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NOTE ON A BALL ROLLING OVER A SPHERE:

INTEGRABLE CHAPLYGIN SYSTEM WITH AN

INVARIANT MEASURE WITHOUT CHAPLYGIN
HAMILTONIZATION

Bozidar Jovanovié

ABSTRACT. In this note we consider the nonholonomic problem of rolling
without slipping and twisting of an n-dimensional balanced ball over a fixed
sphere. This is a SO(n)-Chaplygin system with an invariant measure that
reduces to the cotangent bundle 7*S™~1. For the rigid body inertia operator
Iw = Jw+ wl, I = diag(I1,...,In) with a symmetry [y = Io = --- = I, #
Ir41 = Ir42 = --- = I,, we prove that the reduced system is integrable,
general trajectories are quasi-periodic, while for r # 1,n — 1 the Chaplygin
reducing multiplier method does not apply.

1. Introduction

1.1. Let (Q,L,D) be a nonholonomic system, where @ is a configuration
space and D a nonintegrable distribution of constraints. For simplicity, in the note
we consider a Lagrangian L that is the kinetic energy determined by the Riemannian
metric g. Assume that the Lie group G acts freely by isometries on (Q,g), the
quotient space N = /G is a manifold, and D is G-invariant, transversal, and
a complement to the G—orbits (D is a principal connection of the bundle @ —
N = M/G). Then the nonholonomic geodesic flow is G—invariant and reduces
to the tangent bundle of the base manifold N. The reduced Lagrange—d’Alembert
equations take the form
(aLred B iaLred

ox dt 0%
where the reduced Lagrangian L,.q is obtained from L|p by the identification
TN =D/G, and X(X,Y, Z) is a (0, 3)-tensor field on the base manifold N, skew-
symmetric in Y and Z, which depends on the metric and the curvature of the con-
nection. The system (@, L, D, G) is referred to as a G—-Chaplygin system, as a gen-
eralization of classical Chaplygin systems with Abelian symmetries [2,8,10,11,24].

(1.1) ,77) =%(&,2,nm) forall neT,N,
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For ¥ # 0 the equations are not Hamiltonian. Chaplygin proposed a remarkable
Hamiltonization procedure as follows [10]. Consider the time substitution dr =
v(z)dt, and denote &' = dx/dr = &/v. Then the Lagrangian function transforms
to L*(2',x) = Lyeq (%, x)|s=per- The factor v is a Chapylgin reducing multiplier if in
the new time 7 the reduced system (1.1) transforms into the usual Euler-Lagrange
equations of L*(2/,x). In particular, in the cotangent bundle formulation, the
original system has an invariant measure and it is conformally symplectic (see
[4,8,11,15)).

Usually, integrable nonholonomic G-Chaplygin problems are solved by using
the Chaplygin reducing multiplier method (e.g., see [6,15,19]). The aim of this
note is to provide an example of a solvable system with an invariant measure which
does not allow a Chaplygin multiplier.

1.2. Following [19,23], we consider the rolling without slipping and twisting
of an n-dimensional ball of radius p over the outer surface of the (n—1)-dimensional
fixed sphere of radius o (the case (i), see Figure 1); over the inner surface of the
sphere (o > p, the case (ii), see Figure 2); rolling over the outer surface of the
(n — 1)-dimensional fixed sphere of radius o, but the fixed sphere is within the
rolling ball (¢ < p, in this case, the rolling ball is actually a spherical shell, the
case (iii), see Figure 2).

Consider the space frame R™(x) with the origin O at the center of the fixed
sphere and the moving frame R"™(X) with the origin C at the center of the rolling
ball. The mapping from the moving to the space frame is given by x = ¢X +r,
where g € SO(n) is a rotation matrix and r = OC'is the position vector of the ball
center C in the space frame (see Figure 1). The configuration space @ is the direct
product of the Lie group SO(n) and the sphere S = {r € R"|(r,r) = (¢ & p)?},
where we take 74" for the case (i) and ”—” for the cases (ii) and (iii).

We additionally assume that the ball is balanced, i.e., its geometric center
coincides with the mass center. Then the Lagrangian of the system is given by

L(w,t,g,1) = 5(Iw,w) + 3m(t, 1),

where (-, ) is the Euclidean scalar product in R", (-,-) = —1 tr(-0-) is proportional
to the Killing form on so(n), w = ¢g~'¢ is the angular velocity of the ball in the
moving frame, m is the mass of the ball, and I : so(n) — so(n) is the inertia oper-
ator. After [9], a balanced ball (with the inertia operator that is not proportional
to the identity operator) is usually referred to as a Chaplygin ball.

The direction OA/|OA| of the contact point A in the frame attached to the
ball is given by the unit vector v = %ipg_lr (see Figure 1). It is invariant with
respect to the diagonal left SO(n)-action: a - (g,r) = (ag,ar), a € SO(n). The
action defines SO(n)-bundle

(1.2) SO(n) — Q = SO(n) x S = S"~ ' = Q/SO(n)

with the submersion 7 given by v = (g, r).
The contact point A of the ball in the moving frame is X4 = —(xpv). The
condition that the ball is rolling without slipping is that the velocity x4 of the
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contact point in the space frame is equal to zero
Y d . . . . .
0=%a=2(gXa+1)=Fpgy+1=Fp(gg )gv+i (Xa=0).

This leads to the constraint r = :I:%inr, where Q = Ad, w = gg~! is the angular
velocity in the space frame. On the other hand, no twisting at the contact point
can be written as Q € r AR" e.g., w € ¥y AR™ (for more details, see [23]).

Xx=gX+r

/_\ TySn_l

FiGURE 1. The rolling without slipping and twisting of an n-
dimensional ball of radius p over the outer surface of the (n — 1)-
dimensional fixed sphere of radius o (the case (i)). O, C, and A
denote the center of the fixed sphere, the center of the rolling ball,
and the contact point, respectively. The reduced space, the unit
sphere in the moving frame consisting of vectors v = ~lr, for
p > 1, is illustrated as well.

1
a+pg

The constraints determine the (n — 1)-dimensional constraint distribution D,
which is a principal connection of the bundle (1.2). The Lagrangian is SO(n)-
invariant as well. Thus, it is a SO(n)-Chaplygin system and reduces to the tangent
bundle T'S™~! = D/SO(n).

The reduced Lagrange—d’Alembert equations take the form (1.1), where [23]

Luea37) = = 03 trI(y A%) © (Y A%)) = =55 (T A ), ),
£,(X,Y,2) = T (A X) o (Y A 2) = S0 A XY, 2),

2¢3 €3

I=1+ D Idsy(n), D = mp?, e=0/(o=+p).
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Note that when the radii of the sphere and the ball are equal (e = 1/2), the
curvature of D vanishes and ¥ = 0 — the reduced system is Hamiltonian without
a time reparametrization (for n = 3 see [7,12]). Also, if T is proportional to the
identity operator then ¥ = 0 (the reaction forces vanish although the curvature of
D is different from zero).

The system always has an invariant measure [20]. Moreover, for the inertia
operator

(13) H(EZ A\ Ej) = (aiaj - D)EZ A\ Ej i.e., I(X A\ Y) = AX N AY,

where A = diag(ay, ..., ay,), the function v(y) = €(Ay,y)2ze ! is a Chaplygin mul-

tiplier: under a time substitution dr = v(v)dt, the reduced system becomes the
geodesic flow of the metric defined by the Lagrangian [23]

(14) L*(Y,7) = Leea (3 Dlsmwiyyr = (1, A7) 72((AY, 7)) (A7, 7) — (Av,7)?).

gy

FIGURE 2. The cases (ii) and (iii) in the space frame: the rolling
of a ball over the inner surface of the sphere and the rolling of a
spherical shell over the outer surface of the fixed sphere.

The procedure of reduction and Hamiltonization for n = 3 is given by Ehlers
and Koiller [12], while Borisov and Mamaev proved the integrability for a specific
ratio between the radii of the ball and the spherical shell (the case (iii), where
p =20, i.e, e = —1), see [6]. The n—dimensional system with the inertia operator
I given by (1.3) is also integrable for ¢ = —1, as well as for arbitrary ¢ when the
matrix A has only two distinct parameters [19].

1.3. Generally, for n > 4, the operator (1.3) is not a physical inertia operator
of a multidimensional rigid body that has the form
(1.5) wr— w4+ wl, I = diag(ly,...,1I,).
Here I is a positive definite matrix called the mass tensor, which is diagonal in the
moving orthonormal base determined by the principal axes of inertia.!

et 0(X) be the density of the ball. The mass tensor I is defined by I = [ o(X)X ® XdX,
e.g., see [16,18].
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Note that the case € = +1 is the limit case, when the radius of the fixed
sphere tends to infinity. Furthermore, then the associated equation (1.1) becomes
the reduced equation of the Veselova problem with the inertia operator I studied
in [15]. Recently, the integrability of the Veselova problem with a physical inertia
operator (1.5), where

(1.6) L=L==1L#I1=1,s=---=1,

without involving Chaplygin Hamiltonisation has been proved by Fasso, Garcia-
Naranjo, and Montaldi [13]. It is a natural problem to consider the rolling ball
over a sphere for the given rigid body inertia operator as well. In this note we
prove that the reduced system is solvable and that it does not allow Chaplygin
reducing multiplier for € # 1/2 and r # 1,n — 1.

The reduced system and an invariant measure are described in Theorem 2.1
(Section 2). In Section 3 we prove that for any symmetry I; = I; one can associate
Noether type integral linear in momenta (Theorem 3.1), which allows us to obtain a
simple ”dynamical” proof for the nonexistence of a Chaplygin multiplier (Theorem
3.2). In the case of a SO(r) x SO(n—r)—dynamical symmetry, the reduced system is
integrable. For r # 1,n — 1, generic motions are quasi-periodic over 3—dimensional
invariant tori, while the Chaplygin reducing multiplier method does not apply.
For r =1 or r = n — 1, invariant tori are two-dimensional and the system has a
Chaplygin multiplier (Theorem 4.1, Section 4).

2. Equations of motion and an invariant measure

2.1. First, we recall the cotangent formulation of the system (see [23]). Con-
sider the Legendre transformation
aLred 1 .
2.1 L: = =—=5I(yA .
(2.1) P= "5 21 A9y

The point (p, v) belongs to the cotangent bundle of a sphere realized as a symplectic
submanifold in the symplectic linear space (R*"(p,¥),dp1 Adyy + - -+ dp, Adyy,):

(v,7) =1,
(7:p) = 0.

Note that here we identified the tangent bundle 7.5"~! and the cotangent bundle
T*S"~! by means of the Euclidean metric in R™ (see Figure 1).
The reduced flow on T*S™ ! takes the form

(2.2)

(23) rY:X"Y(paFYL p:Xp(p7"}/),

where X., = L£L71(p) is the inverse of the Legendre transformation (2.1) and
1—e€ e—1

0oy %= 15w a X)), + SR 6 A X)X - 20

€3 €

(see [23]). Here
H(p,7) = (p,%) = L(¥:Ml=x, = 3(X5.p)

is the Hamiltonian function of the system.
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2.2. Now we assume that the inertia operator I is of the form (1.5). Then we
can write the modified operator I =1+ D - Ids,,) as

(2.5) Iw=¢e(Jw+wld),
where
. 1 . D D

(2.6) J = diag(y, ... Jn) = — diag (11 + 5 It 5),
and the Legendre transformation (2.1) takes the form
(2.7) p=—JOYAY)Y = (Y ANIy = T¥ + (T = (T 9)7-
It coincides with the Legendre transformation of the Veselova problem considered
in [13] (see [13, Proposition 3.4]). That is why we can use the inverse

: ., ¢, (7))
(2.8) 7=Xp7) =y = Y

! N (n ()

derived there. Here
Cy =diag(Ji + (v, J7), -+ Ju + (7, )

and (2.8) is the unique inverse of (2.7) for p, 7, 4 that satisfy (2.2) and (%,v) = 0.
From (2.4), (2.5), the equation in p becomes
) 1—e€
(29) p=X,= T((X%XW)J’Y = (7, J X)Xy = (X5, X5) (v, Jv)7v) — 2H7,

with the Hamiltonian H

(2.10) H(p,v) = %(n Xy) = %(p’ G ) - ;m

Let w be the canonical symplectic form on T*S"~!:

w =dpy ANdy + -+ +dpp Ndyy

T*8Sn—1.

THEOREM 2.1. The reduced equations of the rolling of a ball over a sphere
without slipping and twisting with the rigid body inertia operator (1.5) are given by
(2.8), (2.9), whereas J is defined by (2.6). The reduced system has an invariant
measure

det C 1—o;
(2.11) p(y)wt = (77) wL,
(1, Cy(7)
PROOF. In [23] we proved that the reduced equations (2.3), for arbitrary mod-

ified inertia operator I, have an invariant measure
(2.12) (det Ifgnpy )2 w1

In particular, we can see that the density of a measure for e = +1 is (det I|gn /\,Y)*%.
It is also the density for the reduced Veselova system for the inertia operator I (see
also [15, Theorem 5.5] for r = 1 and Z = I). On the other hand, for Iw = Jw +wJ,
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Fasso, Garcia-Naranjo, and Montaldi found the invariant measure of the Veselova
system in the form (see Proposition 3.7, [13])

( det C )1/2 o1

— whT

(7, G5 (7))

Therefore, for I given by (2.5), the invariant measure (2.12), up to multiplication
by a constant, is equal to (2.11). O

3. Integrals and nonexistence of a Chaplygin multiplier

3.1. Assume [; = [}, i.e., J; = J;. Then the Lagrangian L,.q and the Hamil-
tonian H are invariant with respect to the rotations in the (v;,v;)-plane. We can
expect the associated Noether type integral linear in momenta (e.g., see [1,21]).
We have

THEOREM 3.1. Let J; = J;. Then
1
(3.1) bij = (Ji+ (7, )2 H(pirys — pyvi)-
is the first integral of the reduced flow (2.8), (2.9).

PROOF. Let us denote J = (7, J7), |¥|?> = (¥,%). Then we have

. 1 1 5, 14 d
Gij = 2(2*6 - 2)(Ji + J)2e 2 (3, V) (P — pjvi) + (Ji + T) 2 1%(101%‘ —Djvi)
and
d 1—e€, . 2 . . )
5 Pivi = pivi) = —— (1% = (3, I3 = WP T )75 — 2Hyi;
1—¢

- T(W”ﬂj = (% I = WP Tv5)v + 2H ;7
+ (Jivi — (%, IV + T¥i) 7 — (Jivs — (v Iy + T¥5) i

1—¢€,. . . . . .
_T(% JV)Firvs = A5vi) + (s I iy — 45v)

(2 £) G )i — 3570

Next, from (2.8) we have

. . 1
YiYs — ViV = m(]?z’)’g 7pj’Y’L)7

which proves the statement. O
Note that the integral ¢;; is not the integral given by the so-called nonholonomic

Noether theorem (e.g., see [1,14,22]), since the generator of the associated SO(2)—
action on the configuration space @ is not a section of the distribution D.
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3.2. Next we apply the Chaplygin reducing multiplier method: let dr =
v(y)dt, v =dy/dr =*/v, L*(v',7) = Lrea(¥;7Y)|5=v+ - Then we have the new mo-
menta p = OL*/0~" = vp. The factor v is a reducing multiplier if under the above
time reparameterization the equations (2.3) become Hamiltonian with respect to
the symplectic form

w=dp; ANdy1 + -+ dp, A d'7n|T*S”*1
=vw +dv A (prdyr + -+ padyn) | pegn—

(e.g., see [4,8,10,15]). In other words, the vector field X = (X,,, X,) is proportional
to the Hamiltonian vector field X g:

X =v-Xy, where ix,W=—dH, H(p,vy)=H{p7)|p=015

As we mentioned, for the inertia operator (1.3), under the time substitution
dr = e(Av,7) 2e—1 dt, the reduced system becomes a Hamiltonian system describing
a geodesic flow on S"~! with the metric defined by the Lagrangian (1.4). For n = 3
all inertia operators are of the form (1.3) and the above Hamiltonization reduces
to the one given in [12]. Also, for e = 1/2 the system is already Hamiltonian.

In considering integrable examples below, we will need the following statement.

THEOREM 3.2. Assume thatn >4, e # 1/2, and J; = J; # Ji = J; for some
mutually different indexes i, j, k,l. Then the reduced flow (2.8), (2.9) does not allow
a Chaplygin multiplier.

PROOF. The existence of a Chaplygin reducing multiplier v() implies that
the original system has an invariant measure v 2w"~! (e.g., see [15, Theorem
3.5]). From the expression of an invariant measure (2.11) we get that a possible
Chaplygin multiplier should be proportional to

B det C, ) ey

(32) gt ((% (7))

Assume that (3.2) is a Chaplygin multiplier. Then the function v(y) and the
Hamiltonian (2.10) in coordinates p = vp

~ 2

L 5.0,5) - 5 20D
2v 202 (v, C4(7))
are invariant with respect to the rotations in the (v;,y;) and (g, ) planes. Thus,
the Hamiltonian flow of H has the Noether integrals ®;; = p;y; — p;v: and @y =
Dryi — Dk (e.g., see [1,21]). The vector field X of the original system (2.8), (2.9)
is proportional to the Hamiltonian vector field X, implying that it has the same
integrals, in coordinates (p,v) given by:

H(Ii 7) = H(pv'y)‘p:[)/u =

i = v(pivy — pjvi);s Prr = v(PrY — PiVk)-
On the other hand, according to (3.1), fi = ¢;;/®;; and fo = ¢ /Py are
integrals on an open dense set ®;; # 0, ®; # 0, and, by continuity

OV = Gt IMETL ) = (et ()
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are integrals on the whole phase space as well. Observe that if f is an integral of
the reduced flow (2.8), (2.9) that depends only on ~, then f is a constant. Thus,
f1(7) and fa(v) are integrals only if

det C, )ﬁ L, L,
— = consty - (J; + (7, J7v))2e " = consty - (Jg + (7, 7)) 2 .
<(% )
Since € # 1/2, we get that J; = J, which is a contradiction. O

The above considerations cannot be applied if we assume that n— 1 parameters
I; are equal, for example I} = Iy = --- = I,,_1 (SO(n — 1)-symmetric rigid body,
multidimensional Lagrange top). Moreover, in that case I is of the form (1.3), where
A = diag(ay, ..., a1,ay,) is defined by
a? — D a?+ D

11:"'2171—1: B , In:alan— 9

Then ¢(A~, ’y)i’l is a Chaplygin multiplier and we have the identities

( det Cy )ﬁ consty - (J1 + (v, J ))%*1 consts - (A )%*1
— = consty - (J1 + (7, J7))2 7 = comsty - (Ay,7)> .
(7@0’*{(7))

Note that one can prove the theorem directly, by applying the time-reparmetri-

sation dr = v(7)dt, where v is given by (3.2), into the system (2.8), (2.9). However,
the calculations are much more complicated.

4. Integrability of a symmetric case

Firstly, note that in the case of SO(n)-symmetry, when the mass tensor I (i.e.,
the matrix J) is proportional to the identity matrix, the (0, 3)-tensor ¥ vanishes
and the trajectories of (2.8), (2.9) are great circles for all e. Similarly as for the
Veselova problem [13], we have the following statement.

THEOREM 4.1. For the symmetric inertia operator (1.5), (1.6), the reduced
system (2.8), (2.9) is solvable by quadratures and we have:

(i) If r # 1,n — 1, generic motions are quasi-periodic over 3—dimensional
invariant tori that are level sets of integrals H, ¢, ¢r1, 1 < j <i<r,
r<l<k<n.

(ii) If r = n — 1, generic motions are quasi-periodic over 2—dimensional in-
variant tori that are level sets of H, ¢, 1 < j <i<n—1 (similarly for
r=1).

ProOF. For e = 1/2 the system is Hamiltonian and the proof follows from the
Theorem on non-commutative integrability of the Hamiltonian systems (see [5]).
In the case r = n — 1, the function v(y) = (J; + (7,J7))2 ! is a Chaplygin
multiplier and the integrability follows from the non-commuative integrability of
the associated Hamiltonian system (see [19]).

According to Theorem 3.2, for € # 1/2 and r # 1,n — 1, the system does not
have a Chaplygin multiplier. However, we can apply a variant of the reduction
method used by Fasso, Garcia-Naranjo, and Montaldi in the case of the Veselova
problem [13].



106 JOVANOVIC

The system is SO(r) x SO(n — r)—invariant. For any initial conditions (pg, o),
one can find a matrix R = diag(Ry, R2) € SO(r) x SO(n — r), such that the

coordinates of Ryg and Rpy with indexes 3,4,...,n — 3,n — 2 vanish. Therefore,
the only non-zero values of the Noether type integrals (3.1) at (Rpg, Rvo) are ¢o1
and ¢, ,—1 and the coordinates with indexes 3,4,...,n —3,n — 2 of the trajectory

with the initial conditions (Rpg, Ryp) are zero. Therefore, without loss of generality
it can be assumed that n = 4, » = 2. Since the system is SO(2) x SO(2)—-invariant,
we can pass to the second reduced space P =T*S3/S0(2) x SO(2).

The regular compact connected components M., .,n of invariant varieties

Pa1 =c1, Qaz=co, H=h

are 3-dimensional and SO(2) x SO(2)-invariant. Therefore, the reduced invariant
sets

M., o, 1/SO(2) x SO(2) C P

are relative periodic orbits. Whence, we get that generic trajectories are quasi-
periodic over 3-dimensional invariant tori M, .,  (for the reconstruction of relative
periodic orbits, e.g, see [13,17]). O

Thus, for r # 1,n — 1 and € # 1/2, the problem is solvable, has an invariant
measure, and according to Theorem 3.2 does not allow the Chaplygin reducing
multiplier. Closely related, let us note that the rolling of the ball over a horizontal
plane without spinning and twisting, where the mass center does not coincide with
the geometrical center, provides an example of the system such that the appropriate
phase space is foliated by invariant tori, but the system itself does not have an
analytic invariant measure and is not Hamiltonizable either (see [3]).

Acknowledgments. The author is very grateful to the referee for useful re-
marks. The research was supported by the Serbian Ministry of Science Project
174020, Geometry and Topology of Manifolds, Classical Mechanics and Integrable
Dynamical Systems.

References

1. V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, Mathematical aspects of classical and celestial
mechanics, Encycl. Math. Sci. 3, Springer-Verlag, Berlin, 1989.

2. A. Baksa, On geometrisation of some nonholonomic systems, Mat. Vesnik 27 (1975), 233-240
(in Serbian). English translation: Theor. Appl. Mech. 44 (2017), 133-140.

3. A.V. Bolsinov, A. V. Borisov, 1. S. Mamaev, Rolling of a ball without spinning on a plane: the
absence of an invariant measure in a system with a complete set of integrals, Regul. Chaotic
Dyn. 17 (2012), 571-579.

4. A.V.Bolsinov, A. V. Borisov, I. S. Mamaev, Geometrisation of Chaplygin’s reducing multiplier
theorem, Nonlinearity 28 (2015), 2307-2318.

5. A.V. Bolsinov, Complete commutative subalgebras in polynomial Poisson algebras: a proof
of the Mischenko—Fomenko conjecture, Theor. Appl. Mech. 43 (2016), 145-168.

6. A.V. Borisov, 1. S. Mamaev, Rolling of a non-homogeneous ball over a sphere without slipping
and twisting, Regul. Chaotic Dyn. 12 (2007), 153-159.

7. A.V. Borisov, 1.S. Mamaev, D.V. Treschev, Rolling of a rigid body without slipping and
spinning: kinematics and dynamics, J. Appl. Nonlinear Dyn. 2(2) (2013), 161-173.



8.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

NOTE ON A BALL ROLLING OVER A SPHERE 107

F. Cantrijn, J. Cortes, M. de Leon, D. Martin de Diego, On the geometry of gen-
eralized Chaplygin systems, Math. Proc. Camb. Philos. Soc. 132(2) (2002), 323-351;
arXiv:math.DS/0008141.

. S.A. Chaplygin, On a rolling sphere on a horizontal plane, Mat. Sb. 24 (1903), 139-168.

[Russian]

S.A. Chaplygin, On the theory of the motion of nonholonomic systems. Theorem on the
reducing multiplier, Mat. Sb. 28(2) (1911), 303-314. [Russian]|

K. Ehlers, J. Koiller, R. Montgomery, P. Rios, Nonholonomic systems via moving frames:
Cartan’s e quivalence and Chaplygin Hamiltonization, The breadth of symplectic and Poisson
geometry, 75-120, Progr. Math., 232 (2005), Birkhauser Boston, Boston, MA, arXiv:math-
ph/0408005.

K. Ehlers, J. Koiller, Rubber rolling over a sphere, Regul. Chaotic Dyn. 12 (2007), 127-152,
arXiv:math/0612036.

F. Fasso, L. C. Garcia-Naranjo, J. Montaldi, Integrability and dynamics of the n-dimensional
symmetric Veselova top, J. Nonlinear Sci. (2018) https://doi.org/10.1007/s00332-018-9515-5,
arXiv:1804.09090

F. Fasso, L. C. Garcia-Naranjo, N. Sansonetto, Moving energies as first integrals of nonholo-
nomic systems with affine constraints, Nonlinearity 31 (2018), 755-782, arXiv:1611.08626.
Yu. N. Fedorov, B. Jovanovié¢, Nonholonomic LR systems as generalized Chaplygin systems
with an invariant measure and geodesic flows on homogeneous spaces, J. Nonlinear Sci. 14
(2004), 341-381, arXiv:math-ph/0307016.

Yu. N. Fedorov, V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics, Transl.,
Ser. 2, Am. Math. Soc. 168 (1995), 141-171.

M. J. Field, Equivariant dynamical systems, Trans. Am. Math. Soc 259 (1980), 185--205.

B. Gayjié, The rigid body dynamics: classical and algebro-geometric integration, Zb. Rad.
(Beogr.) 16(24) (2013), 5-44, arXiv:1212.6097.

B. Gaji¢, B. Jovanovié, Nonholonomic connections, time reparametrizations, and integrability
of the rolling ball over a sphere, to appear in Nonlinearity (2019), arXiv:1805.10610.

B. Jovanovié, Invariant measures of modified LR and L+R systems, Regul. Chaotic Dyn. 20
(2015), 542-552, arXiv:1508.04913 [math-ph]

B. Jovanovié, Noether symmetries and integrability in Hamiltonian time-dependent mechan-
ics, Theor. Appl. Mech. 43 (2016), 255-273, arXiv:1608.07788.

B. Jovanovié, Symmetries of line bundles and Noether theorem for time-dependent nonholo-
nomic systems, J. Geom. Mech. 10 (2018), 173-187, arXiv:1609.01965.

B. Jovanovié, Rolling balls over spheres in R™, Nonlinearity 31 (2018), 4006-4031,
arXiv:1804.03697 [math-ph].

J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Ration.
Mech. Anal. 118 (1992), 113-148.


https://doi.org/10.1007/s00332-018-9515-5

108 JOVANOVIC

HAIIOMEHA O KOTP/bAIY KVIVIE IIO COPEPU:
NMHTETIPABUJIHN YAIIJINTTHOB CUCTEM CA
NMHBAPNAHTHOM MEPOM BE3 YHAIIJINTVTHOBE
XAMMNJIITOHU3AIINJE

PE3UME. ¥ 0B0j HOTH pazMaTpaMo HEXOJIOHOMHU IIPOOJIEM KOTPJhakha, - IUMe-
H3MOHEe OajlaHCHpaHe KyIJle 110 HemoKpeToj cdepu 0e3 KiIm3ama U POTAIlije y TaH-
reuTHOj paBuu jgogupa. To je SO(n)-HamruHos cucreM ca HHBAPUjAHTHOM MEPOM
KOJH Ce CBOJM Ha KOTaHTeHTHO paciojerse 1*S™ 1. 3a omeparop muepmuje KpyTor
rena lw = Jw + wl, I = diag(l,...,1I,) ca cumerpujom [} = I = -+ = [ #
Iy1 = I yo = -+ = I,, T0OKa3yjemMo Ja je peJlyKOBaHU CHCTEM HMHTErpabujaH, Ol-
Te TpajekTopuje Cy KBa3u-MepuoanydHe, Ipu YeMy ce 3a 1 7% 1,n — 1 Hammurunosa
MEeTOJa PEIYKIIMOHOT MHOXKUTE/hA HE MOXKE ITPUMEHUTH.
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