
+

1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 0

𝜕𝜎𝑟𝑧

𝜕𝑟
+

𝜕𝜎𝑧𝑧

𝜕𝑧
+

1

𝑟
𝜎𝑟𝑧 = 0

𝜕𝐷𝑟𝑟

𝜕𝑟
+

𝜕𝐷𝑧𝑧

𝜕𝑧
+

1

𝑟
(𝐷𝑟𝑟) = 0.

To obtain the equilibrium equations in terms of the displacement components for
the porous piezoelectric circular plate, the functional relationship of the material
properties must be known. Therefore, the plate material is assumed to be porous
across the 𝑧-direction and the modulus is elasticity are assumed to be described by
the exponential functions as

(2.9) 𝐶*
𝑖𝑗 = 𝐶*

𝑖𝑗𝑒
𝑚( 𝑧

ℎ ) 𝑒𝑖𝑗 = 𝑒𝑖𝑗𝑒
𝑚( 𝑧

ℎ ) 𝜂𝑖𝑗 = 𝜂𝑖𝑗𝑒
𝑚( 𝑧

ℎ )

In the relations (2.9), 𝐶*
𝑖𝑗 , 𝑒𝑖𝑗 , 𝜂𝑖𝑗 are the material constants at a lower surface

in 𝑧 = 0. For the isotropic and hexagonal symmetry of class 6mm, the following
relations are considered as

(2.10) 𝐶*
11 = 𝐶*

22 = 𝐶*
33 𝐶*

12 = 𝐶*
21 = 𝐶*

13 = 𝐶*
31 = 𝐶*

23 = 𝐶*
32 𝑒31 = 𝑒32
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Using the relations (2.1)–(2.10), the Navier equations in terms of the displacement
components are

(2.11) 𝑢,𝑟𝑟 +
1

𝑟
𝑢,𝑟 −

1

𝑟2
𝑢+ 𝑑1𝑢,𝑧 + 𝑑2𝑢,𝑧𝑧 + 𝑑3𝑤,𝑟𝑧 + 𝑑1𝑤,𝑟 + 𝑑4𝜑,𝑟𝑧 + 𝑑5𝜑,𝑟 = 0

𝑤,𝑟𝑟 +
1

𝑟
𝑤,𝑟 + 𝑑6𝑤,𝑧 + 𝑑7𝑤,𝑧𝑧 + 𝑑8

(︁
𝑢,𝑟𝑧 +

1

𝑟
𝑢,𝑧

)︁
+ 𝑑9

(︁
𝑢,𝑟 +

1

𝑟
𝑢
)︁

(2.12)

+ 𝑑10

(︁
𝜑,𝑟𝑟 +

1

𝑟
𝜑,𝑟

)︁
+ 𝑑11𝜑,𝑧 + 𝑑12𝜑,𝑧𝑧 = 0

𝜑,𝑟𝑟 +
1

𝑟
𝜑,𝑟 + 𝑑13𝜑,𝑧𝑧 + 𝑑14𝜑,𝑧 − 𝑑15𝑤,𝑧𝑧 − 𝑑16𝑤,𝑧 − 𝑑17

(︁
𝑤,𝑟𝑟 +

1

𝑟
𝑤,𝑟

)︁(2.13)

− 𝑑18

(︁
𝑢,𝑟𝑧 +

1

𝑟
𝑢,𝑧

)︁
+ 𝑑19

(︁
𝑢,𝑟 +

1

𝑟
𝑢
)︁

= 0

where constants 𝑑1 to 𝑑19 are given in Appendix. Eqs. (2.11), (2.12) and (2.13)
are a system of homogeneous partial differential equations with variable coefficients
(functions of radial variable 𝑟).

3. Solution

Since the coefficients of Eqs. (2.11), (2.12) and (2.13) are independent of the
variable 𝑧, the exponential function form of the coordinate 𝑧 may be assumed for
the general solution as

𝑢(𝑟, 𝑧) = 𝑈(𝑟)𝑒𝑃𝑧(3.1a)

𝑤(𝑟, 𝑧) = 𝑊 (𝑟)𝑒𝑃𝑧 + 𝐹1(𝑧)(3.1b)

𝜑(𝑟, 𝑧) = Φ(𝑟)𝑒𝑃𝑧 + 𝐹2(𝑧)(3.1c)

Substituting (3.1) in the Navier Eqs. (2.11), (2.12), (2.13) gives

𝑈 ′′ +
1

𝑟
𝑈 ′ − 1

𝑟2
𝑈 + (𝑑2𝑃

2 + 𝑑1𝑃 )𝑈 + (𝑑3𝑃 + 𝑑1)𝑊
′(3.2)

+ (𝑑4𝑃 + 𝑑5)Φ
′ = 0

[𝑊 ′′+ 1
𝑟𝑊

′+(𝑑7𝑃
2+𝑑6𝑃 )𝑊+(𝑑8𝑃+𝑑9)(𝑈

′+ 1
𝑟𝑈)+𝑑10(Φ

′′+ 1
𝑟Φ

′)+(𝑑12𝑃
2+𝑑11𝑃 )Φ](3.3)

+[𝑑7𝐹
′′
1 (𝑧)+𝑑6𝐹

′
1(𝑧)+𝑑12𝐹

′′
2 (𝑧)+𝑑11𝐹

′
2(𝑧)]𝑒

−𝑃𝑧=0

[Φ′′+ 1
𝑟Φ

′+(𝑑13𝑃
2+𝑑14𝑃 )Φ−(𝑑15𝑃

2+𝑑16𝑃 )𝑊−𝑑17(𝑊
′′+ 1

𝑟𝑊
′)−(𝑑18𝑃+𝑑19)(𝑈

′+ 1
𝑟𝑈)](3.4)

+[𝑑13𝐹
′′
2 (𝑧)+𝑑14𝐹

′
2(𝑧)−𝑑15𝐹

′′
1 (𝑧)−𝑑16𝐹

′
1(𝑧)]𝑒

−𝑝𝑧=0

Eq. (3.3), can be written in two distinct equations as

(3.5) 𝑊 ′′ +
1

𝑟
𝑊 ′ + (𝑑7𝑃

2 + 𝑑6𝑃 )𝑊 + (𝑑8𝑃 + 𝑑9)
(︁
𝑈 ′ +

1

𝑟
𝑈
)︁

+ 𝑑10

(︁
Φ′′ +

1

𝑟
Φ′

)︁
+ (𝑑12𝑃

2 + 𝑑11𝑃 )Φ = 0

𝑑7𝐹
′′
1 (𝑧) + 𝑑6𝐹

′
1(𝑧) + 𝑑12𝐹

′′
2 (𝑧) + 𝑑11𝐹

′
2(𝑧) = 0(3.6)
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and Eq. (3.4) can be written in two distinct equations as

Φ′′ +
1

𝑟
Φ′ + (𝑑13𝑃

2 + 𝑑14𝑃 )Φ− (𝑑15𝑃
2 + 𝑑16𝑃 )𝑊 − 𝑑17

(︁
𝑊 ′′ +

1

𝑟
𝑊 ′

)︁
(3.7)

−(𝑑18𝑃 + 𝑑19)
(︁
𝑈 ′ +

1

𝑟
𝑈
)︁
= 0

𝑑13𝐹
′′
2 (𝑧) + 𝑑14𝐹

′
2(𝑧)− 𝑑15𝐹

′′
1 (𝑧)− 𝑑16𝐹

′
1(𝑧) = 0(3.8)

Eqs. (3.6), (3.8) are a system of homogeneous ordinary differential equations with
constant coefficients and the following solution is guessed as

𝐹1(𝑧) = 𝑐𝑒Γ𝑧(3.9a)

𝐹2(𝑧) = 𝑐𝑒Γ𝑧(3.9b)

Substituting (3.9) into Eqs. (3.6), (3.8) leads to[︂
𝑑7Γ

2 + 𝑑6Γ 𝑑12Γ
2 + 𝑑11Γ

−(𝑑15Γ
2 + 𝑑16Γ) 𝑑13Γ

2 + 𝑑14Γ

]︂ [︂
𝑐
𝑐

]︂
=

[︂
0
0

]︂
(3.10)

The nontrivial solution to Eq. (3.10) is obtained by setting the determinant of
this equation equal to zero as

Γ2[(𝑑7Γ + 𝑑6)(𝑑13Γ + 𝑑14) + (𝑑12Γ + 𝑑11)(𝑑15Γ + 𝑑16)] = 0(3.11)

where

𝑑20Γ
2 + 𝑑21Γ + 𝑑22 = 0(3.12a)

Γ2 = 0(3.12b)

coefficients 𝑑20, 𝑑21 and 𝑑22 in Eq. (3.12a) are given in Appendix. Eq. (3.12) gives

Γ1,2 =
−𝑑21 ±

√︀
𝑑221 − 4𝑑20𝑑22
2𝑑20

(3.13a)

Γ3,4 = 0(3.13b)

Thus

𝐹1(𝑧) = 𝑐1𝑒
Γ1𝑧 + 𝑐2𝑒

Γ2𝑧 + 𝑐3

𝐹2(𝑧) = 𝑑23𝑐1𝑒
Γ1𝑧 + 𝑑24𝑐2𝑒

Γ2𝑧 + 𝑐4(3.14)

Substituting (3.14) into Eq. (3.6), the relation between 𝑐 and 𝑐 is obtained as

𝑐 = − 𝑑7Γ + 𝑑6
𝑑12Γ + 𝑑11

𝑐

𝑐1 = − 𝑑7Γ1 + 𝑑6
𝑑12Γ1 + 𝑑11

𝑐1 = 𝑑23𝑐1 → 𝑑23 = − 𝑑7Γ1 + 𝑑6
𝑑12Γ1 + 𝑑11

𝑐2 = − 𝑑7Γ2 + 𝑑6
𝑑12Γ2 + 𝑑11

𝑐2 = 𝑑24𝑐2 → 𝑑24 = − 𝑑7Γ2 + 𝑑6
𝑑12Γ2 + 𝑑11

(3.15)
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Moreover, Eqs. (3.2), (3.5) and (3.7) are a system of linear homogeneous ordinary
differential equations with variable coefficients and the following solution is assumed
as

𝑈(𝑟) = 𝐴𝐽1(𝛽𝑟)(3.16a)

𝑊 (𝑟) = 𝐵𝐽0(𝛽𝑟)(3.16b)

Φ(𝑟) = 𝐶𝐽0(𝛽𝑟)(3.16c)

Substituting (3.14) and (3.16) into Eq. (3.1) leads to

𝑢(𝑟,𝑧) = 𝐴𝐽1(𝛽𝑟)𝑒
𝑝𝑧(3.17a)

𝑤(𝑟,𝑧) = 𝐵𝐽0(𝛽𝑟)𝑒
𝑝𝑧 + 𝐶1𝑒

Γ1𝑧 + 𝐶2𝑒
Γ2𝑧 + 𝐶3(3.17b)

𝜑(𝑟,𝑧) = 𝐶𝐽0(𝛽𝑟)𝑒
𝑝𝑧 + 𝑑23𝐶1𝑒

Γ1𝑧 + 𝑑24𝐶2𝑒
Γ2𝑧 + 𝐶4(3.17c)

Substituting (3.17a), (3.17b) and (3.17c) into Eqs. (3.2), (3.5) and (3.7) results in

{[−𝛽2+(𝑑2𝑃
2+𝑑1𝑃 )]𝐴−[𝐵(𝑑3𝑃+𝑑1)+𝐶(𝑑4𝑃+𝑑5)]𝛽}𝐽1(𝛽𝑟)=0(3.18a)

{[−𝛽2+(𝑑7𝑃
2+𝑑6𝑃 )]𝐵+𝐴𝛽(𝑑8𝑃+𝑑9)+[−𝛽2𝑑10+(𝑑12𝑃

2+𝑑11𝑃 )]𝐶}𝐽0(𝛽𝑟)=0(3.18b)

{[−𝛽2+(𝑑13𝑃
2+𝑑14𝑃 )]𝐶+[𝛽2𝑑17−(𝑑15𝑃

2+𝑑16𝑃 )]𝐵−𝛽(𝑑18𝑃+𝑑19)𝐴}𝐽0(𝛽𝑟)=0(3.18c)

Eqs. (3.18) show that (3.17a), (3.17b) and (3.17c) can be the solutions to the system
of Eqs. (3.2), (3.5) and (3.7) if and only if
(3.19)⎡⎣−𝛽2+(𝑑2𝑃

2+𝑑1𝑃 ) −𝛽(𝑑3𝑃 + 𝑑1) −𝛽(𝑑4𝑃 + 𝑑5)
𝛽(𝑑8𝑃 + 𝑑9) −𝛽2 + (𝑑7𝑃

2 + 𝑑6𝑃 ) −𝛽𝑑10+(𝑑12𝑃
2+𝑑11𝑃 )

−𝛽(𝑑18𝑃 + 𝑑19) 𝛽2𝑑17−(𝑑15𝑃
2+𝑑16𝑃 ) −𝛽2 + (𝑑13𝑃

2 + 𝑑14𝑃 )

⎤⎦⎡⎣𝐴𝐵
𝐶

⎤⎦=
⎡⎣00
0

⎤⎦
The nontrivial solution to Eq. (3.19) is obtained by setting the determinant of

this equation equal to zero as

(𝑎11 · 𝑎22 · 𝑎33) + (𝑎12 · 𝑎23 · 𝑎31) + (𝑎13 · 𝑎21 · 𝑎32)(3.20)

− (𝑎13 · 𝑎22 · 𝑎31)− (𝑎12 · 𝑎21 · 𝑎33)− (𝑎11 · 𝑎23 · 𝑎32) = 0

Eq. (3.20) is a six order polynomial in term 𝑝; it gives six roots 𝑃1–𝑃6 and coeffi-
cients 𝑎𝑖𝑗 in Eq. (3.20) which are given in Appendix. Additionally, Eq. (3.19) gives
a relation between 𝐴 and 𝐵, as well as 𝐴 and 𝐶. So

(3.21) 𝐵𝑚 = 𝑁𝑚 ·𝐴𝑚 𝐶𝑚 = 𝑀𝑚 ·𝐴𝑚

where

(3.22) 𝑁𝑚 =
𝑎13𝑎21 − 𝑎11𝑎23
𝑎12𝑎23 − 𝑎13𝑎22

𝑀𝑚 =
𝑎12𝑎21 − 𝑎11𝑎22
𝑎13𝑎22 − 𝑎12𝑎23

Application of the homogeneous boundary conditions. We assume zero
displacement in radial direction at 𝑟 = 𝑎

(3.23) 𝑢(𝑎, 𝑧) = 0 → 𝐽1(𝛽𝑎) = 0

Eq. (3.23) gives infinite roots for 𝛽𝑚. It needs to be noted that Eq. (3.20) gives six
values of 𝑃 (𝑃1𝑚 to 𝑃6𝑚) for each 𝛽. The boundary conditions in axial direction at
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𝑟 = 𝑎 are assumed to be

𝑤(𝑎, 0) = 𝑤(𝑎, ℎ) = 0(3.24a)

𝜑(𝑎, 0) = 𝜑(𝑎, ℎ) = 0(3.24b)

The application of boundary condition (3.24a) to Eq. (3.17) leads to the following
equations:

(3.25a) 𝐽0(𝛽𝑚𝑎)[𝐴1𝑚𝑁1𝑚 +𝐴2𝑚𝑁2𝑚 +𝐴3𝑚𝑁3𝑚 +𝐴4𝑚𝑁4𝑚

+𝐴5𝑚𝑁5𝑚 +𝐴6𝑚𝑁6𝑚] + 𝐶1𝑚 + 𝐶2𝑚 + 𝐶3𝑚 = 0

(3.25b) 𝐽0(𝛽𝑚𝑎)[𝐴1𝑚𝑁1𝑚𝑒𝑃1𝑚ℎ +𝐴2𝑚𝑁2𝑚𝑒𝑃2𝑚ℎ +𝐴3𝑚𝑁3𝑚𝑒𝑃3𝑚ℎ +𝐴4𝑚𝑁4𝑚𝑒𝑃4𝑚ℎ

+𝐴5𝑚𝑁5𝑚𝑒𝑃5𝑚ℎ +𝐴6𝑚𝑁6𝑚𝑒𝑃6𝑚ℎ ] + 𝐶1𝑚𝑒Γ1ℎ + 𝐶2𝑚𝑒Γ2ℎ + 𝐶3𝑚 = 0

(3.25c) 𝐽0(𝛽𝑚𝑎)[𝐴1𝑚𝑀1𝑚 +𝐴2𝑚𝑀2𝑚 +𝐴3𝑚𝑀3𝑚 +𝐴4𝑚𝑀4𝑚

+𝐴5𝑚𝑀5𝑚 +𝐴6𝑚𝑀6𝑚] + 𝑑23𝐶1𝑚 + 𝑑24𝐶2𝑚 + 𝐶4𝑚 = 0

(3.25d) 𝐽0(𝛽𝑚𝑎)[𝐴1𝑚𝑀1𝑚𝑒𝑃1𝑚ℎ +𝐴2𝑚𝑀2𝑚𝑒𝑃2𝑚ℎ +𝐴3𝑚𝑀3𝑚𝑒𝑃3𝑚ℎ +𝐴4𝑚𝑀4𝑚𝑒𝑃4𝑚ℎ

+𝐴5𝑚𝑀5𝑚𝑒𝑃5𝑚ℎ +𝐴6𝑚𝑀6𝑚𝑒𝑃6𝑚ℎ ] + 𝑑23𝐶1𝑚𝑒Γ1ℎ + 𝑑24𝐶2𝑚𝑒Γ2ℎ + 𝐶4𝑚 = 0

The constant coefficients 𝑑25 to 𝑑28 are given in Appendix. Considering the fact
that there is an infinite number of 𝛽𝑚, there will be an infinite number of 𝐶1 and
𝐶2 as 𝐶1𝑚 and 𝐶2𝑚, respectively:[︂

1− 𝑒Γ1ℎ 1− 𝑒Γ2ℎ

(1− 𝑒Γ1ℎ)𝑑23 (1− 𝑒Γ2ℎ)𝑑24

]︂ [︂
𝐶1𝑚

𝐶2𝑚

]︂
=

[︂
𝑑26 − 𝑑25
𝑑28 − 𝑑27

]︂
(3.26)

Thus

𝐶1𝑚 =
(𝑑26 − 𝑑25)(𝑑24 − 𝑑23)− (𝑑28 − 𝑑27)+𝑑23(𝑑26 − 𝑑25)

(1− 𝑒Γ1ℎ)(𝑑24 − 𝑑23)

𝐶2𝑚 =
(𝑑28 − 𝑑27)−𝑑23(𝑑26 − 𝑑25)

(1− 𝑒Γ2ℎ)(𝑑24 − 𝑑23)

By substituting 𝐶1𝑚, 𝐶2𝑚 and the constant coefficients 𝑑25 to 𝑑28 into Eqs. (3.25a)
and (3.25c), the values of 𝐶3𝑚 and 𝐶4𝑚 are obtained. Finally, the solution to the
Navier equations will be

𝑢(𝑟, 𝑧) =

∞∑︁
𝑚=1

𝐽1(𝛽𝑚𝑟)[𝐴1𝑚𝑒𝑃1𝑚𝑧 +𝐴2𝑚𝑒𝑃2𝑚𝑧 +𝐴3𝑚𝑒𝑃3𝑚𝑧(3.27a)

+𝐴4𝑚𝑒𝑃4𝑚𝑧 +𝐴5𝑚𝑒𝑃5𝑚𝑧 +𝐴6𝑚𝑒𝑃6𝑚𝑧 ]

(3.27b) 𝑤(𝑟, 𝑧) =

∞∑︁
𝑚=1

𝐽0(𝛽𝑚𝑟)[𝐴1𝑚𝑁1𝑚𝑒𝑃1𝑚𝑧 +𝐴2𝑚𝑁2𝑚𝑒𝑃2𝑚𝑧

+𝐴3𝑚𝑁3𝑚𝑒𝑃3𝑚𝑧 +𝐴4𝑚𝑁4𝑚𝑒𝑃4𝑚𝑧 +𝐴5𝑚𝑁5𝑚𝑒𝑃5𝑚𝑧

+𝐴6𝑚𝑁6𝑚𝑒𝑃6𝑚𝑧 ] + 𝐶1𝑚𝑒Γ1𝑧 + 𝐶2𝑚𝑒Γ2𝑍 + 𝐶3𝑚



AXI-SYMMETRIC ELASTICITY SOLUTION OF AN UNDRAINED SATURATED... 199

(3.27c) 𝜑(𝑟, 𝑧) =

∞∑︁
𝑚=1

𝐽0(𝛽𝑚𝑟)[𝐴1𝑚𝑀1𝑚𝑒𝑃1𝑚𝑧 +𝐴2𝑚𝑀2𝑚𝑒𝑃2𝑚𝑧

+𝐴3𝑚𝑀3𝑚𝑒𝑃3𝑚𝑧 +𝐴4𝑚𝑀4𝑚𝑒𝑃4𝑚𝑧 +𝐴5𝑚𝑀5𝑚𝑒𝑃5𝑚𝑧

+𝐴6𝑚𝑀6𝑚𝑒𝑃6𝑚𝑧 ] + 𝑑23𝐶1𝑚𝑒Γ1𝑧 + 𝑑24𝐶2𝑚𝑒Γ2𝑍 + 𝐶4𝑚

Remaining coefficients 𝐴𝑖𝑚 will be indicated using boundary conditions in 𝑧 direc-
tion. We assume the most general boundary conditions on the upper and lower
surfaces of the plate as

𝐾11

[︁
𝑢,𝑟(𝑟, 0) +

1

𝑟
𝑢(𝑟, 0)

]︁
+𝐾12𝑤(𝑟, 0) +𝐾13𝑤,𝑧(𝑟, 0)

+𝐾14𝑇 (𝑟, 0) +𝐾15𝜑𝑧(𝑟, 0) = 𝑆1(𝑟)

𝐾21𝑢(𝑟, 0) +𝐾22𝑢,𝑧(𝑟, 0) +𝐾23𝑤,𝑟(𝑟, 0) +𝐾24𝜑𝑟(𝑟, 0) = 𝑆2(𝑟)

𝐾31

[︁
𝑢,𝑟(𝑟, ℎ) +

1

𝑟
𝑢(𝑟, ℎ)

]︁
+𝐾32𝑤(𝑟, ℎ) +𝐾33𝑤,𝑧(𝑟, ℎ)

+𝐾34𝑇 (𝑟, ℎ) +𝐾35𝜑𝑧(𝑟, ℎ) = 𝑆3(𝑟)

𝐾41𝑢(𝑟, ℎ) +𝐾42𝑢,𝑧(𝑟, ℎ) +𝐾43𝑤,𝑟(𝑟, ℎ) +𝐾44𝜑𝑟(𝑟, ℎ) = 𝑆4(𝑟)

𝐾51𝜑(𝑟, 0) +𝐾52𝜑𝑧(𝑟, 0) = 𝑆5(𝑟)

𝐾61𝜑(𝑟, ℎ) +𝐾62𝜑𝑧(𝑟, ℎ) = 𝑆6(𝑟)

(3.28)

where 𝐾𝑖𝑗 are constants; by assigning different values to them, different types of
boundary conditions may be obtained; 𝑆𝑖(𝑟) are known functions. Substituting
Eqs. (3.28) into Eqs. (2.5), (2.6) and (2.7), the stresses and electric displacements
are obtained.

4. Results and discussion

As shown in Figure 2, a circular thick disk of radius “𝑎” and thickness “ℎ” is
made of undrained porous piezoelectric hexagonal material symmetry of class 6mm,
whose properties are shown in Table 1. Mainly to simulate practical problems, the
upper surface of the plate is partially exposed to mechanical load varying with the
linear law, 𝑃 (𝑟) = 𝜎𝑧𝑧 = −𝑃0𝑟; 𝑃0 = 100MPa. Shear stress is considered zero
on the upper and lower surfaces. Moreover, the axial normal stress is considered
zero on the lower surface. The boundary is assumed to be fixed such that the
mechanical boundary condition at radius a is 𝑢(𝑎, 𝑧) = 0, and axial displacement
in the boundary surface is limited at the upper and lower band, 𝑤(𝑎, 0) = 0 and
𝑤(𝑎, ℎ) = 0.

Material constants are considered for a cadmium selenide plate which possesses
class 6mm symmetry [7] as shown in Table 1.
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Figure 2. Geometry of a piezoelectric poroelastic circular thick
disk under the mechanical load and boundary conditions

Table 1

Parameter Numerical

𝑐11 74.1GPa
𝑐12 45.2GPa
𝑐13 45.2GPa
𝑐22 74.1GPa
𝑐55 16.2GPa
𝐸0 107GPa
𝛾 0.75
𝑒15 −0.138

(︀
𝐶
𝑚2

)︀
𝑣 0.2
𝑣𝑢 0.3

𝜂11 82.6× 10−12
(︀

𝐶2

𝑁 ·𝑚2

)︀
𝜂33 90.3× 10−12

(︀
𝐶2

𝑁 ·𝑚2

)︀
𝑒31 −0.160

(︀
𝐶
𝑚2

)︀
𝑒32 −0.160

(︀
𝐶
𝑚2

)︀
𝑒33 0.347

(︀
𝐶
𝑚2

)︀
Results for this problem are shown in Figures 3 to 20.
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(a)

(b)

(c)

Figure 3. (a) Radial displacement in the cross section of circular
thick disk; (b) radial displacement versus 𝑟/𝑎 at 𝑧/ℎ = 0.5;(c)
radial displacement versus 𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 4. (a) Axial displacement in the cross section of a circular
thick disk; (b) axial displacement versus 𝑟/𝑎 at 𝑧/ℎ = 0.5;(c) axial
displacement versus 𝑧/ℎ at 𝑟/𝑎 = 0.5



AXI-SYMMETRIC ELASTICITY SOLUTION OF AN UNDRAINED SATURATED... 203

(a)

(b)

(c)

Figure 5. (a) Electric potential in the cross section of a circular
thick disk; (b) electric potential versus 𝑟/𝑎 at 𝑧/ℎ = 0.5; (c) electric
potential versus 𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 6. (a) Radial mechanical stress in the cross section of
a circular thick disk; (b) distribution of radial mechanical stress
versus 𝑟/𝑎 at 𝑧/ℎ = 0.5; (c) distribution of radial mechanical stress
versus 𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 7. (a) Axial mechanical stress in the cross section of a cir-
cular thick disk; (b) distribution of axial mechanical stress versus
𝑟/𝑎 at 𝑧/ℎ = 0.5; (c) distribution of axial mechanical stress versus
𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 8. (a) Hoop mechanical stress in the cross section of a cir-
cular thick disk; (b) distribution of hoop mechanical stress versus
𝑟/𝑎 at 𝑧/ℎ = 0.5; (c) distribution of hoop mechanical stress versus
𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 9. (a)Shear mechanical stress in the cross section of cir-
cular thick disk;(b)distribution of shear mechanical stress versus
𝑟/𝑎 at 𝑧/ℎ = 0.5;(c)distribution of shear mechanical stress versus
𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 10. (a) Radial electric displacement in the cross section
of a circular thick disk; (b) variation of radial electric displacement
versus 𝑟/𝑎 at 𝑧/ℎ = 0.5; (c) variation of radial electric displacement
versus 𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a)

(b)

(c)

Figure 11. (a) Axial electric displacement in the cross section
of a circular thick disk; (b) variation of axial electric displacement
versus 𝑟/𝑎 at 𝑧/ℎ = 0.5; (c) variation of axial electric displacement
versus 𝑧/ℎ at 𝑟/𝑎 = 0.5
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(a) (b)

Figure 12. (a) Radial displacement versus 𝑟/𝑎 at 𝑧/ℎ = 0.5 for
different values of the compressibility coefficient B; (b) radial dis-
placement versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of the com-
pressibility coefficient B

Here, B is a compressibility coefficient, sometimes called the Skempton pore
pressure coefficient, which is related to poisson’s ratio, and undrained poisson’s
ratio. The under undrained condition as

𝐵 =
(3𝜈𝑢 − 𝜈)

(1− 2𝜈)(1 + 𝜈𝑢)
, 0 6 𝐵 6 1(4.1)

(a) (b)

Figure 13. (a) Axial displacement versus 𝑟/𝑎 at 𝑧/ℎ = 0.5 for
different values of the compressibility coefficient; (b) axial displace-
ment versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of the compress-
ibility coefficient
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(a) (b)

Figure 14. (a) Electric potential versus 𝑟/𝑎 at 𝑧/ℎ = 0.5 for dif-
ferent values of the compressibility coefficient; (b) electric potential
versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of the compressibility
coefficient

(a) (b)

Figure 15. (a) Radial mechanical stress versus 𝑟/𝑎 at 𝑧/ℎ =
0.5 for different values of the compressibility coefficient; (b) radial
mechanical stress versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of
the compressibility coefficient
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(a) (b)

Figure 16. (a) Axial mechanical stress versus 𝑟/𝑎 at 𝑧/ℎ = 0.5
for different values of the compressibility coefficient; (b) axial me-
chanical stress versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of the
compressibility coefficient

(a) (b)

Figure 17. (a) Hoop mechanical stress versus 𝑟/𝑎 at 𝑧/ℎ = 0.5
for different values of the compressibility coefficient; (b) hoop me-
chanical stress versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of the
compressibility coefficient
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(a) (b)

Figure 18. (a) Shear mechanical stress versus 𝑟/𝑎 at 𝑧/ℎ = 0.5
for different values of the compressibility coefficient; (b) shear me-
chanical stress versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values of the
compressibility coefficient

(a) (b)

Figure 19. (a) Radial electric displacement versus 𝑟/𝑎 at 𝑧/ℎ =
0.5 for different values of the compressibility coefficient; (b) radial
electric displacement versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values
of the compressibility coefficient
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(a) (b)

Figure 20. (a) Axial electric displacement versus 𝑟/𝑎 at 𝑧/ℎ =
0.5 for different values of the compressibility coefficient; (b) axial
electric displacement versus 𝑧/ℎ at 𝑟/𝑎 = 0.5 for different values
of the compressibility coefficient

The suggested solutions for displacement, electric potential, and stress field are
of the series form and by summing up 30 successive terms have a truncation error
of the order of 10−5. Figure 3a shows the resulting radial displacement due to
mechanical load. The radial displacement versus 𝑟/𝑎 is shown in Figure 3b. The
maximum radial displacement falls in half of the radius and it is zero at the cen-
ter due to the axisymmetric condition of the problem. Figure 3c shows the radial
displacement varying in axial direction. The considerable point is that for different
values of 𝑚2 there is a unique zero displacement point which is somewhere between
0.45 and 0.55 of dimensionless thickness; this point is interestingly the location
of the neutral axis. Figure 4a shows the resulting axial displacement caused by
mechanical load. Figure 4b shows the axial displacement varying in radial direc-
tion, where the maximum deflection, due to mechanical load, is in the center of the
plate and it is zero at the outer radius of the plate where we imposed a supported
boundary condition. Axial displacement versus 𝑧/ℎ is shown in Figure 4c. The
maximum axial displacement occurs near the dimensionless thickness of 0.5. Fig-
ure 5a demonstrates the resulting electric potential related to the mechanical load.
The electric potential versus 𝑟/𝑎 is shown in Figure 5b. It shows that the maximum
electric potential falls in the center of the plate and that it is zero at 𝑟/𝑎 = 1 due
to the axisymmetric condition of the problem. Figure 5c indicates that the electric
potential varies in axial direction and that it is maximum near the dimensionless
thickness of 0.5. Figures 6a, 7a, 8a and 9a show the radial, axial, circumferential,
and shear mechanical stresses in the cross section of the circular thick disk, respec-
tively. Figures 6b, 7b, 8b and 9b are the plots of stresses versus 𝑟/𝑎 at 𝑧/ℎ = 0.5.
It is shown that as 𝑚2 increases so do the radial, axial, hoop, and shear mechanical
stresses. Figures 6c, 7c and 8c show that the radial, axial, and circumferential me-
chanical stresses follow a harmonic pattern along the dimensionless thickness. The
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shear mechanical stress versus 𝑧/ℎ is shown in Figure 9c. It shows that the max-
imum shear stress is near the dimensionless thickness of 0.5. The resulting radial
and axial electric displacements 𝐷𝑟𝑟 and 𝐷𝑧𝑧 are shown in Figures 10a and 11a,
respectively. Figure 10b indicates that the maximum 𝐷𝑟𝑟 displacement falls in
𝑟/𝑎 = 0.4. Moreover, it is shown that as 𝑚2 increases so does the radial electric
displacement. It is noted that, due to the assumed boundary conditions, 𝐷𝑟𝑟 is
zero at 𝑟/𝑎 = 0 and 𝑟/𝑎 = 1. Figure 10c shows the radial electric displacement
versus 𝑧/ℎ. It is shown that the maximum 𝐷𝑟𝑟 falls in 𝑧/ℎ = 0.6. Figure 11b shows
that the maximum 𝐷𝑧𝑧 displacement falls in 𝑟/𝑎 = 0 and 𝑟/𝑎 = 1. Moreover, it is
zero in 𝑟/𝑎 = 0.6. Figure 11c demonstrates that as 𝑚2 increases, the axial electric
displacement also increases. Figures 12a, 13a and 14a present the distribution of
the radial and axial displacements and the electric potential along the radius for
different values of the pore compressibility coefficient B. Figures 12b, 13b and 14b
also show the distribution of these displacements and the electric potential along
the thickness, respectively, for different values of the pore compressibility coeffi-
cient B. Figures 15a, 16a, 17a and 18a demonstrate the distribution of the radial,
axial, hoop, and shear mechanical stresses along the radius, respectively, where the
pore compressibility coefficient B is changed and the other parameters are fixed.
Figures 15b, 16b, 17b and 18b show the distribution of the same stresses along the
thickness, for different values of the pore compressibility coefficient B. Figures 19a
and 20a present the variation of the radial and axial electric displacements along
the radius where the pore compressibility coefficient B is changed and the other pa-
rameters are fixed. Figures 19b and 20b indicate the variation of the same electric
displacements along the thickness, for different values of the pore compressibility
coefficient B.

5. Conclusions

This paper presents an analytical solution for the calculation of the axisym-
metric mechanical stresses in a piezoelectric poroelastic circular thick disk. The
material properties through the porous direction are assumed to be nonlinear with
an exponential law distribution. The mechanical stresses are obtained through the
direct method of solution for the Navier equation. In the present study, a linear
varying distributed external axisymmetric mechanical load acts on the plate and
the boundary is assumed to be fixed. It is concluded that:

(i) The neutral axis and plane of the plate will not fall in the midsurface.
(ii) Greater 𝑚2 will pass the neutral axis far from the mid-plane of the plate.
(iii) Axial and radial displacement through the thickness and radius of the

plate is not constant and linear.
(iv) Radial displacement in radial direction is affected considerably near the

center of the plate.
(v) Electric potential through the thickness and radius of the plate is not

constant and linear.
(vi) It is interesting to see that except for the shear stress other stresses follow a

harmonic pattern along the thickness of the plate due to mechanical loads.
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(vii) There is a zero point for the radial, axial and circumferential mechanical
stresses across the thickness which is near 0.3 of the dimensionless thick-
ness. Because of the porosity distribution profile, this point is the neutral
axis of the plate.

(viii) Axial electric displacement follows a harmonic pattern along the dimen-
sionless thickness.

Appendix A.

𝑑1 =
𝑐*55
𝑐*11

𝑚

ℎ
𝑑2 =

𝑐*55
𝑐*11

𝑑3 =
𝑐*13 + 𝑐*55

𝑐*11
𝑑4 =

𝑒31 + 𝑒15
𝑐*11

𝑑5 =
𝑒15
𝑐*11

𝑚

ℎ
𝑑6 =

𝑐*33
𝑐*55

𝑚

ℎ
𝑑7 =

𝑐*33
𝑐*55

𝑑8 =
𝑐*13
𝑐*55

+ 1

𝑑9 =
𝑐*13
𝑐*55

𝑚

ℎ
𝑑10 =

𝑒15
𝑐*55

𝑑11 =
𝑒33
𝑐*55

𝑚

ℎ
𝑑12 =

𝑒33
𝑐*55

𝑑13 =
𝜂33
𝜂11

𝑑14 =
𝜂33
𝜂11

𝑚

ℎ
𝑑15 =

𝑒33
𝜂11

𝑑16 =
𝑒33
𝜂11

𝑚

ℎ

𝑑17 =
𝑒15
𝜂11

𝑑18 =
𝑒15 + 𝑒31

𝜂11
𝑑19 =

𝑒31
𝜂11

𝑚

ℎ
𝑑20 = 𝑑7𝑑13 + 𝑑12𝑑15

𝑑21 = 𝑑7𝑑6 + 𝑑6𝑑13 + 𝑑12𝑑16 + 𝑑11𝑑15 𝑑22 = 𝑑6𝑑14 + 𝑑11𝑑16

𝑎11 = −𝛽2 + (𝑑2𝑃
2 + 𝑑1𝑃 )

𝑎12 = −𝛽(𝑑3𝑃 + 𝑑1)

𝑎13 = −𝛽(𝑑4𝑃 + 𝑑5)

𝑎21 = 𝛽(𝑑8𝑃 + 𝑑9)

𝑎22 = −𝛽2 + (𝑑7𝑃
2 + 𝑑6𝑃 )

𝑎23 = −𝛽𝑑10 + (𝑑12𝑃
2 + 𝑑11𝑃 )

𝑎31 = −𝛽(𝑑18𝑃 + 𝑑19)

𝑎32 = 𝛽2𝑑17 − (𝑑15𝑃
2 + 𝑑16𝑃 )

𝑎33 = −𝛽2 + (𝑑13𝑃
2 + 𝑑14𝑃 )

𝑑25 = 𝐽0(𝛽𝑚𝑎)
[︀
𝐴1𝑚𝑁1𝑚 +𝐴2𝑚𝑁2𝑚 +𝐴3𝑚𝑁3𝑚 +𝐴4𝑚𝑁4𝑚 +𝐴5𝑚𝑁5𝑚 +𝐴6𝑚𝑁6𝑚

]︀
𝑑26 = 𝐽0(𝛽𝑚𝑎)

[︀
𝐴1𝑚𝑁1𝑚𝑒𝑃1𝑚ℎ +𝐴2𝑚𝑁2𝑚𝑒𝑃2𝑚ℎ +𝐴3𝑚𝑁3𝑚𝑒𝑃3𝑚ℎ

+𝐴4𝑚𝑁4𝑚𝑒𝑃4𝑚ℎ +𝐴5𝑚𝑁5𝑚𝑒𝑃5𝑚ℎ +𝐴6𝑚𝑁6𝑚𝑒𝑃6𝑚ℎ
]︀

𝑑27 = 𝐽0(𝛽𝑚𝑎)
[︀
𝐴1𝑚𝑀1𝑚+𝐴2𝑚𝑀2𝑚+𝐴3𝑚𝑀3𝑚+𝐴4𝑚𝑀4𝑚+𝐴5𝑚𝑀5𝑚+𝐴6𝑚𝑀6𝑚

]︀
𝑑28 = 𝐽0(𝛽𝑚𝑎)

[︀
𝐴1𝑚𝑀1𝑚𝑒𝑃1𝑚ℎ +𝐴2𝑚𝑀2𝑚𝑒𝑃2𝑚ℎ +𝐴3𝑚𝑀3𝑚𝑒𝑃3𝑚ℎ

+𝐴4𝑚𝑀4𝑚𝑒𝑃4𝑚ℎ +𝐴5𝑚𝑀5𝑚𝑒𝑃5𝑚ℎ +𝐴6𝑚𝑀6𝑚𝑒𝑃6𝑚ℎ
]︀
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ОСНОСИМЕТРИЧНО РЕШЕЊЕ ЗА ЕЛАСТИЧНОСТ
НЕДРЕНАЖИРАНОГ ЗАСИЋЕНОГ

ПОРО-ПИЕЗОЕЛАСТИЧНОГ ДИСКА

Резиме. У овом раду проучава се кружна плоча израђена од пороела-
стичне пиезоелектричне керамике. Порозности плоче варираjу у зависности
од дебљине и осносиметричног понашања пиезоелектричног диска коjи има
хексагоналну материjалну симетриjу класе 6 mm. Поред тога, на плочу делу-
jу спољна осносиметрична механичка оптерећења у општем облику. Своjства
материjала плоче експоненциjално варираjу као функциjе променљиве 𝑧 у ци-
линдричним координатама. На основу решења за еластичност у односу на ра-
диjална и аксиjална померања (𝑢,𝑤), добиjаjу се и решаваjу аналитички пар-
циjалне диференциjалне jедначине система. Затим се израчунаваjу механички
напони и електрични помераjи. На краjу, приказан jе пример коjи илуструjе
примену изведених формула.
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