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TWO INTERACTING NON-ELLIPTICAL RIGID
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Abstract. We use conformal mapping techniques to design two interacting
non-elliptical rigid inclusions, each of which is loaded by a couple, which en-

sure the so-called ‘harmonic condition’ in which the original mean stress in

the matrix remains undisturbed after the introduction of the inclusions. We
show that for prescribed Poisson’s ratio and corresponding geometric param-

eters, several restrictions are necessary on the external loadings to ensure the

harmonic condition. It is seen from our analysis that: (i) the interfacial and
hoop stresses are uniformly distributed along each of the inclusion-matrix in-

terfaces; (ii) the interfacial normal and hoop stresses along the two interfaces

are completely determined by the Poisson’s ratio and the constant mean stress
in the matrix whilst the interfacial tangential stress along the two interfaces

can be completely determined by the moments of the couples and the areas of
the two inclusions; (iii) the existence of the applied couples will influence the

non-elliptical shapes of the two rigid harmonic inclusions when the moment to

area ratios for the two inclusions differ.

1. Introduction

When inhomogeneities (e.g. holes or inclusions) are introduced into an elastic
material as part of the manufacture of composite structures, they inevitably lead to
undesired stress concentrations which subsequently affect the intended mechanical
performance of the structure. The design of optimal structural shapes of such inho-
mogeneities seeks to minimize or completely eliminate such stress concentrations.
However, the identification of such shapes leads inevitably to an inverse problem in
which we seek to determine the geometry of a boundary from prescribed conditions
that must be satisfied by the final stress field. The approach used to solve such
problems depends significantly on the pre-selected design criteria. The ‘harmonic
condition’ advanced by Bjorkman and Richards [1, 2] and Richards and Bjork-
man [3] is one such criterion which requires that the trace of the original stress
field (or the original mean stress) in the surrounding matrix remains unchanged
after the introduction of a hole or inclusion. In this case, the hole or inclusion
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is referred to as ‘harmonic’ (The terminology ‘harmonic’ is used in this context
since the first invariant of the stress tensor is a harmonic function in linear plane
elasticity.). In many situations, a harmonic shape will also satisfy the “constant
strength” criterion proposed by Cherepanov [4] and will induce minimum stress
concentration [5–7].

In previous discussions on the design of harmonic rigid inclusions, the inclusion
is taken to be free of any external loading (see, for example, [3,5,6]). This, of course,
is a simplification which limits the applicability of the corresponding mechanical
model. Most recently, Wang and Schiavone [8] observed that it remains possible
to satisfy the harmonic condition when a rigid elliptical inclusion is loaded by a
couple. It is well-known, however, that, in general, considerable stress amplification
will occur as a result of the interaction of two rigid inclusions placed relatively close
together. Our research suggests that minimization of stress concentrations can still
be realized for two interacting rigid harmonic inclusions when the inclusions are
loaded externally by couples.

Accordingly, in this study, we examine the existence of two interacting non-
elliptical rigid harmonic inclusions when each inclusion is loaded by a couple and
the surrounding matrix is subjected to a uniform stress field at infinity. The de-
sign of the two rigid harmonic inclusions is achieved through the introduction of
a conformal mapping function first adopted in Wang [9]. The presence of the
couples means that the inclusions will undergo rigid-body rotations which can be
determined via a moment balance for each inclusion. Once the harmonic condition
is satisfied, the interfacial normal and tangential stresses and the hoop stress are
found to be uniform along each one of the two inclusion-matrix interfaces.

2. Problem formulation

For plane deformations of a linearly isotropic elastic material, the stresses
(𝜎11, 𝜎22, 𝜎12), displacements (𝑢1, 𝑢2) and stress functions (𝜑1, 𝜑2) can be expressed
in terms of two analytic functions 𝜙(𝑧) and 𝜓(𝑧) of the complex variable 𝑧 = 𝑥1+i𝑥2
as [10,11]

𝜎11 + 𝜎22 = 2[𝜙′(𝑧) + 𝜙′(𝑧)], 𝜎22 − 𝜎11 + 2i𝜎12 = 2[𝑧𝜙′′(𝑧) + 𝜓′(𝑧)],

2𝜇(𝑢1 + i𝑢2) = 𝜅𝜙(𝑧)− 𝑧𝜙′(𝑧)− 𝜓(𝑧), 𝜑1 + i𝜑2 = i[𝜙(𝑧) + 𝑧𝜙′(𝑧) + 𝜓(𝑧)],

where 𝜅 = 3 − 4𝜈 for plane strain, 𝜅 = (3− 𝜈)/(1 + 𝜈) for plane stress and 𝜇,
𝜈(0 6 𝜈 6 1/2) are the shear modulus and Poisson’s ratio, respectively. In addition,
the stresses are related to the stress functions through [11]

𝜎11 = −𝜑1,2, 𝜎12 = 𝜑1,1, 𝜎21 = −𝜑2,2, 𝜎22 = 𝜑2,1.

Let 𝑡1 and 𝑡2 be traction components along the 𝑥1- and 𝑥2-directions, respec-
tively, on a given boundary 𝐿. If 𝑠 is the arc-length measured along 𝐿 such that
the material remains on the left-hand side in the direction of increasing 𝑠, it can
be shown that [11]

(2.1) 𝑡1 + i𝑡2 = −𝑑(𝜑1 + i𝜑2)

𝑑𝑠
.
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Consider a domain in ℜ2, infinite in extent, containing two non-elliptical rigid
inclusions. Let 𝑆 denote the matrix, which is assumed to be perfectly bonded to
the two inclusions through the left and right interfaces 𝐿1 and 𝐿2. The matrix is
subjected to remote uniform in-plane stresses (𝜎∞

11 , 𝜎
∞
22 , 𝜎

∞
12) while the leftmost rigid

inclusion with interface 𝐿1 is loaded by a couple of moment 𝑀1 and its right-hand
counterpart with interface 𝐿2 is loaded by a couple with moment 𝑀2. In the fol-
lowing section, we will analyze, in detail, whether the two interacting non-elliptical
rigid inclusions loaded by couples can indeed satisfy the harmonic condition.

3. Design of two interacting rigid harmonic inclusions
loaded by couples

The boundary value problem in the physical 𝑧-plane takes the form

(3.1)
𝜅𝜙(𝑧)− 𝑧𝜙′(𝑧)− 𝜓(𝑧) = 2i𝜇𝜛1𝑧, 𝑧 ∈ 𝐿1;

𝜅𝜙(𝑧)− 𝑧𝜙′(𝑧)− 𝜓(𝑧) = 2i𝜇𝜛2𝑧, 𝑧 ∈ 𝐿2;
.

(3.2) 𝜙(𝑧) ∼=
𝜎∞
11 + 𝜎∞

22

4
𝑧 +𝑂(1), 𝜓(𝑧) ∼=

𝜎∞
22 − 𝜎∞

11 + 2i𝜎∞
12

2
𝑧 +𝑂(1), |𝑧| → ∞,

where 𝜛1 and 𝜛2 re unknown rigid-body rotations of the left- and right- inclusions
to be determined through moment equilibrium on each of the two inclusions. Equa-
tion (3.1) describes continuity of displacements across the two interfaces 𝐿1 and
𝐿2, respectively, whilst Eq. (3.2) gives the asymptotic behaviors of 𝜙(𝑧) and 𝜓(𝑧)
at infinity. In writing Eq. (3.1), we have disregarded the rigid-body translations of
the two rigid inclusions.

Consider the following conformal mapping function for the matrix [9]

𝑧 = 𝜔(𝜉) = 𝑅

[︂
1

𝜉 − 𝜆
+

𝑝

𝜉 − 𝜆−1
+

Λ−1𝑝

𝜌𝜉 − 𝜆−1
+

+∞∑︁
𝑛=1

(𝑎𝑛𝜉
𝑛 + 𝑎−𝑛𝜉

−𝑛)

]︂
,(3.3)

𝜉(𝑧) = 𝜔−1(𝑧), 1 6 |𝜉| 6 𝜌−
1
2 ,

where 𝑅 is a real scaling constant; 𝜆 (1 < 𝜆 < 𝜌−1/2) is a real constant; 𝑝 and Λ are
complex constants and 𝑎𝑛, 𝑎−𝑛 are unknown complex coefficients to be determined.
Using the mapping function in Eq. (3.3), the matrix 𝑆 in the 𝑧-plane is mapped
onto an annulus 1 6 |𝜉| 6 𝜌−1/2 in the 𝜉-plane, while the two interfaces 𝐿1 and
𝐿2 in the 𝑧-plane are mapped onto two co-axial circles with radii 1 and 𝜌−1/2,
respectively, in the 𝜉-plane. Furthermore, the point at infinity (𝑧 = ∞) is mapped
to the point 𝜉 = 𝜆.

In order to ensure that the two rigid inclusions are indeed harmonic, it is clear
that 𝜙(𝑧) should take the following form

(3.4) 𝜙(𝑧) = 𝑋𝑧, 𝑧 ∈ 𝑆,

where 𝑋 is a real constant.
By enforcing continuity of displacements across the two interfaces 𝐿1 and 𝐿2

in Eq. (3.1), we arrive at two expressions for 𝜓(𝜉) = 𝜓(𝜔(𝜉))(1 6 |𝜉| 6 𝜌−1/2) as
follows:
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𝜓(𝜉) = 𝑅[𝑋(𝜅− 1) + 2i𝜇𝜛1]

[︂
1

𝜉−1 − 𝜆
+

𝑝

𝜉−1 − 𝜆−1

+
Λ̄−1𝑝

𝜌𝜉−1 − 𝜆−1
+

+∞∑︁
𝑛=1

(�̄�𝑛𝜉
−𝑛 + �̄�−𝑛𝜉

𝑛)

]︂
,

𝜓(𝜉) = 𝑅[𝑋(𝜅− 1) + 2i𝜇𝜛2]

[︂
1

𝜌−1𝜉−1 − 𝜆
+

𝑝

𝜌−1𝜉−1 − 𝜆−1
(3.5)

+
Λ̄−1𝑝

𝜉−1 − 𝜆−1
+

+∞∑︁
𝑛=1

(�̄�𝑛𝜌
−𝑛𝜉−𝑛 + �̄�−𝑛𝜌

𝑛𝜉𝑛)

]︂
.

In order to ensure that the elastic field in the matrix is unique, the above two
expressions of 𝜓(𝜉) should coincide. As a result, we obtain

(3.6) Λ =
𝑋(𝜅− 1)− 2i𝜇𝜛2

𝑋(𝜅− 1)− 2i𝜇𝜛1
,

and

(3.7) 𝑎𝑛 =
𝜆−𝑛−1 + 𝑝Λ−1𝜌𝑛𝜆𝑛+1

1− Λ𝜌−𝑛
, 𝑎−𝑛 =

𝜆𝑛−1 + 𝑝𝜆1−𝑛

Λ−1𝜌−𝑛 − 1
, 𝑛 = 1, 2, . . . ,+∞.

Imposing the asymptotic conditions in Eq. (3.2) on 𝜛(𝑧) and 𝜓(𝑧), we obtain
the following constraints

(3.8)
𝜎∞
11 + 𝜎∞

22 = 4𝑋,

𝜎∞
22 − 𝜎∞

11 + 2i𝜎∞
12 = −2𝑝𝜆2 [𝑋(𝜅− 1) + 2i𝜇𝜛1] .

From Eqs. (2.1), (3.4)–(3.5) and (3.8)1, we deduce that the interfacial normal
stress 𝜎𝑛𝑛 and interfacial tangential stress 𝜎𝑛𝑡, are uniformly distributed along the
two interfaces 𝐿1 and 𝐿2 as follows

(3.9) 𝜎𝑛𝑛 = 𝑋(𝜅+ 1) =
(𝜅+ 1)(𝜎∞

11 + 𝜎∞
22)

4
, 𝜎𝑛𝑡 = −2𝜇𝜛1, 𝑧 ∈ 𝐿1;

(3.10) 𝜎𝑛𝑛 = 𝑋(𝜅+ 1) =
(𝜅+ 1)(𝜎∞

11 + 𝜎∞
22)

4
, 𝜎𝑛𝑡 = −2𝜇𝜛2, 𝑧 ∈ 𝐿2.

It then follows from Eqs. (3.4), (3.9) and (3.10) that the hoop stress 𝜎𝑡𝑡, is also
uniformly distributed along the two interfaces on the matrix side, specifically

𝜎𝑡𝑡 = 𝑋(3− 𝜅) =
(3− 𝜅)(𝜎∞

11 + 𝜎∞
22)

4
, 𝑧 ∈ 𝐿1 ∪ 𝐿2.

The above expressions for 𝜎𝑛𝑛 and 𝜎𝑡𝑡, which are completely determined by
the Poisson’s ratio and the constant mean stress in the matrix, are identical to the
corresponding expressions obtained for a rigid harmonic elliptical inclusion in the
absence of a couple [3] or in the presence of a couple applied to the rigid inclusion [8].
It is relatively straightforward to show that minimum stress concentration along
the two interfaces has also been attained. In addition, moment equilibrium for
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the left-hand inclusion enclosed by 𝐿1 will yield expressions for 𝜎𝑛𝑡 along the left
interface 𝐿1 and 𝜛1, in terms of the moment 𝑀1 as follows

(3.11) 𝜎𝑛𝑡 = −𝑀1

2𝐴1
, 𝜛1 =

𝑀1

4𝜇𝐴1
,

where 𝐴1 is the area enclosed by 𝐿1. A proof of Eq. (3.11) is given in the Appendix.
Similarly, moment equilibrium for the right-inclusion enclosed by 𝐿2 will yield

the following expressions for 𝜎𝑛𝑡 along the right interface 𝐿2 and 𝜛2 in terms of
the moment 𝑀2,

(3.12) 𝜎𝑛𝑡 = −𝑀2

2𝐴2
, 𝜛2 =

𝑀2

4𝜇𝐴2
,

where 𝐴2 is the area enclosed by 𝐿2.
Using Eqs. (3.8)1, (3.11) and (3.12), the complex number Λ in Eq. (3.6) can be

further expressed in terms of the external loadings as

(3.13) Λ =
(𝜅− 1)(𝜎∞

11 + 𝜎∞
22)− 2i𝑀2

𝐴2

(𝜅− 1)(𝜎∞
11 + 𝜎∞

22)− 2i𝑀1

𝐴1

,

which clearly indicates that Λ is loading dependent. Clearly the dependency of Λ
in Eq. (3.13) on the areas 𝐴1 and 𝐴2 means that it is size-dependent.

It follows from Eqs. (3.8), (3.11) and (3.12) that the complex constant 𝑝 can
be uniquely determined as

𝑝 =
𝛿

𝜆2
,

where 𝛿 is a complex loading parameter defined by

(3.14) 𝛿 =
2(𝜎∞

11 − 𝜎∞
22 + 2i𝜎∞

12)

(𝜅− 1)(𝜎∞
11 + 𝜎∞

22)− 2i𝑀1

𝐴1

.

Since 𝛿 in Eq. (3.14) depends on the area 𝐴1, it is also size-dependent. Our
previous results [9] indicate that |𝛿| 6 1. In the following, we will derive spe-
cific restrictions on the external loadings for given Poisson’s ratio and geometric
parameters (𝑅, 𝜌, 𝜆, 𝑝,Λ) depending on whether Λ is real or complex.

Case 3.1. Im{Λ} ≠ 0
In this case, from Eqs. (3.13) and (3.14), we deduce that the loadings (𝜎∞

11 , 𝜎
∞
22 ,

𝜎∞
12 ,𝑀1,𝑀2) are not independent and should satisfy the following restrictions:

(3.15)

𝜎∞
11 − 𝜎∞

22 + 2i𝜎∞
12

𝜎∞
11 + 𝜎∞

22

=
i𝛿(𝜅− 1)(Λ̄− 1)

2Λ′′ ,

𝑀1

𝐴1

𝜎∞
11 + 𝜎∞

22

=
(1− Λ′)(𝜅− 1)

2Λ′′ ,

𝑀2

𝐴2

𝜎∞
11 + 𝜎∞

22

=
(Λ′ − |Λ|2)(𝜅− 1)

2Λ′′ ,

where Λ′ and Λ′′(̸= 0) are, respectively, the real and imaginary parts of Λ and
𝛿 = 𝑝𝜆2 is given.
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Case 3.2. Im{Λ} = 0
When Λ is real-valued, from Eq. (3.13) we see that either 𝜎∞

11 + 𝜎∞
22 = 0 or

𝑀1/𝐴1 =𝑀2/𝐴2.

(i) If 𝜎∞
11 +𝜎

∞
22 = 0, the external loadings should satisfy the following restric-

tions when 𝛿 ̸= 0

(3.16)

𝜎∞
22 = −𝜎∞

11 , 𝛿′𝜎∞
11 + 𝛿′′𝜎∞

12 = 0;

𝑀1

𝐴1
=

2(𝛿′′𝜎∞
11 − 𝛿′𝜎∞

12)

|𝛿|2
,

𝑀2

𝐴2
= Λ

𝑀1

𝐴1
,

with 𝛿 and 𝛿′′ denoting, respectively, the real and imaginary parts of 𝛿 =
𝑝𝜆2. When 𝛿 = 0 these loadings should satisfy the following restrictions

(3.17)

𝜎∞
11 = 𝜎∞

22 = 𝜎∞
12 = 0,

𝑀2

𝐴2
= Λ

𝑀1

𝐴1
,

which clearly indicate the absence of the remote loading.
In the case of 𝜎∞

11 + 𝜎∞
22 = 0, both the interfacial normal and hoop

stresses are zero along the two interfaces.
(ii) If 𝑀1/𝐴1 =𝑀2/𝐴2, we have from Eq. (3.13) that Λ = 1. In this case, the

external loadings should satisfy the following restrictions when 𝛿 ̸= 0

(3.18)

[︀
|𝛿|2(𝜅− 1)− 2𝛿′

]︀
𝜎∞
11 +

[︀
|𝛿|2(𝜅− 1) + 2𝛿′

]︀
𝜎∞
22 − 4𝛿′′𝜎∞

12 = 0,

𝑀1

𝐴1
=
𝛿′′(𝜎∞

11 − 𝜎∞
22)− 2𝛿′𝜎∞

12

|𝛿|2
,

𝑀2

𝐴2
=
𝑀1

𝐴1
,

and

(3.19)

𝜎∞
11 = 𝜎∞

22 ̸= 0, 𝜎∞
12 = 0;

𝑀2

𝐴2
=
𝑀1

𝐴1
,

when 𝛿 = 0 which indicates that the remote loading is hydrostatic or
isotropic.

For given values of 𝑅, 𝜌, 𝜆, 𝑝 and Λ, the complex coefficients 𝑎𝑛, 𝑎−𝑛 can be
uniquely determined using Eq. (3.7). Thus the shapes of the two inclusions de-
scribed by 𝑧 = 𝜔(𝜉) for |𝜉| = 1 and 𝜉 = 𝜌−1/2 are known completely which means
that the areas 𝐴1 and 𝐴2 of the two inclusions can be readily determined. For a
prescribed remote loading (𝜎∞

11 , 𝜎
∞
22 , 𝜎

∞
12) satisfying any of Eq. (3.15)1, Eq. (3.16)1,

Eq. (3.17)1, Eq. (3.18)1 or Eq. (3.19)1 and given (inclusion) areas, the two mo-
ments 𝑀1 and 𝑀2 (or the relationship between them) can then be determined,
from Eqs. (3.15)2,3, Eqs. (3.16)2,3, Eq. (3.17)2, Eqs. (3.18)2,3 or Eq. (3.19)2, re-
spectively.
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We note that Λ ≡ 1 always in the absence of the two couples (𝑀1 = 𝑀2 = 0)
(Wang, 2012). Thus, the presence of the couples most definitely influence the non-
elliptical shapes of the two rigid harmonic inclusions when Λ ̸= 1 or equivalently
when 𝑀1/𝐴1 ̸= 𝑀2/𝐴2. In other words, in the absence of any couple, all of the
existing pairs of interacting non-elliptical rigid harmonic inclusions will cease to be
harmonic when couples with dissimilar moment to area ratios are applied to the
inclusions. For example, if the two moments have opposite signs, the moment to
area ratios for the two inclusions will be unequal.

4. Discussion

In this section, we consider five special cases:

(i) 𝑀1 ̸= 0, 𝑀2 = 0;
(ii) 𝑀1 = 0, 𝑀2 ̸= 0;
(iii) 𝑀1/𝐴1 = −𝑀2/𝐴2;
(iv) 𝜎∞

11 + 𝜎∞
22 = 0, 𝛿′ ̸= 0, 𝛿′′ = 0;

(v) 𝑀1/𝐴1 =𝑀2/𝐴2, 𝛿
′ ̸= 0, 𝛿′′ = 0.

4.1. 𝑀1 ̸= 0, 𝑀2 = 0
In this case, we deduce from Eq. (3.15) that

(4.1) Λ′ − |Λ|2 = 0,

and the external loadings should satisfy the following restrictions:

(4.2)

𝜎∞
11 − 𝜎∞

22 + 2i𝜎∞
12

𝜎∞
11 + 𝜎∞

22

=
𝛿(𝜅− 1)

2Λ
,

𝑀1

𝐴1

𝜎∞
11 + 𝜎∞

22

=
Λ′′(𝜅− 1)

2Λ′ .

From Eqs. (3.11) and (4.2)2, the interfacial tangential stress 𝜎𝑛𝑡 along the left
interface 𝐿1 and the rigid-body rotation of the left-inclusion 𝜛1 can be expressed
in terms of the remote loading as

𝜎𝑛𝑡 = −Λ′′(𝜅− 1)(𝜎∞
11 + 𝜎∞

22)

4Λ′ , 𝜛1 =
Λ′′(𝜅− 1)(𝜎∞

11 + 𝜎∞
22)

8𝜇Λ′ .

From Eq. (3.12) it now follows that the interfacial tangential stress 𝜎𝑛𝑡 along
the right interface 𝐿2 and the rigid-body rotation of the right-inclusion 𝜛2 are
both zero.

For example, the harmonic shapes of the two rigid inclusions are illustrated in

Fig. 1 when 𝜌 = 0.1, 𝜆 = 𝜌−
1
4 = 1.7783, 𝑝 = 0 and Λ = 1

2 (1− i) in Eq. (4.1).

4.2. 𝑀1 = 0, 𝑀2 ̸= 0
In this case, from Eq. (3.15) we deduce that

(4.3) Λ′ = 1,
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and the external loadings should satisfy the following restrictions:

(4.4)

𝜎∞
11 − 𝜎∞

22 + 2i𝜎∞
12

𝜎∞
11 + 𝜎∞

22

=
𝛿(𝜅− 1)

2
,

𝑀2

𝐴2

𝜎∞
11 + 𝜎∞

22

= −Λ′′(𝜅− 1)

2
.

From Eq. (3.11) we see that the interfacial tangential stress 𝜎𝑛𝑡 along the left
interface 𝐿1 and the rigid-body rotation of the left-inclusion 𝜛1 are now both zero.

Eqs. (3.12) and (4.4)2 determine that the interfacial tangential stress 𝜎𝑛𝑡 along
the right interface 𝐿2 and the rigid-body rotation of the right-inclusion 𝜛2 can be
expressed in terms of the remote loading as

𝜎𝑛𝑡 =
Λ′′(𝜅− 1)(𝜎∞

11 + 𝜎∞
22)

4
, 𝜛2 = −Λ′′(𝜅− 1)(𝜎∞

11 + 𝜎∞
22)

8𝜇
.

For example, the harmonic shapes of the two rigid inclusions are shown in Fig. 2
in the case 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = 0 and Λ = 1 + 2.11i in Eq. (4.3). It is

interesting to note in Fig. 2 the emergence of a non-smooth boundary, specifically
the appearance of a sharp corner on the boundary of the left rigid inclusion which
is here free of the effects of the couple.

4.3. 𝑀1/𝐴1 = −𝑀2/𝐴2

In this case, from Eq. (3.15) we deduce that

(4.5) |Λ| = 1,

and the external loadings should satisfy the following restrictions:

(4.6)

𝜎∞
11 − 𝜎∞

22 + 2i𝜎∞
12

𝜎∞
11 + 𝜎∞

22

=
i𝛿(𝜅− 1)(Λ̄− 1)

2Λ′′ ,

𝑀1

𝐴1

𝜎∞
11 + 𝜎∞

22

= −
𝑀2

𝐴2

𝜎∞
11 + 𝜎∞

22

=
(1− Λ′)(𝜅− 1)

2Λ′′ .

From Eqs. (3.11) and (4.6)2 the interfacial tangential stress 𝜎𝑛𝑡 along the left
interface 𝐿1 and the rigid-body rotation of the left-inclusion 𝜛1 can be expressed
in terms of the remote loading as

𝜎𝑛𝑡 = − (1− Λ′)(𝜅− 1)(𝜎∞
11 + 𝜎∞

22)

4Λ′′ , 𝜛1 =
(1− Λ′)(𝜅− 1)(𝜎∞

11 + 𝜎∞
22)

8𝜇Λ′′ .

Eqs. (3.12) and (4.6)2 now give us that the interfacial tangential stress 𝜎𝑛𝑡
along the right interface 𝐿2 and the rigid-body rotation of the right-inclusion 𝜛2

can be expressed in terms of the remote loading as

𝜎𝑛𝑡 =
(1− Λ′)(𝜅− 1)(𝜎∞

11 + 𝜎∞
22)

4Λ′′ , 𝜛2 = −𝜛1 = − (1− Λ′)(𝜅− 1)(𝜎∞
11 + 𝜎∞

22)

8𝜇Λ′′ .

For example, the harmonic shapes of the two rigid inclusions are shown in Fig. 3
when 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = 0 and Λ = exp(𝜋6 i) in Eq. (4.5). We can

see from Fig. 3 that 𝐴1 = 𝐴2 due to the fact that the two inclusions have identical
shapes and sizes. As a result, we will have 𝑀1 = −𝑀2.
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4.4. 𝜎∞
11 + 𝜎∞

22 = 0, 𝛿′ ̸= 0, 𝛿′′ = 0
In this case, Eq. (3.16) reduces to

𝜎∞
11 = 𝜎∞

22 = 0,
𝑀1

𝐴1
= −2𝜎∞

12

𝛿′
,

𝑀2

𝐴2
= −2Λ𝜎∞

12

𝛿′
.

The tangential stress along the left interface 𝐿1 and the rigid-body rotation of
the left-inclusion can be expressed in terms of the remote shear stress as

(4.7) 𝜎𝑛𝑡 =
𝜎∞
12

𝛿′
, 𝜛1 = − 𝜎∞

12

2𝜇𝛿′
.

The tangential stress along the right interface 𝐿2 and the rigid-body rotation
of the right inclusion can be expressed in terms of the remote shear stress as

(4.8) 𝜎𝑛𝑡 =
Λ𝜎∞

12

𝛿′
, 𝜛2 = −Λ𝜎∞

12

2𝜇𝛿′
.

It is further deduced from Eqs. (4.7) and (4.8) that |𝜎𝑛𝑡 > |𝜎∞
12 | along 𝐿1 and

|𝜎𝑛𝑡| > |Λ𝜎∞
12 | along 𝐿2 in view of the fact that |𝛿| 6 1, Recall that in this case, the

interfacial normal and hoop stresses along the two interfaces are zero.
For example, in the case 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = −0.1 and Λ = 2, the

harmonic shapes of the two rigid inclusions are shown in Fig. 4. In this example,
we have 𝛿 = −0.3162. We again note the emergence of non-smooth boundaries
in the extreme cases depicted in Figures 5 and 6. In fact, in Fig. 5 we present
the harmonic shapes of the two rigid inclusions when 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783,

𝑝 = −0.1 and Λ = 3.39 with 𝛿 = −0.3162 and, in Fig. 6, the harmonic shapes
when 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = −0.112 and Λ = 0.28 with 𝛿 = −0.3542.

We can see from Fig. 5 that two sharp corners appear on the boundary of the left
rigid inclusion while in Fig. 6 as many as three sharp corners may emerge on the
boundary of the right rigid inclusion.

4.5. 𝑀1/𝐴1 =𝑀2/𝐴2, 𝛿
′ ̸= 0, 𝛿′′ = 0

In this case, Eq. (3.18) reduces to

(4.9)

[𝛿′(𝜅− 1)− 2]𝜎∞
11 + [𝛿′(𝜅− 1) + 2]𝜎∞

22 = 0,

𝑀1

𝐴1
=
𝑀2

𝐴2
= −2𝜎∞

12

𝛿′
.

The tangential stress along the two interfaces and the rigid-body rotations of
the two inclusions can be expressed in terms of the remote shear stress as

(4.10) 𝜎𝑛𝑡 =
𝜎∞
12

𝛿′
(𝑧 ∈ 𝐿1 ∪ 𝐿2), 𝜛1 = 𝜛2 = − 𝜎∞

12

2𝜇𝛿′
.

It is further deduced from Eq. (4.10) that |𝜎𝑛𝑡| > |𝜎∞
12 | along 𝐿1 and 𝐿2 in view

of the fact that |𝛿| 6 1. In this case, by considering Eq. (4.9) and the fact that
Λ ≡ 1, the two couples will exert no influence on the shapes of the two inclusions.
Furthermore, if we choose 𝜆 = 𝜌−

1
4 , the shapes and sizes of the two inclusions are

identical [9]. As a result, we will have 𝐴1 = 𝐴2 and 𝑀1 =𝑀2.
For example, the identical harmonic shapes of the two rigid inclusions are shown

in Fig. 7 when 𝜌 = 0.1, 𝜆 = 𝜌−
1
4 = 1.7783, 𝑝 = −0.1, Λ = 1 with 𝛿 = −0.3162.
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Figure 1. The harmonic shapes of the two rigid inclusions when
choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = 0 and Λ = 1

2 (1− i).
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Figure 2. The harmonic shapes of the two rigid inclusions when
choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = 0 and Λ = 1 + 2.11i. A

sharp corner exists on the boundary of the left rigid inclusion free
of couple.
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Figure 3. The identical harmonic shapes of the two rigid inclu-
sions when choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = 0 and

Λ = exp(𝜋6 i).
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Figure 4. The harmonic shapes of the two rigid inclusions when
choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = −0.1 and Λ = 2.
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Figure 5. The harmonic shapes of the two rigid inclusions when
choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = −0.1 and Λ = 3.39. Two

sharp corners exist on the boundary of the left rigid inclusion.
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Figure 6. The harmonic shapes of the two rigid inclusions when
choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = −0.112 and Λ = 0.28.

Three sharp corners exist on the boundary of the right rigid inclu-
sion.
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Figure 7. The identical harmonic shapes of the two rigid inclu-
sions when choosing 𝜌 = 0.1, 𝜆 = 𝜌−

1
4 = 1.7783, 𝑝 = −0.1 and

Λ = 1.

We emphasize that the harmonic shapes in Figures 1 to 6 cannot be observed
when the couples are absent. Only the harmonic shapes in Fig. 7 can be observed
in the absence of couples.

5. Conclusions

We present a solution to the inverse problem concerned with the design of two
interacting rigid harmonic inclusions, each of which is loaded by a couple. Our
analysis shows that once the four parameters 𝜌, 𝜆, 𝑝 and Λ are given, all of the
complex coefficients appearing in the mapping function can be uniquely determined.
In order to ensure that the harmonic condition is satisfied, several restrictions on
the loadings are obtained and described in: Eq. (3.15) when Λ′′ ̸= 0; Eq. (3.16)
when 𝜎∞

11 +𝜎
∞
22 = 0 and 𝛿 ̸= 0; Eq. (3.17) when 𝜎∞

11 +𝜎
∞
22 = 0 and 𝛿 = 0; Eq. (3.18)

when 𝑀1/𝐴1 = 𝑀2/𝐴2 and 𝛿 ̸= 0; Eq. (3.19) when 𝑀1/𝐴1 = 𝑀2/𝐴2 and 𝛿 = 0.
Once these restrictions are met, the interfacial normal and tangential stresses and
the hoop stress are uniformly distributed along each one of two interfaces 𝐿1 and 𝐿2.

Appendix A.

Moment equilibrium on the left-inclusion can be expressed as

𝑀1 =

∮︁
𝐿1

(𝑡1𝑥2 − 𝑡2𝑥1)d𝑠 = − Im

{︂∮︁
𝐿1

(𝑡1 + i𝑡2)𝑧d𝑠

}︂
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= − Im

{︂∮︁
𝐿1

(𝜎𝑛𝑛 + i𝜎𝑛𝑡)e
i𝑛(𝑧)𝑧d𝑠

}︂
= Re

{︂∮︁
𝐿1

(𝜎𝑛𝑛 + i𝜎𝑛𝑡)𝑧d𝑧

}︂
(A.1)

= 𝜎𝑛𝑛

∮︁
𝐿1

(𝑥1d𝑥1 + 𝑥2d𝑥2)− 𝜎𝑛𝑡

∮︁
𝐿1

(𝑥1d𝑥2 − 𝑥2d𝑥1)

= −2𝜎𝑛𝑡

∫︁∫︁
𝑆1

d𝑥1d𝑥2 = −2𝜎𝑛𝑡𝐴1,

where the line integral is taken in the counterclockwise direction, ei𝑛(𝑧) represents
(in complex form) the outward normal to 𝐿1 at 𝑧 and 𝑆1 is the region enclosed
by 𝐿1. Note that both 𝜎𝑛𝑛 and 𝜎𝑛𝑡 are constant along the interface 𝐿1. In deriv-
ing Eq. (A.1), Green’s theorem has been applied to convert the line integral to a
double integral.

From the above we have that

𝜎𝑛𝑡 = −𝑀1

2𝐴1
, 𝑧 ∈ 𝐿1.

In view of this expression for 𝜎𝑛𝑡 and the corresponding expression for 𝜎𝑛𝑡 in
Eq. (3.9), we arrive at

𝜛1 =
𝑀1

4𝜇𝐴1
.

This proves Eq. (3.11).
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ДВE ИНТЕРАГУJУЋE НЕ-ЕЛИПТИЧКE КРУТE
ХАРМОНИЧКE ИНКЛУЗИJЕ ИСПУЊЕНЕ ПАРОВИМА

Резиме. У раду се користе технике конформналних пресликавања ради
дизаjнирања две интереагуjуће не-елиптичне круте инклузиjе, од коjих jе свака
испуњено од стране пара, коjи обезбеђуjе такозвано ’хармонично стање’ у коме
почетни средњи напон у матрици остаjе непромењен након увођења инклузиjе.

Показуjемо да jе за унапред прописан Пуасонов однос и геометриjске па-
раметре потребно неколико ограничења на спољашња оптерећења како би се
осигурало хармонично стање. Из наше анализе се види да: (i) интерфеjсни
и обручни напони су равномерно распоређени дуж сваке инклузиjа-матрице
интерфеjса; (ii) интерфеjсни нормални и напони обруча дуж два интерфеjса
у потпуности се одређуjу Пуасоновим односом и константним средњим напо-
ном у матрици, док се међуфазни тангенциjални напон дуж два интерфеjса у
потпуности може одредити моментима парова и подручjа две инклузиjе; (iii)
постоjање примењених парова ће утицати на не-елиптичне облике две круте
хармоничке инклузиjе када се односи момента и површине за две инклузиjе
разликуjу.
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