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SINGULARITIES OF INTEGRABLE LIOUVILLE SYSTEMS,
REDUCTION OF INTEGRALS TO LOWER DEGREE AND

TOPOLOGICAL BILLIARDS: RECENT RESULTS

A. T. Fomenko and V. V. Vedyushkina

Abstract. In the paper we present the new results in the theory of integrable
Hamiltonian systems with two degrees of freedom and topological billiards.

The results are obtained by the authors, their students, and participants of

scientific seminars of the Department of Differential Geometry and Applica-
tions, Faculty of Mathematics and Mechanics at Lomonosov Moscow State

University.

1. Reduction of the degree of integrals for Hamiltonian systems
with two degrees of freedom with the help of billiards

The integrability of a billiard in a domain bounded by an ellipse was noted
by Birkhoff [27]. The integrability of the billiard is preserved if we consider the
flat domain bounded by arcs of confocal ellipses and hyperbolas whose boundary
does not contain angles equal to 3𝜋

2 . In this case, all the angles of the boundary
are equal to 𝜋

2 , since confocal quadrics always intersect at a right angle. In the
book by Kozlov, Treschev [8] it is noted that these dynamical systems are com-
pletely Liouville integrable. For the flat billiard in an ellipse, there are coordinates
such that the motion is represented as a periodic motion along tori. Up to Liou-
ville equivalence, such systems were studied in detail in [20,21,23] by Dragović,
Radnović, and in [28] by Fokicheva. In an interesting paper [22] Dragović and
Radnović studied the Liouville foliation for the flat billiard in an ellipse, as well as
geodesic flows on the ellipsoid in the Minkowski space, giving an answer in terms
of the Fomenko–Zieschang invariants. See also the important papers [24–26] by
Dragović and Radnović devoted to the analysis of pseudo-integrable billiards.

Fokicheva classified all topological billiards bounded by the arcs of confocal
conics (the families of confocal ellipses and hyperbolas and the confocal parabo-
las) [29,30]. Further, Fokicheva investigated the topology of Liouville foliations on
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isoenergy surfaces for such billiards by calculating the Fomenko–Zieschang invari-
ants of these systems.

Let us recall that the two smooth integrable systems are called Liouville equiv-
alent if and only if there exists a diffeomorphism sending the Liouville foliation of
the first system to the Liouville foliation of the second one.

The topological type of the Liouville foliation is completely determined by
the Fomenko–Zieschang invariant, which is the graph with numerical marks, as
described in [1,4,16]. For many integrable cases of the rigid body dynamics the
calculation of the Fomenko–Zieschang invariants made it possible to detect the
Liouville equivalence of these systems to some topological billiards by comparing
marked molecules (see Veduyshkina and Fomenko [7]). Thus, roughly speaking,
locally flat topological integrable billiards “visually model” many fairly complicated
integrable cases in the dynamics of the rigid body and other physical systems.

In the paper by Fomenko and Vedyushkina [42] the investigation of integrable
billiards was continued.

In the theory of Hamiltonian systems with two degrees of freedom, systems that
are integrable by means of integrals of large degrees, for example, 3 and 4, are very
well known (see, for example [1]). Such systems include, for example, the famous
Kovalevskaya system, and its generalizations — the Kovalevskaya-Yahya system
and an analogue of the Kovalevskaya system on the Lie algebra 𝑠𝑜(4) (in this
case the additional integral has degree 4), then the Goryachev system, Chaplygin-
Sretensky system (here the degree of the additional integral is equal to 3), Dullin-
Matveev system (degree 3), and also the integrable system by Sokolov (integral of
degree 4). Note that in many classical integrable cases the additional integral is
quadratic (Euler, Jacobi, Lagrange, Zhukovsky, Clebsch systems, etc.). Studying
systems with integrals of degrees 3, 4 and higher is usually much more difficult.
Therefore, the problem of a possible reduction of the degrees of integrals 3 and
4 to the integrals of a lower degree is very well known. It turns out that, in the
general case, there are topological obstacles. Based on the Maupertuis principle,
A. V. Bolsinov and A. T. Fomenko proved that, for example, the integral of degree
4 in the Kovalevskaya case and the integral of degree 3 in the Goryachev–Chaplygin
case cannot be reduced to linear and quadratic integrals.

Theorem 1.1 (A. V. Bolsinov and A. T. Fomenko [1–3]). a) The Kovalevskaya
integrable case generates (by the Maupertuis principle) on a two-dimensional sphere
a Riemannian metric, the geodesic flow of which is integrable with the help of the
integral of degree 4. This integral cannot be reduced to a linear or quadratic one.

b) The Goryachev–Chaplygin integrable case generates (according to the Mau-
pertuis principle) on a two-dimensional sphere a Riemannian metric, the geodesic
flow of which is integrable with the help of the integral of degree 3. This integral
cannot be reduced to a linear or quadratic one.

This fact was proved on the basis of the theory by Fomenko–Zieschang [4].
Let us present here (as an example) a brief scheme of the proof for the Goryachev–
Chaplygin system. Let us consider the so-called coarse molecule 𝑊 for the geodesic
flow of the metric on a sphere generated by this system according to the Maupertuis
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principle. This flow is trajectory equivalent to the Goryachev–Chaplygin case and,
therefore, has the same Liouville foliation on the isoenergy 3-manifold. Therefore,
this molecule 𝑊 coincides with the molecule for the Goryachev–Chaplygin case,
calculated by A. O. Oshemkov, see [5]. Suppose that the Goryachev–Chaplygin
integral is reduced to a quadratic one. In this case, we can use the results from [1,
Vol. 2, Chapter 3]. In this book there is a list of the so-called marked molecules
𝑊 * for all geodesic flows on a sphere, which are integrable with quadratic and
linear integrals. We can see that the molecule for the Goryachev–Chaplygin flow
on the sphere does not coincide with any of the molecules of this classification (for
integrals of degrees 1 and 2). Since the graph 𝑊 * is a Liouville invariant of the
integrable system, we have a contradiction.

The theory of Fomenko–Zieschang originally dealt with smooth Liouville foli-
ations and their fiber-wise smooth diffeomorphisms, that is, sending the leaves of
the first foliation to the leaves of the second one. Recently, a new class of integrable
topological billiards has been discovered. They are realized as the dynamics of a
material point on the two-dimensional locally-Euclidean cell complexes, the edges of
which are arcs of confocal quadrics (see [6]). The corresponding Hamiltonian system
is realized on a four-dimensional piecewise-smooth manifold and (after reduction)
on a three-dimensional piecewise-smooth isoenergy surface. The corresponding Li-
ouville foliation consists of the regular piecewise smooth two-dimensional tori and
some singular fibers. The foliated small neighborhood of the singular fiber is called
“3-atoms”. Here, the Liouville equivalence of the billiards is given by piecewise
smooth fiberwise diffeomorphisms of the Liouville foliations. As was found by the
authors in [7], for many cases, the topological billiards model (that is, are piece-
wise smoothly Liouville equivalent) important integrable systems with two degrees
of freedom. Unexpectedly, with the help of integrable billiards, it is possible to
reduce degrees 3 and 4 of the integrals to the integrals lower degree. This reduction
is possible for some isoenergy 3-surfaces. Moreover, the integrals of degrees 3 and 4
are reduced to the one and the same canonical quadratic integral on corresponding
billiards. Such canonical reduction (to the canonical quadratic integral) became
possible because of considering piecewise smooth Liouville equivalences.

The confocal quadrics are given by the following equation

(1.1) (𝑏− 𝜆)𝑥2 + (𝑎− 𝜆)𝑦2 = (𝑎− 𝜆)(𝑏− 𝜆), 0 6 𝜆 6 𝑎.

In further considerations, the quadrics are assumed to be confocal, and ∞ > 𝑎 > 𝑏.
Let the boundary of the domain Ω on the plane R2 be the union of piecewise

smooth curves consisting of the arcs of confocal quadrics, with angles in the vertices
of the curves equal to 𝜋

2 . Then the billiard Ω (which is called an elementary billiard)
is integrable. Namely, in addition to the constant length of the velocity vector along
the trajectory, the following quadratic function is preserved (see [8]):

Λ =
(𝑥1𝑣2 − 𝑥2𝑣1)

2 + (𝑣1)
2𝑏+ (𝑣2)

2𝑎

(𝑣1)2 + (𝑣2)2
,

where (𝑥1, 𝑥2) are the coordinates of the billiard particle, and (𝑣1, 𝑣2) are the co-
ordinates of the velocity vector.
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Here Λ is the parameter of the ellipse or hyperbola which are tangent to the
lines containing the trajectory of the billiard particle.

Let us consider the 2-dimensional cell complex obtained by gluing the elemen-
tary billiards along common segments of their boundaries. In case when along each
edge no more than two billiards-sheets are glued together, the resulting manifold is
called a topological billiard (see [6]). In the case when along some edge more than
two billiards are glued, this edge must be endowed by a permutation 𝜎 ∈ 𝑆𝑛, where
𝑛 is the number of billiard sheets glued along this edge. This cell complex with
such permutations on the edges is called the billiard book (see [10]). The motion
of the material point on it is determined as follows: the trajectory, when it hits the
edge of the billiard, moves from one elementary domain to another one, according
to the assigned permutation on this edge.

It is a remarkable and important fact that the resulting dynamical system is
integrable. The resulting system turns out to be integrable with the same pair of
integrals which are determined on the locally plane elementary billiard sheets.

The complete classification of the topological billiards up to Liouville equiva-
lence was done by Vedyushkina in [6]. In the papers [9,10] Fomenko, Kharcheva,
Vedyushkina investigated the topology of the Liouville foliations for the billiard
books. It was shown that an arbitrary 3-bifurcation of 2-dimension Liouville tori
for any nondegenerate integrable Hamiltonian system with two degrees of freedom
can be simulated (modeled) by a suitable billiard book. In other words, an arbitrary
3-atom can be realized by some billiard book.

Let us describe the decreasing of the degree of some integrable systems with
the help of billiards.

Theorem 1.2 (A. T. Fomenko, V. V. Vedyushkina). The integrable systems
by Kovalevskaya [1], Kovalevskaya-Yahya [11], Kovalevskaya on the Lie algebra
𝑠𝑜(4) [12], Goryachev–Chaplygin–Sretensky [5], Sokolov [13], Dullin–Matveev [14]
with the integrals of degrees 3 and 4 are modeled (that is, are piecewise smooth
Liouville equivalent) in the suitable energy zones (that is, on the suitable constant-
energy 3-manifolds) by the integrable topological billiards with the canonical integral
of degree 2. In other words, the integrals of higher degrees are reduced to the one
and the same quadratic integral

Λ =
(𝑥1𝑣2 − 𝑥2𝑣1)

2 + (𝑣1)
2𝑏+ (𝑣2)

2𝑎

(𝑣1)2 + (𝑣2)2

on the corresponding billiards (let us note that on the isoenergy 3-surface we have
(𝑣1)

2 + (𝑣2)
2 = 1).

Remark 1.1. These results are presented in Figure 1. In the first column,
there are corresponding billiards, in the second column there are corresponding
Fomenko–Zieschang invariants for these integrable systems, in the third column
the corresponding cases of integrability are indicated. Here the numbering of the
invariants and the isoenergy zones which are indicated in brackets are taken from
the papers [1,5,11–14]. In the fourth column, the topological type of the corre-
sponding isoenergy 3-manifold is presented.
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It should be noted that in some zones of energy, the systems listed above
are sometimes smoothly Liouville equivalent to other systems with quadratic inte-
grals. However, these smooth equivalences reduce high degree integrals to, generally
speaking, different integrals of degree 2. An important advance of Theorem 1.2 is
that piecewise smooth equivalences reduce the degree of integrals and reduce them
to the one and the same canonical quadratic integral on the billiard. Namely, this
remarkable integral is the parameter of confocal quadrics which form the bound-
ary of the corresponding billiard table. In other words, the difference between the
discovered piecewise smooth reduction and smooth reduction is that instead of the
collection of different additional integrals of lower degree, we get the collection of
the billiards with one and the same additional integral of degree two.

2. Integrable billiards in the Minkowski space: new results

In this section the results of the interesting paper by V. Dragović and M.
Radnović [22] are developed.

Let us suppose that the plane R2 is endowed with Minkowski metric with a
scalar product ⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 − 𝑥2𝑦2.

Since the scalar product can be negative, all vectors are divided into 3 non-
intersecting subsets. The vector 𝑣 is called

– space-like, if ⟨𝑣, 𝑣⟩ > 0;
– time-like, if ⟨𝑣, 𝑣⟩ < 0;
– light-like, if ⟨𝑣, 𝑣⟩ = 0.

The family of confocal quadrics on the Minkowski plane is given by

(2.1)
𝑥2

𝑎− 𝜆
+

𝑦2

𝑏+ 𝜆
= 1, 𝜆 6 𝑎.

Here 𝑎 > 𝑏 > 0 are the real numbers.

Figure 2. A family of confocal quadrics on the Minkowski plane.
The bold dots indicate the four foci of the family of quadrics.

Among this family of quadrics we distinguish 3 subfamilies

– by 𝜆 ∈ (−∞,−𝑏) the quadric is a hyperbola with the real axis 𝑥,
– by 𝜆 ∈ (𝑎,∞) the quadric is a hyperbola with the real axis 𝑦,
– by 𝜆 ∈ (−𝑏, 𝑎) the quadric is an ellipse.
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In addition, the values 𝜆 = 𝑎,−𝑏,∞ correspond to degenerate quadrics that
are the axis 𝑦, the axis 𝑥 and the line at infinity, respectively.

Let us define a billiard reflection in the Minkowski plane. Let 𝑣 be the vector
and ℓ is be the line. We represent a vector in the form 𝑣 = 𝑣𝑛 + 𝑣ℓ, where 𝑣𝑛 is
the normal component to the line ℓ (in the sense of Minkowski metric) containing
the velocity vector, and 𝑣ℓ belongs to ℓ. Let us call the billiard reflection 𝑣′ of the
vector 𝑣 with respect to the line ℓ the following vector 𝑣′ = −𝑣𝑛 + 𝑣ℓ. Vector 𝑣
is a billiard reflection of the vector 𝑣′. Note that if the vector 𝑣𝑛 is light-like, the
reflection is undefined.

Note that the reflection does not change the type of the vector. Indeed, it is
not difficult to verify that ⟨𝑣, 𝑣⟩ = ⟨𝑣′, 𝑣′⟩, where 𝑣′ and 𝑣 are the billiard reflections
of each other.

It turns out that the flat billiard bounded by the arcs of confocal quadrics in
the Minkowski space is also integrable. Along the trajectories of the billiard, the
parameter of the confocal quadric is preserved (here we mean the billiard reflection
in the Minkowski plane, see above).

Let us consider in detail the billiard in the flat domain bounded by the ellipse.
At four points, where the normal to the tangent is light-like (namely, the points of
tangency of the lines 𝑥± 𝑦 = ±

√
𝑎+ 𝑏 and the ellipse), we can extend the billiard

reflection by continuity. At these points the vector 𝑣′, which is the billiard reflection
of the vector 𝑣, can be defined by the equation: 𝑣′ = −𝑣.

Let us demonstrate the evolution of trajectories induced by the change of the
parameter Λ of the caustic.

For Λ ∈ (−∞,−𝑏), the straight lines containing the trajectories of the billiard
are tangent to the hyperbolas with the real axis 𝑥 to the family (2.1). Then all tra-
jectories are time-like and completely fill the entire interior of the ellipse. Similarly,
for Λ ∈ (𝑎,∞), the caustics are the hyperbolas with the real axis 𝑦, the trajectories
are time-like and also fill the entire interior of the ellipse.

For Λ = ∞ the caustic is a line at infinity. Let us note that when Λ tends to
+∞ and −∞ the pseudo-Euclidean length of the velocity vector can only decrease
and its tilt angle tends to the tilt angle of the common tangents lines. Therefore,
in the limit, we obtain light-like trajectories.

For Λ ∈ (−𝑏, 0) the trajectories are tangent to the confocal ellipse, and fill
the two marked parts of the ellipse (see highlighted regions in Fig. 3a). These
trajectories are time-like.

For Λ ∈ (0, 𝑎) the trajectories are also tangent to the confocal ellipse, but
fill the other two marked parts of the ellipse (see Fig. 3b). These trajectories are
time-like.

For Λ = 𝑎, the tangent line to the trajectory is the 𝑦 axis. The set of trajecto-
ries, which are time-like, consists of one periodic trajectory located along the axis 𝑦
and two disjoint sets of homoclinic trajectories with tangent lines passing through
pairs of foci located on the axis 𝑦.

For Λ = −𝑏, the tangent line to the trajectory is the 𝑥 axis. The set of
trajectories, which are space-like, consists of one periodic trajectory located along
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the axis 𝑥 and two disjoint sets of homoclinic trajectories with tangent lines passing
through a pair of foci lying on the axis 𝑥.

For Λ = −0,+0 the caustic is the boundary ellipse. In the first case, the
trajectories are space-like and the motion occurs along the segments marked in
Fig. 3c. In the second case the trajectories are time-like and the motion occurs
along the segments marked in Fig. 3d. There are no other trajectories for such Λ,
since the segments are convex with respect to the interior of the ellipse. Hence, the
material point cannot be reflected from the boundary in any other way.

Figure 3. Areas of possible motion for different values 𝜆

Definition 2.1. A simple billiard in a Minkowski metric is a compact, con-
nected subset of the Minkowski plane whose boundary consists of arcs of confocal
quadrics for the family (2.1) and does not contain angles greater than 𝜋.

Classification of simple billiards on the Minkowski plane. Common
tangent families of confocal quadrics divide the plane into several parts, and con-
focal ellipses or hyperbolas can be located only in five of this regions. Let us call
them I, II, III, IV and V, as shown in Fig. 4

Figure 4. Areas I, II, III, IV and V on the plane.

Definition 2.2. We call a simple billiard elliptic if its boundary consists of
arcs of confocal ellipses and, possibly, parts of coordinate axes, and hyperbolic, if
its boundary consists of arcs of confocal hyperbolas and, possibly, parts of coordi-
nate axes.

Note that in this situation there is no simple billiard, with the boundary con-
sisting of arcs of ellipses and hyperbolas simultaneously, since they are located in
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different parts of the plane (ellipses are located in I only, and hyperbolas are located
in areas II, III, IV, V).

On the boundary of each simple domain there are singular points, where the
material point after hitting continues its motion in the strictly opposite direction.
This is either the nonregular point of the boundary (the intersection of the arcs of
boundary quadrics), or the point where the common tangent lines are tangent also
to the boundary.

Definition 2.3. These points divide the boundary into different parts, which
will be called segments.

Definition 2.4. Two simple billiards Ω and Ω′ are called equivalent if:

∙ they are obtained from each other by reflection relative to the 𝑥 axis, 𝑦
axis or by rotation on the angle 𝜋/2 (the reflection and rotation in this
definition are Euclidean);

∙ changing the 𝜆 parameter of the boundary segment (excluding the 𝜆 cor-
responding to the values of 𝑎 and −𝑏) so that the parameter during this
transformation 𝜆 does not take the values of 𝑎, −𝑏 and ∞.

Theorem 2.1. Any simple elliptic billiard in the Minkowski plane is equivalent
to one of the billiards shown in Fig. 5

Figure 5. Classification of simple elliptic billiards in the
Minkowski plane.

Let us describe the topological billiards on the Minkowski plane.

Definition 2.5. Let 𝑙1 and 𝑙2 be the convex or straight congruent boundary
segments of simple Ψ1 and Ψ2 billiards. That is, 𝑙1 and 𝑙2 belong to the same
quadric of the same family of confocal quadrics. Then we define the gluing of such
simple billiards along the segments 𝑙1 and 𝑙2. Their images after this gluing will be
called the gluing edge. Here we determine the gluing along 𝑙1 and 𝑙2 by identical
isometry. The end points of the gluing edge are called the vertices of gluing. The
edges which are not glued are called free edges of the billiard. The segments having
the same vertex are called adjacent segments.

Definition 2.6. The topological billiard Δ is a two-dimensional piecewise
smooth orientable manifold obtained by gluing several simple billiards. In this
case, it is required that in each vertex of the gluing we have one of the following
3 situations: the gluing edge and two free edges, two gluing edges (such vertices
are called conical points), or four gluing edges (such vertices are called inner gluing
vertices).
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Now we will describe the law of reflection in topological billiards.
After the gluing operation, the law of reflection for free edges remains the same

as for the simple billiard. Then on the gluing edge the law is as follows: the point
continues its motion on another sheet (domain) as after the regular (standard)
reflection on this edge. Let us recall that the square of the Euclidean length of the
velocity vector is preseved.

We should also note the case of conic points. The reflection in a conic point
is determined by continuity, namely: upon hitting such a point, the material point
continues its motion in the same domain in the opposite direction.

This reflection preserves the integral 𝑣𝐸 = 𝑣21 + 𝑣22 , i.e. the square of Euclidean
velocity, and, as in the case of simple billiards, preserves the caustic parameter Λ.
Let us repeat that all the segments of the boundaries belong to the same family of
confocal quadrics.

Since these two integrals are functionally independent and are in involution
with respect to the standard Poisson bracket, we can state that the topological
billiard system is piecewise integrable in the sense of Liouville. For more detailed
definitions, see V. V. Fokicheva’s work [30].

We denote such topological billiards by Δ(2Ψ𝑖)
𝑠
𝑝, where the index 𝑠 denotes the

number of glued edge segments, namely: 1, 2, 3 or 4; the index 𝑝 denotes the number
of glued straight segments. The dashes in the superscript denote the number of
intersections of the convex segments of the boundary with the coordinate axes.

Topological billiards are called equivalent if they are obtained from each other
by replacing the components of their simple billiards Ψ𝑖 with equivalent ones.

E. E. Karginova considered series of interesting examples of topological billiards
obtained by gluing together two equivalent simple billiards. More precisely —
the billiards Δ(2Ψ3)

2
2, Δ(2Ψ5)

3′, Δ(2Ψ5)
2, Δ(2Ψ5)

3
1 and Δ(2Ψ3)

2
1. For each of

them, she calculates the Fomenko–Zieschang invariant, which classifies the Liouville
foliations on the isoenergy surfaces.

Theorem 2.2 (E. E. Karginova). The Fomenko–Zieschang invariants for topo-
logical billiards Δ(2Ψ3)

2
2, Δ(2Ψ5)

3′, Δ(2Ψ5)
2, Δ(2Ψ5)

3
1 and Δ(2Ψ3)

2
1 are shown

in Fig. 6.

The complete Liouville classification of topological billiards will be described
in a future paper by E. E. Karginova.

3. Singularities of integrable system. Classification of gluing matrices
on the edges of loop molecules for the center-center type points

These results are obtained by A. I. Zhila.
In the theory of topological Fomenko–Zieschang invariants, it is well known that

for the points of center-center type, the 𝑟 -mark on a loop molecule is always equal
to 0. It is known that 𝜀 -mark depends on the orientation of the isoenergy manifold
𝑄3, then on the orientation of the critical circles (for the additional integral of the
Liouville system), and on the orientation of the molecule’s edges. In this section
we consider the method of algorithmic definition of the orientation on the basic
cycles on the Liouville tori. Then we will find gluing matrices on loop molecules
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Figure 6. Fomenko–Zieschang invariants for the topological bil-
liards. In the left column is the notation of the billiard, then — the
billiard itself, and in the right column we can see the corresponding
marked molecule.

for the center-center points depending on the location of the arcs of the bifurcation
diagram.

Using topological invariants, we can recognize Liouville equivalence or non-
equivalence for integrable systems. This investigation is based on the Fomenko–
Zieschang theory for the integrable systems. In particular this classification is based
on the Fomenko invariants (so-called coarse molecules) and Fomenko–Zieschang in-
variants (so-called marked molecules) and on the bifurcation complexes (for details,
see [1,4,16,17]).

Consider a smooth curve on the bifurcation diagram and the isoenergy manifold
corresponding to it. We want to calculate the Fomenko–Zieschang invariant corre-
sponding to the Liouville foliation on this manifold. We can, for example, extract
information about marks and basic cycles from the loop molecules of the singular
points (about loop molecules, see [18]). Singular points of the center-center type
were found for many integrable system. Let us know, that 𝑟-mark on the loop
molecule of any such singularity is equal to zero. In the work by V. A. Kibkalo [19]
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admissible bases (admissible coordinate systems) for two intersecting arcs of the
bifurcation diagram are expressed via uniquely defined 𝜆-cycles similarly to [18].
It has already been applied for the calculation of Fomenko–Zieschang invariants of
Liouville foliation on isoenergy manifolds. In the work by A. I. Zhila, all possible
gluing matrices are calculated for the case of center-center type singular points.
After this it becomes possible to calculate the 𝜀 marks of arbitrary loop molecules.

Let us recall the rules of the basic cycles choice.
Let us consider a molecule of type 𝐴 − 𝐴 for the center-center point. Let us

consider the curve connecting the arcs of the bifurcation diagram corresponding to
the bifurcations of type 𝐴. We want to construct basic cycles and calculate gluing
matrices for the tori corresponding to the points of this admissible curve.

Let us consider two curves 𝛼1 and 𝛼2 of the bifurcation diagram, which are on
the boundary of the image of momentum mapping (see figure 7). Then each curve
corresponds to the bifurcation of type 𝐴 − 𝐴. These curves intersect at a point
which preimage contains a singular point of rank 0. Let us draw an admissible curve
𝛾 and consider the torus 𝑇 in the preimage of a point on the curve 𝛾. Now we can
determine the coordinates on this torus, which are generated by the coordinates
(𝜆𝛼1

, 𝜇𝛼1
) and (𝜆𝛼2

, 𝜇𝛼2
) on the tori 𝑇1 and 𝑇2 located near the 𝛼1 and 𝛼2 curves.

Figure 7. Admissible curve 𝛾.

For the tori 𝑇1 and 𝑇2 near the curves 𝛼1 and 𝛼2 corresponding to the bifur-
cations of the type A, the following statements are held.

(1) The direction of the cycle 𝜇𝛼𝑖
coincides with the direction sgrad𝐻 on the

critical circle.
(2) The cycle 𝜆𝛼𝑖

is contractible to a point when the torus approaches the
corresponding curve 𝛼𝑖. Moreover, the pair (𝜆𝛼𝑖

, 𝜇𝛼𝑖
) should be positively

oriented on the torus 𝑇𝑖, where 𝑖 = 1, 2.

As the first basis cycle 𝜆, we take the meridian of the solid torus, i.e. the con-
tractible cycle. As the second cycle 𝜇, we take an arbitrary cycle that complements
𝜆 up to a basis. The pair (𝜆, 𝜇) should be positively oriented.
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The coordinates generated by the coordinates (𝜆𝛼1
, 𝜇𝛼1

) and (𝜆𝛼2
, 𝜇𝛼2

) on the
tori 𝑇1 and 𝑇2, respectively, are consequently defined on the torus 𝑇 .

Considering these pairs of cycles as bases in the one-dimensional homology
group of the torus, we obtain the gluing matrix

𝐶 =

(︂
𝛼 𝛽
𝛾 𝛿

)︂
, where

(︂
𝜆𝛼1

𝜇𝛼1

)︂
=

(︂
𝛼 𝛽
𝛾 𝛿

)︂(︂
𝜆𝛼2

𝜇𝛼2

)︂
.

Let us recall the rule for the determining orientation on the admissible bases.

(1) The orientation on the symplectic manifold 𝑀4 is given by the form 𝜔∧𝜔.
(2) Let us consider the momentum mapping ℱ = 𝐻 × 𝐹 : 𝑀4 → R2(ℎ, 𝑛).

Then, on the surface 𝑄3
𝛾 = {𝑥 ∈ 𝑀4| ℱ(𝑥) ∈ 𝛾} we can determine the

orientation by the normal vector 𝑛 to the 𝑄3
𝛾 in 𝑀4. For example, a triple

of the vectors 𝑒1, 𝑒2, 𝑒3 will be positively oriented in 𝑄3
𝛾 iif a quadruple of

vectors 𝑒1, 𝑒2, 𝑒3, 𝑛 if a quadruple of vectors 𝑀4. The normal vector to an
admissible curve will be chosen in such a way that it is directed from the
center-center point to a noncompact region in the image of momentum
mapping. In the case when the curve 𝛾 is the line 𝐻 = 𝑐𝑜𝑛𝑠𝑡, the manifold
𝑄3

𝛾 is called an isoenergy surface and is denoted by 𝑄3
ℎ (if 𝑐𝑜𝑛𝑠𝑡 = ℎ).

Then as the normal 𝑛 we take the vector grad𝐻|𝑀4 .
(3) On the torus 𝑇 2 ⊂ 𝑄3

𝛾 the orientation is given by the normal 𝑁 to the

torus in 𝑄3
𝛾 . In other words, a pair of vectors 𝑒1, 𝑒2 will be positively

oriented on 𝑇 2 if a triplet of the vectors 𝑒1, 𝑒2, 𝑁 was positively oriented
in 𝑄3

𝛾 .
(4) As a result, we obtain that the positive orientation of a pair of the vectors

𝑒1, 𝑒2 is given by the condition

(𝜔 ∧ 𝜔)(𝑒1, 𝑒2, 𝑁, 𝑛) > 0.

For example, based on the mentioned rules for defining orientation, we can see
that in figure 7 for the basis cycles (𝜆𝛼𝑖 , 𝜇𝛼𝑖) the following conditions must be held:

(𝜔 ∧ 𝜔)( ˙𝜆𝛼1
, ˙𝜇𝛼1

, grad𝐹, grad𝐻) > 0

(𝜔 ∧ 𝜔)( ˙𝜆𝛼2 , ˙𝜇𝛼2 , −grad𝐹, grad𝐻) > 0.

Here ˙𝜆𝛼𝑖
, ˙𝜇𝛼𝑖

are the velocity vectors of the cycles 𝜆𝛼𝑖
, 𝜇𝛼𝑖

. These vectors are
tangent to the cycles of bases on the torus.

Now let us present a complete classification of the loop marked molecules for
the center-center type points.

Let a center-center singular point correspond to the intersection of two curves
𝛼 and 𝛿 on the plane (ℎ, 𝑓) of the bifurcation diagram. Let us consider all possible
different cases for the location of these curves with respect to each other. Let us
fix the coordinates on the tori in the preimage of an admissible curve between 𝛼
and 𝛿. As a result we can now calculate 𝜀-marks.

Theorem 3.1 (A. I. Zhila). All the gluing matrices of the loop molecules of
a center-center type point, depending on the relative position of the arcs of the
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bifurcation diagram on the plane (ℎ, 𝑓) (in case when the positive orientation is

determined by the condition (𝜔 ∧ 𝜔)(�̇�, �̇�, 𝑁, 𝑛) > 0), are shown in figure 8.

Figure 8. Gluing matrices for the center-center point. The com-
plete list.

The problem of the calculation of gluing matrices for the points of center-center
type was also investigated in the work by V. A. Kibkalo [19]. In this work, the
orientation of the tangent basis (𝑢, 𝑣) to the torus 𝑇 2 was defined by the con-
dition (𝜔 ∧ 𝜔)(grad𝐻,𝑁, 𝑢, 𝑣) > 0, where 𝑁 is the outer normal vector to the
3-atom in 𝑀4.

Theorem 3.2 (V. A. Kibkalo). Let us consider the singular point of type center-
center on the bifurcation diagram. This point is the intersection of two arcs 𝛾𝑖, 𝑖 =
1, 2. Let 𝜀𝑖 = ±1, 𝑖 = 1, 2 be the signs of the derivatives of the Hamiltonian 𝐻
in the direction of intersecting arcs 𝛾𝑖, 𝑖 = 1, 2 respectively. Then the admissible
coordinate systems (𝜆𝑖, 𝜇𝑖) can be chosen such that(︂

𝜆2

𝜇2

)︂
=

(︂
0 𝜀1
𝜀2 0

)︂(︂
𝜆1

𝜇1

)︂
.

But the gluing matrix was not found explicitly in [19]. Nevertheless, theorem
3.2 determines the relations between admissible bases. These relations make it
possible to reconstruct the gluing matrices.
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24. V. Dragović, M. Radnović, Pseudo-integrable billiards and arithmetic dynamics, J. Mod. Dyn.
8(1) (2014), 109–132.

25. V. Dragović, M. Radnović, Pseudo-integrable billiards and double-reflection nets, Russ. Math.
Surv. 70(1) (2015), 1–31.
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СИНУЛАРИТЕТИ ИНТЕГРАБИЛНИХ СИСТЕМА,
РЕДУКЦИJА ИНТЕГРАЛА НА МАЊЕ СТЕПЕНЕ И
ТОПОЛОШКИ БИЛИJАРИ: НЕДАВНИ РЕЗУЛТАТИ

Резиме. У раду су приказани нови резултати у теориjи интеграбилних
Хамилтонових система са два степена слободе и тополошким билиjарима. По-
ред резултата коjе су добили аутори, представљени су и резултати њихових
ученика, као и учесника научних семинара Катедре за диференциjалну геоме-
триjу и примене, Факултета за математику и механику Московског државног
универзитета Ломоносов.
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