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CARTAN MEETS CHAPLYGIN

Kurt M. Ehlers and Jair Koiller

Abstract. In a note at the 1928 International Congress of Mathematicians
Cartan outlined how his “method of equivalence” can provide the invariants

of nonholonomic systems on a manifold 𝑄 with kinetic lagrangians [29]. Car-
tan indicated which changes of the metric outside the constraint distribution

𝐸 ⊂ 𝑇𝑄 preserve the nonholonomic connection 𝐷𝑋𝑌 = Proj𝐸 ∇𝑋𝑌 , 𝑋,𝑌 ∈ 𝐸,

where ∇𝑋𝑌 is the Levi-Civita connection on 𝑄 and Proj𝐸 is the orthogonal
projection over 𝐸. Here we discuss this equivalence problem of nonholonomic

connections for Chaplygin systems [30,31,62]. We also discuss an example-a

mathematical gem!-found by Oliva and Terra [76]. It implies that there is
more freedom (thus more opportunities) using a weaker equivalence, just to

preserve the straightest paths: 𝐷𝑋𝑋 = 0. However, finding examples that

are weakly but not strongly equivalent leads to an over-determined system of
equations indicating that such systems should be rare. We show that the two

notions coincide in the following cases: i) Rank two distributions. This implies

for instance that in Cartan’s example of a sphere rolling on a plane without
slipping or twisting, a (2,3,5) distribution, the two notions of equivalence coin-

cide; ii) For a rank 3 or higher distribution, the corank of D in D+[D,D] must
be at least 3 in order to find examples where the two notions of equivalence

do not coincide. This rules out the possibility of finding examples on (3,5)

distributions such as Chaplygin’s marble sphere. Therefore the beautiful (3,6)
example by Oliva and Terra is minimal.

1. Introduction: d’Alembert, Hertz, Cartan, Chaplygin

A constrained mechanical system consists of a Lagrangian 𝐿∶𝑇𝑄 → R and a
distribution 𝐸 ⊂ 𝑇𝑄 of rank 𝑠 < 𝑛 = dim𝑄. D’Alembert’s principle gives

(1.1)
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞
− 𝜕𝐿

𝜕𝑞
= 𝜆, with 𝜆 = Λ𝐶(𝑞), such that 𝐸 ∶ 𝐶(𝑞) ⋅ 𝑞 = 0.

Equations (1.1) are given in column form, one entry for each 𝑞𝑗 , with 𝐶 an 𝑟×𝑛
matrix, and Λ = (𝜆1, . . . , 𝜆𝑟) a row 𝑟-vector, 𝑟 = 𝑛 − 𝑠 is the number of contraints.
When cast in Hamiltonian form, with 𝑝 = 𝜕𝐿⇑𝜕𝑞, 𝐻 = 𝑝𝑞 −𝐿 (see eg. [11]) then

𝑋𝑛ℎ = (𝑞, �̇�) = (𝜕𝐻⇑𝜕𝑝 − 𝜕𝐻⇑𝜕𝑞 + 𝜆) =𝑋𝐻 + (0, 𝜆), 𝜆 ⋅ 𝜕𝐻⇑𝜕𝑝 = 0.
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The multipliers 𝜆1,⋯, 𝜆𝑟 can be eliminated by brute force, more or less as follows.
Matrix 𝐶 has an invertible 𝑟 × 𝑟 block. One uses the corresponding 𝑟 equations to
solve for all the 𝜆’s. Splitting 𝐶(𝑞) ⋅ 𝑞 = 0 in two blocks, one could solve for 𝑟 of the
𝑞’s in terms of 𝑠 = 𝑛 − 𝑟 others, the coefficients being functions of all the 𝑞’s. Also,
by differentiating, one eliminates 𝑟 of the 𝑞’s.

Eventually one gets a system of first order ODEs for the 𝑛-coordinates 𝑞 and
for 𝑠 of the velocities, totalizing a system of 𝑛 + 𝑠 ordinary differential equations.
This procedure is very awkward. This is why geometric approaches are so helpful.

This paper is also intended as a review for a non-expert, familiar with basic
differential geometry, at the level of the first chapters of [52]. For a crash course on
Geometric Mechanics, with emphasis on control, of interest to mechanical engineers
working in Robotics, see [70]. A geometric mechanics approach to nonholonomic
systems was anticipated by A. Baks̆a [8], see also [66]. For a short survey on
nonholonomic systems, see [10]. For a comprehensive introduction, see [3]. Our
goal is to discuss the equivalence problem of Cartan’s nonholonomic connection
𝐷𝑋𝑌 under changes of metric. We pursue a recent observation by Terra and
Oliva [76] that there is more freedom if one is happy by keeping the same straightest
paths 𝐷𝑋𝑋 = 0. We show nonetheless that in many cases the notions coincide.

1.1. From d’Alembert to Hertz. Jean le Rond d’Alembert asserted in his
Traité de Dynamique that, due to the constraints imposed on the system, a force
appears in the right hand side of Euler–Lagrange equations. This force produces
no resultant work in the system1. It was noticed by H. Hertz in his Prinzipien
der mechanik ( [51], 1894) that d’Alembert’s principle yields different equations
than those obtained by the calculus of variations with constraints (the so-called
“vakonomic” paths), except when the distribution is integrable (holonomic); in this
case both lead to geodesics of the induced metric on every leaf 𝐿 of the foliation.
Inspired by Gauss’ least constraint principle, Hertz proposed the principle of least
curvature: the path followed by an inertial mechanical system is as straight as
possible, given that the velocity vector must satisfy the constraints. This gives the
correct equations for nonholonomic systems (hereafter shortened as nh)2.

1.2. Appell, Whittaker, Maggi, Hamel. We will skip, for brevity, the
accomplishments of their generation at the beginning of the 20th century. In danger
of being superficial, we take the nerve to say that their contribution was mainly
on the practical side: ‘quasivelocities’. Let 𝑞 ∈R𝑛 be local coordinates on 𝑄𝑛, and
consider a local moving frame, defined by an 𝑛 × 𝑛 invertible matrix 𝑅(𝑞),

𝑒𝐽 = 𝜕

𝜕𝜋𝐽
=

𝑛

∑
𝑖=1

𝑟𝐼𝐽
𝜕

𝜕𝑞𝐼
, ∑ �̇�𝐽𝑒𝐽 =∑ 𝑞𝐼

𝜕

𝜕𝑞𝑖
, �̇� = (𝑅(𝑞))−1𝑞.

1Part II, Chapter 1 (1743, 1758). For an appraisal of d’Alembert’s work, see [33]. The
validation of d’Alembert’s principle has been experimentally established (see eg. [54,55,68], as

the limit of appropriate damping forces.
2An inertial system is governed exclusively by its kinetic energy. Poincaré appreciated Hertz’s

view that Mechanics could be founded on the concept of constraints rather than forces: “il nous

force a réflechir, à nous affranchir de vieilles associations d’idées” [78]. We prefer to call the
solutions of (1.1) straightest paths. The terminology nonholonomic geodesic would be more ap-

propriate for the vakonomic setting.
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In books on mechanical engineering the keyword quasicoordinates refers to nonex-
isting entities 𝜋 such that

𝜕𝑓

𝜕𝜋𝐽
=∑

𝐼

𝜕𝑓

𝜕𝑞𝐼

𝜕𝑞𝐼
𝜕𝜋𝐽

=∑
𝐼

𝜕𝑓

𝜕𝑞𝐼
𝑟𝐼𝐽 = 𝑒𝐽(𝑓).

Using such quasicoordinates, the multipliers can be eliminated automatically, and
the number of ODEs would be just 𝑛 + 𝑠. Moreover, they realized that when
symmetries were present, a proper choice of quasicoordinates would yield reduced
equations, which in some cases could be explicitly integrated in closed form.

1.3. Nh connections: Cartan and contemporaries. In the late 1920’s
Cartan, Synge, Schouten, Vranceanu and Wagner provided a differential geometric
description of nh systems. For historical information on that period we refer to [35].
They considered only purely inertial Lagrangians (no potential energy) and we will
follow suit here.

Let 𝑔 denote the Riemannian metric on 𝑄 and 𝐸 ⊂ 𝑇𝑄 a distribution.

Definition 1.1. The (partial) connection on 𝐸 ⊂ 𝑇𝑄, encoding d’Alembert’s
principle, is the combination of two operations,

i) computing the Levi-Civita connection ∇𝑋𝑌 , of 𝑔 for 𝑋,𝑌 ∈ 𝐸
ii) projecting ∇𝑋𝑌 orthogonally back to 𝐸.

This is analogous to the induced Levi-Civita connection on a submanifold of a
Riemannian manifold. The nh connection is therefore

(1.2) 𝐷𝑋𝑌 = Proj𝐸 ∇𝑋𝑌

and the straightest path equation is given by

𝐷𝑋𝑋 = 0, 𝑋 ∈ 𝐸.

Affine connections on 𝑇𝑄 are classical objects. According to [35], the study of
affine connections on subbundles of 𝑇𝑄 (partial connections) started with Schouten,
and was further developed by Vranceanu, Synge and Wagner. Without this knowl-
edge, nonholonomic connections were discussed in [63] in which one of the authors
was a participant. See [45] for a recent work in which the notion is used.

1.4. Chaplygin and Hamiltonization. The idea of Hamiltonization of nh
systems goes back to Chaplygin himself. In the first decade of the 20th century he
developed the method of reducing multipliers [31], applied to systems with abelian
symmetries. In some cases, under a time reparametrization depending on the base
variables 𝑠 ∈ 𝑆, the reduced system can be cast in Hamiltonian form, and in several
examples the reduced system is integrable (more information in section 6).

The jurisprudence was established by Chaplygin’s sphere. It is a dynamically
unbalanced sphere, but with the center of mass at the geometric center. The
configuration space is 𝑄 = 𝑆𝑂(3) × R2. The sphere rolls without slipping on a
horizontal plane, twisting about the vertical axis allowed. The problem can be
viewed as an abelian (𝐺 = R2) Chaplygin nh system [30,31]. See also [36]. The
no slip contraints define a distribution 𝐸 of rank 3 that is strongly nonholonomic
(i.e. 1-step, 3-5). It was shown to be Hamiltonizable when reduced to 𝑇 ∗𝑆2 [13].
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1.5. Organization of the paper. In sections 2 and 3 we discuss É. Cartan’s
note at the 1928 ICM. Cartan’s method to obtain the dynamics, in the case of Lie
groups, is equivalent to Arnold–Euler’s [2]. Section 3 gives the initial 𝐺-structure
for the equivalence method. Section 4 builds on recent work by Terra and Oliva [76].
They consider a weaker notion of equivalence, the preservation of the acceleration
𝐷𝑋𝑋 instead of the nonholonomic connection 𝐷𝑋𝑌 . We present cases where the
weak and strong notions coincide. The special case of Chaplygin systems is outlined
in section 5, and section 6 presents final remarks and directions for further research.

We finish the introduction with a historical note3.

1.6. Chaplygin and Cartan. They were born 3 days apart, Cartan on April
9, and Chaplygin April 5, 1869. What more in common? Both came from poor
families and were discovered and protected by their elementary school teachers.
They endured hardships and tragedies in WW2.

Chaplygin was very much involved in the revolutionary movement in the 1910’s.
He protested persecutions in the 1930’s, defending Luzin fiercely. Still, he was
awarded in most prestigious medals due to his achievements, specially during the
War: Hero of Socialist Labour, Order of Lenin (twice), and Order of the Red
Banner.

Cartan’s son Louis, a member of the Resistance, was murdered by the Nazis.
Henri Cartan, the oldest, was a leader in the creation of the European Math Union
after the war and was influential in bringing Germany back.

Cartan can be described as a pure, pure mathematician, and Chaplygin a
very applied one4, but this may be misleading; they shared a common interest
in gravitation and cosmology. Chaplygin gas is still a basic ingredient for dark
matter theory. As Chern and Chevalley [32] wrote about Cartan, and Lyusternik
on Chaplygin, both were excellent teachers and were all for Women in Mathematics.

Lyusternik tells the following anecdote in [71]: ‘I was examined by Sergei
Alekseevich on particle mechanics [entering the Moscow State University]. My
answer was in no way remarkable. I was surprised several months later when taking
the [course on] Mechanics of a System that he remembered my name. ‘There’s
nothing surprising about that’, I was told, ‘Chaplygin has a phenomenal memory’.
When he was Rector of the Higher Courses for Women, he knew all the students
by name’.

3 Information from “The Early Years of the Moscow Mathematical School” (Lyusternik,
[71]) and the websites http://www-history.mcs.st-andrews.ac.uk/Biographies/Chaplygin.html,

http://www-history.mcs.st-andrews.ac.uk/Biographies/Cartan.html
4Chaplygin’s career was mostly in aeronautical engineering. We quote from the MacTutor

site: The Central Aerohydrodynamic Institute, or TsAGI, was founded in 1918 and Chaplygin
helped organize the Institute from that time. In fact from the time that TsAGI was founded, he
devoted almost all his energies to the project. On the death of Zhukovsky in 1921, Chaplygin
became Chairman of the Board, a position he held until 1930. He was Executive Director of the

Institute from 1928 to 1931, then he became head of the scientific work of the Institute (...) In the
autumn of 1941, the Central Aerohydrodynamic Institute was evacuated from Moscow to Kazan

and Novosibirsk. Chaplygin took charge of the Novosibirsk branch of the Institute and rapidly
organised the building of a wind tunnel and research laboratories. However, the hard work and
difficult circumstances told on his health and he died from a brain haemorrhage in October 1942.’

http://www-history.mcs.st-andrews.ac.uk/Biographies/Chaplygin.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Cartan.html
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1.7. Hilbert: “Mathematics Knows No Races” [82]. There was a strong
political aspect at the ICM in Bologna, held from September 3 to September 10
1938. Hilbert intended to deliver a speech (but it did not happen, not clear why)
with that timely title. But Hilbert’s dream is becoming true (and hopefully will
remain so). At ICM 2014 and 2018 Fields medals were awarded to mathematicians
born in Third World countries, one of them Maryam Mirzakhani. She died so early.

2. Cartan’s equivalence for nh connections

It is not a surprise that Cartan used adapted moving frames5 in his approach
for nh mechanics in [29]. He considered only kinematical Lagrangians 𝐿 = 𝑇 on a
configuration space 𝑄, where 𝑇 is the kinetic energy of a Riemannian metric and
the constraints defined by a distribution 𝐸 ⊂ 𝑇𝑄 with rank 𝑠 < 𝑛.

Cartan advocated his equivalence method to obtain invariants characterizing
the nonholonomic connection (1.2). See [50,75,77] for modern description of the
equivalence method with applications.

Cartan’s note was revisited in [63]. As pointed out by Terra and Oliva [76],
there is an inaccuracy. It was asserted that Cartan’s equivalence criterion (see
section 3.2) provided necessary and sufficient conditions for a change of metric in
𝑄 to keep the straightest paths. Cartan’s criterion gives sufficient conditions, but
they are not always necessary, and this brings more opportunities. We will show
nonetheless in section 4 that the exceptions are rare.

The difference 𝐴(𝑋,𝑌 ) = ∇̃𝑋𝑌 −∇𝑋𝑌 between two affine connections in 𝑄 is a
2-tensor (very easily seen to be bilinear). Clearly ∇ and ∇̃ have the same geodesics if
and only if 𝐴 is skew-symmetric. This implies (obviously) that ∇𝑋𝑋 = ∇̃𝑋𝑋. One
can make the same observation about partial connections, the difference between
𝐷𝑋𝑌 and �̃�𝑋𝑌 being a “partial” 2-tensor. Terra and Oliva propose a broader
notion of equivalence: the preservation of the straightest path equation 𝐷𝑋𝑋 = 0.

We start with the stronger notion of equivalence, preservation of 𝐷𝑋𝑌 . We
will consider the weaker notion 𝐷𝑋𝑋 in section 4. We will show that for rank 2
distributions, preservation of 𝐷𝑋𝑌 is equivalent to preservation of 𝐷𝑋𝑋. We also
show that the notions coincide when dim(𝐸 + (︀𝐸,𝐸⌋︀) − dim𝐸 < 3.

Definition 2.1. 𝐸 ⊂ 𝑇𝑀 is bracket generating if any local frame 𝑒𝑖 for 𝐸
together with its iterated Lie brackets (︀𝑒𝑖, 𝑒𝑗⌋︀, (︀𝑒𝑖, (︀𝑒𝑗 , 𝑒𝑘⌋︀⌋︀, . . . spans 𝑇𝑄.

The only case Cartan discussed in some detail were the 1-step distributions,
those satisfying 𝐸+(︀𝐸,𝐸⌋︀ = 𝑇𝑄. We call those distributions strongly nonholonomic
(Snh). In this case, Cartan proved that, preserving the connection 𝐷𝑋𝑌 , one can

5For a thorough account of moving frames in mechanics, see [73], where there is an interesting
historical observation: at the same time as Cartan (in France), Schouten (in Holland) was also

interested in moving frames for nh mechanics [80]. In fact, nonholonomic mechanics was trendy

at that time! Vranceanu, then a student of Levi-Civita in Rome, also made a contribution to
nh geometry at the 1928 ICM [87]. In Ireland, Synge was also studying nh systems [84]. A

few years later, Wagner studied the geometry of nonholonomic systems in his doctoral thesis
under V. F. Kagan at Lomonosov Moscow State University (see [35] for an account of Wagner
curvature tensor).
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modify the metric in the orthogonal complement 𝐹 of 𝐸 in 𝑇𝑄, as long as 𝐹
remains orthogonal to 𝐸. This seems uneventful in view of d’Alembert’s principle.

The simplest example of a strongly nonholonomic distribution is a contact
distribution (2-3) in R3. Their invariants are given in [37]. Chaplygin’s ball (3-5)
is also Snh. For a 𝑘 ⩾ 2-step distribution, Cartan observed something unexpected.
Denote by 𝐸(1) = 𝐸 + (︀𝐸,𝐸⌋︀. As in the Snh case, one can change the metric

in the orthogonal complement 𝐹 of 𝐸 inside 𝐸(1). 𝐹 remains orthogonal to 𝐸.
Surprisingly, there is total flexibility in changing the metric outside 𝐸(1), as if the
nh geometry becomes ‘saturated’ at the level of 𝐸(1). The proof is in section 3.

About the invariants, Cartan indicated that for distributions with 𝑘 ⩾ 2-steps,
implementing the equivalence method would become cumbersome. We have the
impression that at this point Cartan lost interest.

“l’interét géométrique sévanouirait rapidement à mesure que
les cas envisagés deviendraient plus compliqués.”

In fact, as far as we know, he did not pursue this study later. We took the
nerve to do the equivalence problem for nh connections on 2-3 [37], the 2-step 2-3-5
distribution [38,65], and the Engel 2-3-4 in [64].

Cartan was right in his warning: it can be difficult to interpret geometrically the
invariants. At any rate, in spite of Cartan’s somewhat pessimistic statements, with
the help of computer algebra further cases may be done nowadays. Cartan’s method
of equivalence is algorithmic and (almost) unsupervised. We wish to advertise this
study for the special case of Chaplygin systems, both in the strong and weak senses.
Some thoughts are presented in section 5.

2.1. Derived ideal. The bracket generating condition can be refined in terms
of a filtration of ideals of differential forms. To do this let ℐ be the ideal of all
differential forms annihilating 𝐸. It is locally generated by 𝑛 − 𝑠 one-forms.

Definition 2.2. The set of forms ℐ ′ = {𝜂 ∈ 𝐼 ⋃︀ 𝑑𝜂 ≡ 0 mod (𝐼)} is called the
derived ideal of ℐ.

Set ℐ = ℐ0 and define ℐ𝑗 inductively by ℐ𝑗 = (ℐ𝑗−1)′. The condition that
𝐸 is bracket generating can be redefined in terms of the sequence of inclusions
𝐼0 ⊃ 𝐼1 ⊃ 𝐼2 ⊃ ⋯ terminating with the 0 ideal. In the vectorfields side, we denote
𝐸′ = 𝐸 + (︀𝐸,𝐸⌋︀ and define inductively 𝐸(0) = 𝐸, 𝐸𝑗 = (𝐸𝑗−1)′. Then ℐ(𝑗) is the

annihilator of 𝐸(𝑗). This comes from the following lemma, a simple consequence of
Cartan’s magic formula:

Lemma 2.1. ℐ(1) is the annihilator of 𝐸(1) = 𝐸 + (︀𝐸,𝐸⌋︀.

Proof. Just stare at

𝑑𝜃(𝑉,𝑊 ) = ±𝑉 𝜃(𝑊 ) ±𝑊𝜃(𝑉 ) ± 𝜃(︀𝑉,𝑊 ⌋︀
where the correct signs do not matter. �

Remark 2.1. The filtration of ideals ℐ(𝑗) forms the annihilators of 𝐸(𝑗) where
𝐸𝑗+1 = 𝐸𝑗 + (︀𝐸𝑗 ,𝐸𝑗⌋︀ which form the big’ growth vector. If, instead, we take
𝐸 = 𝐸1 = 𝐻 = 𝐻1 and 𝐻𝑗+1 = 𝐸 + (︀𝐸,𝐻𝑗⌋︀ we get the ‘small’ growth vector. In
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general 𝐸𝑖 contains 𝐻𝑖. In the examples discussed here the big and the small
sequences are the same. As we will see shortly, nonholonomic geometry (meaning
𝐷𝑋𝑌 ) sees only the first derived ideal.

2.2. The Levi-Civita connection. Once a frame in 𝑄 is chosen, it defines
a riemannian metric 𝑇 in 𝑄 for which it is an orthonormal basis. Let (𝑒𝐼) be an
orthonormal frame and (𝜔𝐼) its dual coframe satisfying 𝜔𝐼(𝑒𝐽) = 𝛿𝐼𝐽 . The metric
writes in terms of the coframe as

𝑔 = (𝜔1)2 + ⋅ ⋅ ⋅ + (𝜔𝑛)2.
Recall that the Levi-Civita connection of the metric is given by (see eg. [52])

(2.1) ∇𝑋𝑒𝐽 = 𝜔𝐼𝐽(𝑋)𝑒𝐼 ,
where the connection forms 𝜔𝐼𝐽 satisfy (uniquely) the structure equations

𝑑𝜔𝐼 + 𝜔𝐼𝐽 ∧ 𝜔𝐽 = 0, 𝜔𝐼𝐽 = −𝜔𝐽𝐼 .

In the traditional Christoffel symbols notation one writes

(2.2) ∇𝑒𝐾𝑒𝐽 = Γ𝐼
𝐾𝐽𝑒𝐼 , Γ𝐼

𝐾𝐽 = 𝜔𝐼𝐽(𝑒𝐾), Γ𝐼
𝐾𝐽 = −Γ𝐽

𝐾𝐼 ,

Proposition 2.1 (Cartan’s moving frames approach for geodesics).

∇�̇��̇� = 0 ⇔ �̇�𝐾 = −𝑣𝐼𝑣𝐽Γ𝐾
𝐼𝐽(𝑞), �̇� = 𝑣𝐿𝑒𝐿, Γ𝐾

𝐼𝐽 = 𝜔𝐾𝐽(𝑒𝐼).

2.3. Euler-Arnold equations: Γ𝐼
𝐾𝐽

versus 𝑐𝐾
𝐼𝐽

. In control problems, it is
very useful to prepare a table of the expansions of the commutators (︀𝑒𝐽 , 𝑒𝐾⌋︀ in its
own moving frame {𝑒𝐿}

(︀𝑒𝐽 , 𝑒𝐾⌋︀ = 𝑐𝐿𝐽𝐾(𝑞)𝑒𝐿.
Thus it is important to relate the Christoffel symbols Γ𝐼

𝐾𝐽 = 𝜔𝐼𝐽(𝑒𝐾) with the
values of 𝑐𝐾𝐼𝐽(= 𝜔𝐾(︀𝑒𝐼 , 𝑒𝐽⌋︀).

Proposition 2.2. We have the relations

(2.3) 𝜔𝐼𝐾(𝑒𝐽) − 𝜔𝐼𝐽(𝑒𝐾) = 𝜔𝐼(︀𝑒𝐽 , 𝑒𝐾⌋︀

(2.4) 2Γ𝐽
𝐼𝐾 = 2𝜔𝐽𝐾(𝑒𝐼) = 𝜔𝐼(︀𝑒𝐽 , 𝑒𝐾⌋︀ − 𝜔𝐽(︀𝑒𝐾 , 𝑒𝐼⌋︀ − 𝜔𝐾(︀𝑒𝐼 , 𝑒𝐽⌋︀.

Proof. 𝑑𝜔𝐼(𝑒𝐽 , 𝑒𝐾) = −𝜔𝐼(︀𝑒𝐽 , 𝑒𝐾⌋︀ = −∑𝐿 𝜔𝐼𝐿 ∧ 𝜔𝐿)(𝑒𝐽 , 𝑒𝐾) = 𝜔𝐼𝐽(𝑒𝐾) −
𝜔𝐼𝐾(𝑒𝐽). Hence (2.3) follows. These relations can be inverted with the usual
trick. If we write the cyclic permutations of (2.3), we get three equations relating
six quantities on the right hand side, but in reality they are just three objects due to
the anti-symmetry of 𝜔𝐼𝐽(𝑒𝐾) in the lower indices 𝐼, 𝐽 . Solving this linear system
yields (2.4). �

Proposition 2.3 (Euler–Arnold equations). The geodesic equations can also
be written as

(2.5) ∇�̇��̇� = 0 ⇔ �̇�𝐾 = −𝑣𝐼𝑣𝐽(︀(𝑐𝐼𝐾𝐽 + 𝑐𝐽𝐾𝐼)⇑2⌋︀ = −𝑣𝐼𝑣𝐽𝑐𝐼𝐾𝐽(𝑞), �̇� = 𝑣𝐿𝑒𝐿.

Proof. Immediate from the previous Proposition. One of the three terms in
(2.4) does not contribute due to the skew symmetry with respect to 𝐼, 𝐽 . �
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Example 2.1. For a Lie group, with say, a left invariant frame and left invariant
metric the 𝑐𝐼𝐾𝐽 are constants. The expert reader will recognize that (2.5) becomes
the Arnold–Euler equations in the Lie Algebra, in the case of an orthonormal frame.
For a general non-orthonormal frame (see eg. [62])

(2.6) Ω̇𝐼 = 𝑔𝐼𝐾𝑐𝐽𝐿𝐾𝑔𝐽𝑀Ω𝑀Ω𝐿,

where we changed to the usual notation 𝑣𝐼 = Ω𝐼 and we define a left invariant
metric by 2𝑇 = (𝐺Ω,Ω), with 𝐺 = (𝐺𝐼𝐽) is a symmetric positive definite matrix.
The vector Ω represents a Lie algebra element expanded in the basis 𝑒𝐾 . The
presence of entries 𝑔𝐼𝐾 of the cometric matrix 𝐺−1 is morally a “nonlocal” effect.

2.4. Straightest paths (à la Cartan or à la Euler–Arnold). We will use
the following conventions and un-conventions: capital roman letters 𝐼, 𝐽, . . . run
from 1 to 𝑛. Lower case roman 𝑖, 𝑗, . . . run from 1 to 𝑠 (The dimension of the
constraint distribution). Greek characters 𝛼,𝛽, 𝛾, from 𝑠+ 1 to 𝑛. Summation over
repeated indices is assumed unless otherwise stated. We apologize if we are some-
times careless in using upper or lower indices, and sometimes we put Σ to indicate
a summation more explicitly. We will further subdivide the Greek characters into
lower and upper case to account for forms belonging to the derived ideal ℐ ′ of
ℐ = span{𝜔𝛼}.

Cartan proposed studying nonholonomic systems using adapted coframes

𝜔 = ⌊︀𝜔
𝑖

𝜔𝛼}︀ , where 1 ⩽ 𝑖 ⩽ 𝑠, 𝑠 + 1 ⩽ 𝛼 ⩽ 𝑛.

This coframe is dual to an adapted orthonormal moving frame {𝑒𝑖, 𝑒𝛼}, the first 𝑠
vectors being tangent to 𝐸.

Proposition 2.4. The Nh connection of Definition 1.1 is obtained simply by
running the indices only up to 𝑠:

𝐷𝑒𝑖𝑒𝑗 = Γ𝑘
𝑖𝑗𝑒𝑘 (1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑠).

A curve 𝑐(𝑡) is a straightest path if �̇� = ∑𝑠
𝑘=1 𝑣𝑘𝑒𝑘 (𝑣𝑘 = 𝜔𝑘(�̇�)quasivelocities)

with (see (2.2) and (2.5))
(2.7) �̇�𝑘 = −𝑣𝑖𝑣𝑗Γ𝑘

𝑖𝑗 or equivalently, �̇�𝑘 = −𝑣𝑖𝑣𝑗𝑐𝑖𝑘𝑗 .

In the sequel we will sometimes use the Γ𝑗
𝑖𝑘 = 𝜔𝑗𝑖(𝑒𝑘) (that we call the Cartan

format) and sometimes the 𝑐𝑖𝑘𝑗 = 𝜔𝑖(︀𝑒𝑘, 𝑒𝑗⌋︀ (that we call the Arnold–Euler format),
whichever is more convenient in the situation being considered.

Corollary 2.1. Given a left invariant distribution 𝐸, and a left invariant
metric (it may be given by a matrix 𝐺), the nonholonomic equations are obtained
by the orthogonal projection with respect to this metric, of the Euler equations
(2.5), (2.6) for non-orthonormal frames for Ω̇ on the distribution 𝐸.

Nota bene. We stress that although Γ𝑘
𝑖𝑗 ≠ 𝑐𝑖𝑘𝑗 , the difference is skew symmetric

in the indices 𝑖, 𝑗. For the straightest path equations the difference will disappear
after the summations over 𝑖, 𝑗 of the corresponding ◻𝑣𝑖𝑣𝑗 , so we may take the 𝑐𝑖𝑘𝑗 .

But for the nh connection we need to stick to the Γ𝑘
𝑖𝑗 .
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2.5. Example: maximally symmetric 2-3-5 distribution. Let

𝑒1 =
𝜕

𝜕𝑥1
− 𝑥2

𝜕

𝜕𝑥3
− 𝑥1𝑥2

𝜕

𝜕𝑥4
− 𝑥2

2

𝜕

𝜕𝑥5

𝑒2 =
𝜕

𝜕𝑥2
+ 𝑥1

𝜕

𝜕𝑥3
+ 𝑥2

1

𝜕

𝜕𝑥4
+ 𝑥1𝑥2

𝜕

𝜕𝑥5

𝑒3 = (︀𝑒1, 𝑒2⌋︀ = 2
𝜕

𝜕𝑥3
+ 3𝑥1

𝜕

𝜕𝑥4
+ 3𝑥2

𝜕

𝜕𝑥5

𝑒4 = (︀𝑒1, 𝑒3⌋︀ = 3
𝜕

𝜕𝑥4
,

𝑒5 = (︀𝑒2, 𝑒3⌋︀ = 3
𝜕

𝜕𝑥5

which form a basis for a 5-dimensional nilpotent Lie algebra onR5. The exponential
map gives a diffeomorphism between the nilpotent algebra and the group. Using
the Baker–Campbell–Hausdorf formula one determines the cubic polynomial group
law which is:

⎛
⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

⎞
⎟⎟⎟⎟⎟
⎠

⋅

⎛
⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

𝑥1 + 𝑦1
𝑥2 + 𝑦2

𝑥3 + 𝑦3 + 1
2
(𝑥1𝑦2 − 𝑥2𝑦1)

𝑥4 + 𝑦4 + 1
2
(𝑥1𝑦3 − 𝑥3𝑦1) + 1

12
(𝑥2𝑦

2
1 − 𝑥1𝑦1𝑦2 + 𝑥2

1𝑦2 − 𝑥1𝑥2𝑦1)
𝑥5 + 𝑦5 + 1

2
(𝑥2𝑦3 − 𝑥3𝑦2) + 1

12
(𝑥2𝑦1𝑦2 − 𝑥1𝑦

2
2 + 𝑥1𝑥2𝑦2 − 𝑥2

2𝑦1)

⎞
⎟⎟⎟⎟⎟
⎠

.

By construction the vector fields 𝑋𝑖 provide a left invariant frame on 𝐺. The
dual coframe is

⎛
⎜⎜⎜⎜⎜
⎝

𝜂1

𝜂2

𝜂3

𝜂4

𝜂5

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

𝑑𝑥1

𝑑𝑥2
1
2
(−𝑥2𝑑𝑥1 + 𝑥1𝑑𝑥2 − 𝑑𝑥3)

1
6
(−𝑥1𝑥2𝑑𝑥1 + 𝑥2

1𝑑𝑥2 − 3𝑥1𝑑𝑥3 + 2𝑑𝑥4)
1
6
(−𝑥2

2𝑑𝑥1 + 𝑥1𝑥2𝑑𝑥2 − 3𝑥2𝑑𝑥3 + 2𝑑𝑥5)

⎞
⎟⎟⎟⎟⎟
⎠

.

Proposition 2.5. Let 𝐸 = span(𝑒1, 𝑒2) be a rank two distribution on an 𝑛-
dimensional Riemannian manifold 𝑄. In terms of an orthonormal coframe 𝜔,

�̇�1 = −𝜔1
12𝑣1𝑣2 − 𝜔2

12(𝑣2)2, �̇�2 = 𝜔1
12(𝑣1)2 + 𝜔2

12𝑣1𝑣2

where

(2.8) 𝜔2
12 = −

𝑑𝜔1 ∧ 𝜔3 ∧ ⋅ ⋅ ⋅ ∧ 𝜔𝑛

𝜔1 ∧ ⋅ ⋅ ⋅ ∧ 𝜔𝑛
and 𝜔1

12 = −
𝑑𝜔2 ∧ 𝜔3 ∧ ⋅ ⋅ ⋅ ∧ 𝜔𝑛

𝜔1 ∧ ⋅ ⋅ ⋅ ∧ 𝜔𝑛
.

Proof. Since 𝜔 provides a basis for the cotangent space, we can express each
component of the Levi-Civita connection one-form 𝜔𝑖𝑗 as 𝜔

1
𝑖𝑗𝜔

1+⋅ ⋅ ⋅+𝜔𝑛
𝑖𝑗𝜔

𝑛. Because

𝑠 = 2 we only need 𝜔12 and since the path 𝑐 is tangent to 𝐸 we only need 𝜔1
12𝜔

1 and
𝜔2
12𝜔

2. Using the structure equations we compute 𝑑𝜔1∧𝜔3∧⋅ ⋅ ⋅∧𝜔𝑛 = −𝜔1
12𝜔

1∧⋅ ⋅ ⋅∧𝜔𝑛

and 𝑑𝜔2 ∧ 𝜔3 ⋅ ⋅ ⋅ ∧ 𝜔𝑛 = 𝜔2
12𝜔

1 ∧ ⋅ ⋅ ⋅ ∧ 𝜔𝑛. �

[This is easily modified for rank 𝑠 distributions with 𝑠 > 2. One obtains a linear
system of equations for the required coefficients of the Levi-Civita connection.]
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We take 𝑔 = (𝜂1)2 + ⋅ ⋅ ⋅ + (𝜂5)2 making the given frame orthonormal. Since
𝑑𝜂1 = 𝑑𝜂2 = 0, the previous proposition implies that the nonholonomic geodesic
equations are �̇�1 = �̇�2 = 0. Hence

(�̇�1, �̇�2, �̇�3, �̇�4, �̇�5) = 𝐴𝑒1 +𝐵𝑒2

which are equivalent to the system of equations

⎛
⎜⎜⎜⎜⎜
⎝

�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

𝐴
𝐵

𝑥1�̇�2 − 𝑥2�̇�1

𝑥2
1�̇�2 − 𝑥1𝑥2�̇�1

−𝑥2
2�̇�1 + 𝑥1𝑥2�̇�2

⎞
⎟⎟⎟⎟⎟
⎠

whose solutions give the nonhonolomic geodesics in terms of polynomials of up to
third degree (for 𝑥4, 𝑥5).

Remark 2.2. Cartan introduced in his thesis [26], and developed in two very
famous papers [27,28], the simplest exceptional complex Lie algebra 𝒢2. It turns
out that 𝐸 is the maximally symmetric 2-3-5 distribution and that its Lie algebra
of symmetries is precisely the 14-dimensional, non-compact real form of 𝒢2.

Cartan’s work has been discussed in the 1990’s by Bryant and Hsu [22,23] and
more recently in Agrachev, [1], Bor and Montgomey [12], and Baez [4,5]. Two ways
have been found to realize “concretely” a Lie group for 𝒢2. One is via octonions
and the other as the symmetries of the rolling distribution, without slip or twist, of
two spheres in the ratio 1:3. It seems that Cartan never explicitly discussed rolling,
but it is implicit in his work. Bryant pointed out that for the 1:3 (or 3:1, it does
not matter) rolling distribution, Cartan’s tensor F (the lowest order invariant for
2-plane fields in R5) vanishes, thus it is locally equivalent to ‘flat’ distribution from
Cartan’s 1910 paper-the nilpotent 2-3-5 as we presented above.

3. G-structures in nonholonomic geometry

At the 1928 ICM Élie Cartan described the transformations of coframes on
a manifold leading to the same nh connection. In modern language, a family of
coframes together with a matrix group 𝐺 of transformation is called a 𝐺-structure.
It is a sub-bundle of the coframe bundle 𝜋∶𝐹 ∗(𝑄)→ 𝑄, as a 𝐺𝑙(𝑛) principal bundle
[50,75]. Both for subriemannian (SR) or nonholonomic (NH) geometry, the story
begins with the change of coframes

(3.1) ( �̄�
𝑖

�̄�𝛼) = (
𝐶 𝐵
0 𝐴

) (𝜔
𝑖

𝜔𝛼)

with
𝐶 ∈ 𝑂(𝑠), 𝐴 ∈ 𝐺𝑙(𝑛 − 𝑠), 𝐵 ∈𝑀(𝑠, 𝑛 − 𝑠).

3.1. “Master packages”. We now derive the conditions for strong and weak
equivalence. Dually to (3.1), the frames change via

(𝑒𝑖, 𝑒𝛼) = (𝑒𝑖, 𝑒𝛼)(
𝐶 𝐵
0 𝐴

) .
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We can take 𝐶 = identity without loss of generality. They correspond to changing
the metric in 𝑄 but keeping it unaltered inside 𝐸. In the case of SR geometry,
there are no restrictions in these matrices, this is the initial G-structure. For nh
systems things are more subtle. Proposition 2.4 implies

Proposition 3.1. i) Strong equivalence: the nh connection is preserved
under the change of metric if and only if for all 1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑠.

Γ̄𝑘
𝑖𝑗 = Γ𝑘

𝑖𝑗 .

ii) Weak equivalence: the trajectories are preserved under the change of met-
ric if and only if

𝑐𝑖𝑘𝑗 = 𝑐𝑖𝑘𝑗 + skew symmetric stuff in 𝑖, 𝑗.

We thank Prof. Waldyr Oliva for calling our attention to the additional flexi-
bility in the weak notion. It is due to the “nota bene” in section 2.4.

To find the transformation rules we take 𝐶 = identity, so 𝑒𝑖 = 𝑒𝑖, 1 ⩽ 𝑖 ⩽ 𝑠 and
re-compute the structure constants:

(︀𝑒ℓ, 𝑒𝑖⌋︀ = (︀𝑒ℓ, 𝑒𝑖⌋︀ = 𝑐𝑗ℓ𝑖𝑒𝑗 + 𝑐𝛼ℓ𝑖(𝐵𝑗𝛼𝑒𝑗 + stuff 𝑒𝜆) = (𝑐𝑗ℓ𝑖 + 𝑐𝛼ℓ𝑖𝐵𝑗𝛼)𝑒𝑗 + stuff 𝑒𝜆.

We get immediately that for 1 ⩽ 𝑖, 𝑗, ℓ ⩽ 𝑠, and sum over 𝑠 + 1 ⩽ 𝛼 ⩽ 𝑛:

Proposition 3.2.

𝑐𝑗ℓ𝑖 → 𝑐𝑗ℓ𝑖 = 𝑐𝑗ℓ𝑖 + 𝑐𝛼ℓ𝑖𝐵𝑗𝛼

(which clearly is still skew symmetric with respect to indices ℓ, 𝑖.)

Γ𝑗
𝑖𝑘 → Γ̄𝑗

𝑖𝑘 = Γ𝑗
𝑖𝑘 +

1

2
(𝑐𝛼𝑗𝑘𝐵𝑖𝛼 − 𝑐𝛼𝑘𝑖𝐵𝑗𝛼 + 𝑐𝛼𝑗𝑖𝐵𝑘𝛼)

(which clearly is still skew symmetric with respect to indices 𝑗, 𝑘.)

Proposition 3.3 (Master equations). The “package of conditions” for nh con-
nection equivalence is

(3.2) 𝑐𝛼𝑗𝑘𝐵𝑖𝛼 − 𝑐𝛼𝑘𝑖𝐵𝑗𝛼 + 𝑐𝛼𝑗𝑖𝐵𝑘𝛼 = 0.

For the straightest paths equivalence the conditions are

(3.3) 𝑐𝛼ℓ𝑖𝐵𝑗𝛼 + 𝑐𝛼ℓ𝑗𝐵𝑖𝛼 = 0.

For a Chaplygin system where 𝑄→ 𝑆 is a principal bundle, 𝐵 and the 𝑐𝛼ℓ𝑗 will
be functions of the base variable.

Since the preservation of the nh connection implies that the trajectories are
maintained, (3.2) implies (3.3).

A question then arises: in what circumstances does (3.3) in turn imply (3.2),
i.e. the two equivalence notions coincide?

We present situations where the notions coincide in the next section 4. The
counter example by Terra an Oliva [76] is reviewed in section 4.6.
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3.2. Change of metric preserving the nh connection (Cartan’s way).
Both sets of conditions as given by the above proposition 3.3 seem difficult to
analyze. The package (3.2) for nh connection equivalence looks specially diabolical.
Probably, this is why Cartan chose to work with coframes structure equations. He
focused only on the nh connection equivalence. Let us now review his approach.

In the previous section 2.1 we defined the first derived ideal ℐ(1). Recall that
it is formed by combinations 𝜃 = ∑𝑎𝛼𝜔

𝛼 (coefficients are functions in 𝑄) of the
𝜔𝛼 such that 𝑑𝜃 ∈ ℐ. This means that the 2-form 𝑑𝜃, as a 2-form, can be written
in terms of wedge products where every term contains at least one of the 𝜔𝛼’s; in
other words, there are no terms of the form 𝜔𝑖∧𝜔𝑗 . Equivalently, 𝑑𝜃 vanishes when
applied to a pair of vectors in 𝐸. This is clear from Cartan’s magic formula.

We mentioned in the introduction that Cartan observed that for nh systems,
there must be restrictions on 𝐵 in order to preserve the nh connection. He proved
that for strongly nonholonomic (Snh) distributions, 𝐵 ≡ 0. Thus, in that case, 𝐹
must remain perpendicular to 𝐸 in the new metric, although one can change the
metric at will in 𝐹 . Probably the reason that Cartan was only interested in the
nonholonomic connection (and not the trajectories) is because he showed that there
is a unique (intrinsically defined!) special metric in 𝐹 . A more general result was

presented in [63]. Let 𝑟 = dim(ℐ(1)), so
dim(𝐸 + (︀𝐸,𝐸⌋︀) = 𝑛 − 𝑟.

As we mentioned before, we subdivide the 𝑛 − 𝑠 Greek indices into 𝑟 capital Greek
indices Φ and 𝑡 = 𝑛−𝑠−𝑟 lower case Greek (those listed as the last batch of objects).
In the sequel, when we say “all the Greek”, it means both lower and upper case.

Definition 3.1. The specially adapted frames for 𝑇𝑄

(3.4) (𝑒𝑖, 𝑒Φ, 𝑒𝜑), 1 ⩽ 𝑖 ⩽ 𝑠, 𝑠 + 1 ⩽ Φ ⩽ 𝑠 + 𝑟, 𝑠 + 𝑟 + 1 ⩽ 𝜑 ⩽ 𝑛

are those that satisfy the following requirements:

i) The 𝑒𝑖 span 𝐸.
ii) The 𝑒𝜑 generate a complement 𝐹 of 𝐸 in 𝐸 + (︀𝐸,𝐸⌋︀ (thus (𝑒𝑖, 𝑒𝜑) generate

𝐸 + (︀𝐸,𝐸⌋︀, which is annihilated by ℐ(1)).
iii) The 𝑒Φ are chosen to complete the full frame for 𝑇𝑄 (we placed them in the

middle sector for convenience).

The dual coframe of the frame just constructed is denoted

(𝜔𝑖, 𝜔Φ, 𝜔𝜑)†, 1 ⩽ 𝑖 ⩽ 𝑠, 𝑠 + 1 ⩽ Φ ⩽ 𝑠 + 𝑟, 𝑠 + 𝑟 + 1 ⩽ 𝜑 ⩽ 𝑛.

Notice that by duality, the 𝜔Φ ∈ ℐ(1). The last forms, in lower case Greek, are
in ℐ but not in ℐ(1). The most general change of frames among specially adapted
ones is of the form

(3.5) (𝑒𝑖, 𝑒Φ, 𝑒𝜑) = (𝑒𝑖, 𝑒Φ, 𝑒𝜑)
⎛
⎜
⎝

𝐶 𝐵1 𝐵2

0 𝐴𝑜 02,3
0 𝐴1 𝐴2

⎞
⎟
⎠

where the 023 block is zero by construction, that is: the first and last batches still
generate 𝐸 + (︀𝐸,𝐸⌋︀. Also 𝐶 ∈ 𝑂(𝑠), 𝐴𝑜 ∈ 𝐺𝑙(𝑟), 𝐴2 ∈ 𝐺𝑙(𝑛 − 𝑠 − 𝑟).
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It is not hard to check that all possible metrics in 𝑄 are contemplated by
this construction: given any frame {𝑓𝐼}𝐼=1,...𝑛 in 𝑄, there is an orthogonal matrix
𝑅 ∈ 𝑂(𝑛) such that the rotated frame {𝑓𝐼} ⋅𝑅 has the first 𝑠 vectors in 𝐸 and the
first 𝑠 + 𝑟 vectors in 𝐸 + (︀𝐸,𝐸⌋︀.

The change of coframes writes as

(3.6)
⎛
⎜
⎝

�̄�𝑖

�̄�Φ

�̄�𝛼

⎞
⎟
⎠
=
⎛
⎜
⎝

𝐶 𝐵1 𝐵2

0 𝐴𝑜 02,3
0 𝐴1 𝐴2

⎞
⎟
⎠

⎛
⎜
⎝

𝜔𝑖

𝜔Φ

𝜔𝛼

⎞
⎟
⎠
.

Theorem 3.1. [63] In the notation of (3.5) and (3.6), make 𝐶 = identity
without loss in generality. The condition for the nh connection to be the same for
the two metrics, determined by the corresponding coframes, is

𝐵2 = 0.

For the proof, we must compare the structure equations

(3.7) 𝑑𝜔𝑖 = −𝜔𝑖𝑗 ∧ 𝜔𝑗 − 𝜔𝑖𝛼 ∧ 𝜔𝛼, 𝑑�̄�𝑖 = −�̄�𝑖𝑗 ∧ �̄�𝑗 − �̄�𝑖𝛼 ∧ �̄�𝛼.

Definition 3.2. We say that forms (on any degree) are 𝐸-equivalent if their
difference is in ℐ and denote ∼𝐸 . So anything containing one of the Greeks (the
𝜔𝛼’s or the 𝜔Φ’s) can be dropped in terms of the equivalence relation.

Lemma 3.1. The nh connection is preserved if and only if 𝑑�̄�𝑖 ∼𝐸 𝑑𝜔𝑖.

Proof. By (3.6) with 𝐶 = identity, we have 𝑒𝑖 = 𝑒𝑖. In view of (2.1) and (2.7)
the connection is preserved by the change of metrics if and only if

𝜔𝑖𝑗 ∼𝐸 �̄�𝑖𝑗 .

So in view of (3.7) we get 𝑑�̄�𝑖 ∼𝐸 𝑑𝜔𝑖. �

Proof of Theorem 3.1. Since �̄�𝑖 = 𝜔𝑖+(𝐵1)𝑖Φ𝜔Φ+(𝐵2)𝑖𝛼𝜔𝛼 it follows from
the lemma that 𝑑(︀(𝐵1)𝑖Φ𝜔Φ + (𝐵2)𝑖𝛼𝜔𝛼⌋︀ ∼𝐸 0. Now,

𝑑(︀(𝐵1)𝑖Φ𝜔Φ⌋︀ = 𝑑(𝐵1)𝑖Φ ∧ 𝜔Φ + (𝐵1)𝑖Φ𝑑𝜔Φ ∼𝐸 0

as 𝑑𝜔Φ ∼𝐸 0 (because by choice 𝜔Φ ∈ ℐ(1)). It follows that

𝑑(︀(𝐵2)𝑖𝛼 ∧ 𝜔𝛼⌋︀ = (𝐵2)𝑖𝛼 ∧ 𝜔𝛼 ∼𝐸 0.

This means that the 1-form given by the combination (𝐵2)𝑖𝛼𝑑𝜔𝛼 is in ℐ(1). But
unless all the coefficients vanish this is impossible. We exhausted the generators of
ℐ(1) with the upper case Greek indices. Hence 𝐵2 = 0. It was once said that when
basic theorems are interesting they are trivial to prove. �

Summary. In subriemannian geometry one can add any combination of forms
in ℐ to the 𝜔𝑖. In nonholonomic geometry we can still add forms in ℐ(1) and
preserve the connection. Thus nh geometry has some degree of “near-sightedness”.
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3.3. Initial 𝐺-structure for Nh connection equivalence. The condition
𝐵2 = 0 means geometrically that the orthogonal complement 𝐹 of 𝐸 in 𝐸(1) cannot
be changed. But the metric in 𝐹 can be altered. Any complement 𝐻 of 𝐸(1) to
𝑇𝑄 can be declared orthogonal to 𝐸(1) without affecting the connection. From a
different perspective, look back at the Levi-Civita connection of 𝑄, restricted to
the latin indices

(3.8) ∇𝑒𝑘𝑒𝑗 = 𝜔𝑖𝑗(𝑒𝑘)𝑒𝑖 + 𝜔Φ𝑗(𝑒𝑘)𝑒Φ + 𝜔𝛼𝑗(𝑒𝑘)𝑒𝛼.

In general the 𝜔Φ𝑗(𝑒𝑘)𝑒Φ ∈𝐻 do not vanish, and they are outside 𝐸 + (︀𝐸,𝐸⌋︀. This
is not harmful, since the nh connections are obtained by dropping out all the Greeks
𝑒Φ and 𝑒𝛼 terms in (3.8). The first terms, defining the nh connections are the same
in both metrics.

Theorem 3.2. The initial 𝐺-structure for the equivalence problem for Nh con-
nections 𝐷𝑋𝑌 is the sub-bundle on the frame bundle consisting of coframes

𝜔 = (𝜔𝑖, 𝜔
Φ, 𝜔𝜑)†, 1 ⩽ 𝑖 ⩽ 𝑠, 𝑠 + 1 ⩽ Φ ⩽ 𝑠 + 𝑟, 𝑠 + 𝑟 + 1 ⩽ 𝜑 ⩽ 𝑛

where 𝜔Φ, 𝜔𝜑 annihilate 𝐸 and 𝜔Φ annihilate 𝐸1 = 𝐸+(︀𝐸,𝐸⌋︀. The initial 𝐺-group
acting on 𝜔 consists of matrices of the form

⎛
⎜
⎝

𝐶 𝐵1 0
0 𝐴𝑜 0
0 𝐴1 𝐴2

⎞
⎟
⎠

with 𝐶 ∈ 𝑂(𝑠), 𝐵1 ∈𝑀(𝑠, 𝑟), 𝐴𝑜 ∈ 𝐺𝑙(𝑟, 𝑟), 𝐴1 ∈𝑀(𝑛 − 𝑠 − 𝑟, 𝑟), 𝐴2 ∈ 𝐺𝑙(𝑛 − 𝑠 − 𝑟).

Dimension count. Let dim𝐸 = 𝑠, dim𝐹 = 𝑡, dim𝐻 = 𝑟, so that 𝑛 = dim𝑄 = 𝑟+ 𝑠+ 𝑡.
The number of independent functions is

𝑠(𝑠 + 1)⇑2 + 𝑡(𝑡 + 1)⇑2 + 𝑟(𝑠 + 𝑡).

Revisiting example 2.5. Here ℐ = ℐ0 = span{𝜂3, 𝜂4, 𝜂5} and we can compute

𝑑𝜂1 = 𝑑𝑥1 ∧ 𝑑𝑥2 ⇑≡ 0, 𝑑𝜂4 = 𝑑𝑥1 ∧ 𝜂3 ≡ 0, 𝑑𝜂5 = 𝑑𝑥2 ∧ 𝜂3 ≡ 0 (all mod ℐ),

hence the uppercase Greeks are ℐ1 = span{𝜂4, 𝜂5}. Furthermore we can check that
𝑑𝜂4 and 𝑑𝜂5 ⇑≡ 0 mod 𝐼1 so that ℐ2 = 0.

The column vector (𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5)𝑡𝑟 is thus an adapted coframe, where for
convenience we kept the uppercase Greeks 𝜂4, 𝜂5 at the end of the list. The initial
𝐺0 ⊂ 𝐺𝑙(5) consists of all matrices of the form

⎛
⎜⎜⎜⎜⎜
⎝

𝐶11 𝐶12 0 𝑏14 𝑏15
𝐶21 𝐶22 0 𝑏24 𝑏25
0 0 𝑎33 𝑎34 𝑎35
0 0 0 𝑎44 𝑎45
0 0 0 𝑎54 𝑎55

⎞
⎟⎟⎟⎟⎟
⎠

.

In light of proposition 2.8, Cartan’s condition is easy to appreciate. If we let 𝐶
be the identity matrix and replace 𝜂1 with 𝜂1 = 𝜂1 + 𝑏14𝜂4 + 𝑏15𝜂5 and 𝜂2 with
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𝜂2 = 𝜂2 + 𝑏24𝜂4 + 𝑏25𝜂5, then the coefficients 𝛼2
12 and 𝛼1

12 in the motion equations
(2.5) remain unchanged since

𝑑𝜂4 ∧ 𝜂3 ∧ 𝜂4 ∧ 𝜂5 = 𝑑𝜂5 ∧ 𝜂3 ∧ 𝜂4 ∧ 𝜂5 = 0.

4. Remarks on weak equivalence-preserving the acceleration 𝐷𝑋𝑋

Cartan’s equivalence criterion-to preserve the nh connection, obviously implies
that their nonholonomic paths are the same. Much to our surprise, Terra and Oliva
have recently found an example of a change of metric that does not preserve the
nh connection but still preserves the paths. We will discuss their example at the
end of this section. First, we will make some considerations indicating that this
is an “extreme event’. We start by showing that when dim𝐸 = 2, preservation of
trajectories implies, conversely, preservation of the connection. In [37,38,64], the
cases of, respectively, 2-3, 2-3-5, and 2-3-4 distribution growth were studied.

4.1. Rank two distributions.

Proposition 4.1. For any nonintegrable distribution 𝐸 of rank 2 on a manifold
𝑄 of dimension 𝑛 endowed with an arbitrary Riemannian metric, the straightest
path equations are preserved if and only if 𝐵2 = 0.

Proof. Theorem 3.1 yields sufficiency. To show necessity, let 𝜔 = (𝜔1, . . . , 𝜔𝑛)†,
where † indicates transpose, be an specially adapted coframe (3.4) in Definition 3.1,

with ℐ = span{𝜔3, . . . , 𝜔𝑛}, ℐ(1) = span{𝜔3, . . . , 𝜔𝑛−1}, and 𝑔 = (𝜔1)2 + ⋅ ⋅ ⋅ + (𝜔𝑛)2.
Here ℐ(1) is the annihilator of the three-dimensional distribution 𝐸(1) = 𝐸+ (︀𝐸,𝐸⌋︀,
and 𝜔𝑛 ∉ ℐ(1). Note that in the special case 𝑛 = 3, ℐ(1) = 0 and 𝜔3 ∉ 𝐼(1).

The structure equations for 𝜔 are

𝑑

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔1

𝜔2

𝜔3

⋯
𝜔𝑛−1

𝜔𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓1𝜔
1 ∧ 𝜔2

𝑓2𝜔
1 ∧ 𝜔2

0
⋯
0

𝑓𝑛𝜔
1 ∧ 𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(mod 𝐼).

Note that 𝑓𝑛 ≠ 0 since 𝜔𝑛 ∉ 𝐼(1). Applying Proposition 2.3, the straightest paths
equations for the quasivelocities 𝑣1 and 𝑣2 are

(4.1)
�̇�1 = 𝑓2𝑣1𝑣2 + 𝑓1(𝑣2)2

�̇�2 = −𝑓2(𝑣1)2 + 𝑓1𝑣1𝑣2.

Now suppose that in equation (3.6) 𝐵2 = (𝑏1, 𝑏2)† and, without loss of general-
ity, 𝐶, 𝐴0, and 𝐴2 are identity matrices, and that 𝐴1 = 0. The modified coframe is

thus �̃� = (𝜔1, . . . , �̃�𝑛)† = (𝜔1+𝑏1𝜔𝑛, 𝜔2+𝑏2𝜔𝑛, 𝜔3, . . . , 𝜔𝑛)† with associated modified
metric (�̃�1)2 + ⋅ ⋅ ⋅ + (�̃�𝑛)2. Note that the quasivelocities 𝑣1 and 𝑣2 are unchanged.

The structure equations for �̃� are
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𝑑

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

�̃�1

�̃�2

�̃�3

⋯
�̃�𝑛−1

�̃�𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝑓1 + 𝑏1𝑓𝑛)�̃�1 ∧ �̃�2

(𝑓2 + 𝑏2𝑓𝑛)�̃�1 ∧ �̃�2

0
⋯
0

𝑓𝑛�̃�
1 ∧ �̃�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(mod 𝐼).

The straightest path equations for (the same) quasivelocities are now

�̇�1 = (𝑓2 + 𝑏2𝑓𝑛)𝑣1𝑣2 + (𝑓1 + 𝑏1𝑓𝑛)(𝑣2)2

�̇�2 = −(𝑓2 + 𝑏2𝑓𝑛)(𝑣1)2 + (𝑓1 + 𝑏1𝑓𝑛)𝑣1𝑣2.

Comparing with the original equations (4.1) and recalling that 𝑓𝑛 ≠ 0, we can see
that it is necessary for 𝑏1 = 𝑏2 = 0 to preserve the nonholonomic paths. �

4.2. “Master equation” for keeping the straightest paths, revisited.
Recall that the nonholonomic dynamics in the Euler–Arnold format is given by

(4.2) �̇�𝑖 = 𝑐𝑗ℓ𝑖(𝑞)𝑣𝑗𝑣ℓ, 1 ⩽ 𝑖, 𝑗, ℓ ⩽ 𝑠, 𝑞 = 𝑣𝑖𝑒𝑖,

where the 𝑒𝑖 ∈ 𝐸 (𝑖 = 1, . . . 𝑠) are part of a full orthonormal frame 𝑒𝐽 (𝐽 = 1, . . . 𝑛),
with

(︀𝑒𝐼 , 𝑒𝐽⌋︀ = 𝑐𝐾𝐼𝐽𝑒𝐾 .

Recall that we change metric as follows. An orthonormal basis {𝑒𝑖, 𝑒𝛼} for the new
metric is related to {𝑒𝑖, 𝑒𝛼} by

(4.3) 𝑒𝑗 = 𝑒𝑖𝐶𝑖𝑗 , 𝑒𝛼 = 𝑒𝑗𝐵𝑗𝛼 + 𝑒𝜆𝐴𝜆𝛼.

Here 𝐵 is 𝑠 × 𝑟 and 𝐴 is 𝑟 × 𝑟, functions of 𝑞 ∈ 𝑄. We take 𝐶 =identity, so 𝑒𝑖 = 𝑒𝑖.

Definition 4.1. For each 𝑖 = 1, . . . 𝑠, denote by 𝐶𝑖 the (𝑛 − 𝑠) × 𝑠 matrix

(𝐶𝑖)𝛼ℓ = 𝑐𝛼ℓ𝑖.

We call them “weights”. Note that the last 𝑟 rows of those matrices are zero
since we are working with specially adapted frames.

We get immediately from the package of conditions (3.3):

Proposition 4.2 (Master Equation for Weak Equivalence). The necessary and
sufficient condition for a change of metrics (4.3) to preserve the straightest paths
equation (4.2) is:

All the 𝑠 × 𝑠 “weighted matrices” 𝐵𝐶𝑖 for 𝑖 = 1, . . . 𝑠 are skew symmetric.

Recall that this means

(4.4) ∑
𝛼

(𝑐𝛼ℓ𝑖𝐵𝑗𝛼 + 𝑐𝛼𝑗𝑖𝐵ℓ𝛼) = 0, for all 1 ⩽ 𝑗, ℓ ⩽ 𝑠 and 1 ⩽ 𝑖 ⩽ 𝑠.

As we mentioned before, the skew symmetry requirement is natural since any skew
symmetric bilinear form 𝑣†𝐴𝑤 vanishes when 𝑣 = 𝑤. In hindsight this proposition
results from the Euler-Arnold form for the nonholonomic dynamics, using the 𝑐𝑘𝑖𝑗(𝑞)
instead of the Γ𝑘

𝑖𝑗(𝑞).
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4.3. There are more equations than unknowns. Let 𝑟 = dimℐ(1), so
𝑡 = 𝑛−𝑠− 𝑟 is the dimension of the complement 𝐹 of 𝐸 in 𝐸(1). This is the number
of the 𝛼 indices that matter forming matrix 𝐵2. Note that for all the remaining
𝛼’s we have 𝑐𝛼𝑖𝑗 = 0. We differentiated those latter in Definition 3.1 by using upper
case Greek letters (and indeed there are 𝑟 of them).

Each matrix 𝐶𝑖 has two blocks. The upper, which we call 𝐶𝑖, is the relevant
one, of size (𝑛 − 𝑠 − 𝑟) × 𝑠. The lower block is of size 𝑟 × 𝑠 and is filled with zeros.
Therefore, in computing the products 𝐵𝐶𝑖, we should divide matrix 𝐵 in two
blocks. The left one, which we call 𝐵2, is of size 𝑠× (𝑛− 𝑠− 𝑟) and meets the upper
blocks 𝐶𝑖. The right one, which we call 𝐵1, is of size 𝑠 × 𝑟.

We can see that there are no conditions for 𝐵1 since it meets the lower part
of the 𝐶𝑖 which are zero. The skew symmetry conditions (4.4) are limited to the
small Greek indices 𝛼’s, and apply to block 𝐵2, of size 𝑠 × (𝑛 − 𝑠 − 𝑟). The number
of unknowns is 𝑢 = 𝑠(𝑛 − 𝑠 − 𝑟). On the other hand, the number 𝑝 of equations
encoded in 𝐶𝑖𝐵2 + (𝐶𝑖𝐵2)𝑇 = 0 is

𝑝 = 𝑠(𝑠(𝑠 + 1)⇑2) = 𝑠2(𝑠 + 1)⇑2.

We could assert for sure that there are nonzero solutions for 𝐵2 if there were more
unknowns than equations, 𝑢 > 𝑝, i.e., if 𝑠×(𝑛−𝑠−𝑟) > 𝑠2(𝑠+1)⇑2, or equivalently, if

𝑛 > 𝑠(𝑠 + 1)⇑2 + 𝑠 + 𝑟 (∗).

However, this is never the case. Since dim𝐸(1) ⩽ 𝑠 + 𝑠(𝑠 − 1)⇑2 = 𝑠(𝑠 + 1)⇑2 (the
maximum number of new vectorfields that one can form with the brackets) we get

𝑛 ⩽ 𝑟 + 𝑠(𝑠 + 1)⇑2

which precludes (*). So there are always more equations than unknowns.

4.4. Corank 1, strongly nh, distributions. Here 𝑠 = 𝑛 − 1, 𝑟 = 0. Is it
possible to find an example of nh geodesics equivalence with 𝐵 ≠ 0? We indicate
why not using the Master Equations. We will give a more general argument in the
next subsection, using Cartan’s viewpoint. To begin with, note that there are far
more conditions (𝑝 = (𝑛 − 1)2𝑛⇑2) than unknowns (𝑢 = 𝑛 − 1).

Matrices 𝐶𝑖,1 ⩽ 𝑖 ⩽ 𝑛 − 1 are row-vectors of size 𝑛 − 1

𝐶𝑖 = (𝑐𝑛1𝑖, 𝑐𝑛2𝑖, . . . , 𝑐𝑛𝑛−1,𝑖)

and the matrix 𝐵2 = 𝐵 is a column vector of size 𝑛 − 1

𝐵 = (𝑏1, . . . 𝑏𝑛−1)†.

The product 𝐵𝐶𝑗 is a (𝑛 − 1) × (𝑛 − 1) matrix whose 𝑖-th row (1 ⩽ 𝑖 ⩽ 𝑛 − 1) is

𝑏𝑖(𝑐𝑛1𝑗 , 𝑐𝑛2𝑗 , . . . , 𝑐𝑛𝑛−1,𝑗).

For the nh connection equivalence we know already that all 𝑏𝑖, 𝑖 = 1, . . . , 𝑠 = 𝑛−1
must vanish since the distribution is Snh. But it would be interesting to have a
direct argument using the conditions (3.2). Since there is only one 𝛼 = 𝑛, the usual
alternating trick shows that every term in (3.2) vanishes, i.e. all 𝑐𝑛𝑗𝑘𝑏𝑖 = 0. Since
some 𝑐𝑛𝑖𝑘 ≠ 0, we conclude that all 𝑏𝑖 = 0.
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It is a little bit more difficult to analyze the conditions for keeping the straight-
est paths (i.e., weak equivalence)

(4.5) 𝑏𝑖𝑐
𝑛
𝑘𝑗 + 𝑏𝑘𝑐

𝑛
𝑖𝑗 = 0

for all 1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑛 − 1. It is convenient to form the skew symmetric matrix

𝐶 = (𝑐𝑛𝑖𝑗).
Making 𝑘 = 𝑗 in (4.5) kills automatically the first term and we get 𝑏𝑗𝑐

𝑛
𝑖𝑗 = 0 (not a

sum over 𝑗, it is just a single product).

Proposition 4.3. If 𝑐𝑛𝑖𝑗 ≠ 0 then 𝑏𝑗 = 𝑏𝑖 = 0.

If there is an example with a 𝑏𝑗 ≠ 0, then the whole 𝑗-th column (so also the

𝑗-th row) of 𝐶 must vanish. Conversely, suppose the 𝑗-th colum of 𝐶 is formed by
zeros (so also the 𝑗-th row). Then the equation (4.5) for that value 𝑗 is void. It
seems therefore that the most favorable case for the possibility of having a nonzero
𝐵 is when only one structure coefficient is nonzero.

At first sight it seems that that pair of 𝑏′𝑠 vanishes and all the other could
be arbitrary. We now show that (4.5) forces a lot of others (we think that this
argument gives all) to be zero too.

When one structure coefficient is nonzero we have the group R𝑚 ×𝐻3, where
𝐻3 is the smallest Heisenberg group. Denote (𝑦1, . . . , 𝑦𝑚, 𝑥, 𝑦, 𝑧) the coordinates.
The corank 1, strongly nh distribution 𝐸 is generated by the 𝜕⇑𝜕𝑦𝑖, together with

𝑋1 = 𝜕⇑𝜕𝑥, 𝑋2 = 𝜕⇑𝜕𝑦 + 𝑥𝜕⇑𝜕𝑧.
The only nonzero commutator is (︀𝑋1,𝑋2⌋︀ = 𝜕⇑𝜕𝑧.
𝐵 is a column matrix with 𝑚 + 2 entries. Let us look at the first 𝑚 entries

𝑏𝑖, 𝑖 = 1, . . .𝑚. The second term in (4.5) vanishes because all the possible 𝑐∗𝑖∗ = 0.
But we may take 𝑘 = 𝑚 + 1, 𝑗 = 𝑚 + 2 and since 𝑐𝑚+3

𝑚+1,𝑚+2 = 1 we conclude that
𝑏𝑖 = 0, 𝑖 = 1, . . .𝑚. In order to show that 𝑏𝑚+1 and 𝑏𝑚+2 also vanish in the nh
geodesic equivalence we now look directly at 𝐻3. More generally, the reasoning is
valid for all Heisenberg algebras 𝐻𝑛, 𝑛 = 2𝑚 + 1.

The last coordinate is called 𝑧. The distribution of rank 𝑛 − 1 = 2𝑚 (even)
is generated by vectorfieds 𝑃𝑖’s and 𝑄𝑗 ’s with (︀𝑃𝑖,𝑄𝑗⌋︀ = 𝛿𝑖𝑗𝜕⇑𝜕𝑧, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚.
Conditions (4.5) lead to 𝐵 = 0. This is because when we make 𝑖 = 𝑘, we get
2𝑏𝑘𝑐

𝑛
𝑘𝑗 = 0 (again, a plain product). But for every 𝑘 there exists one (unique) 𝑗

with 𝑐𝑛𝑘𝑗 ≠ 0.
Therefore for the standard metric in the Heisenberg distribution, there is no

difference between preserving the connection and preserving the straightest paths.

4.5. Corank of 𝐸 in 𝐸(1) = 𝐸 + (︀𝐸,𝐸⌋︀ < 3. The reasoning we now present
takes care of the previous case 𝑠 = 𝑛 − 1 and many others. It implies for instance
that to find examples where the straightest paths are the same in non-equivalent
nH connections, the corank of 𝐸 in 𝐸 + (︀𝐸,𝐸⌋︀ must be at least 3, no matter what
the rank of 𝐸 is. So such examples can happen in (3,6), (4,7,. . . ),(4,8,. . . ), etc. but
not in (2,3), (2,3,4), (2,3,5), (3,5), etc. The minimal example is in (3,6), precisely
the situation in [76].
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We present the argument for a rank 3 distribution just to write things out
explicitly. We show that to preserve the straightest paths, covectors that are not
in ℐ1 cannot be added to the 𝜔𝑖, 𝑖 = 1,2,3 if 𝐸 + (︀𝐸,𝐸⌋︀ has dimension 4 or 5.

Proposition 4.4. Suppose 𝐸 is a totally nonholonomic, rank 3 distribution
on a manifold 𝑄 of dimension 𝑛 > 3. If the corank of 𝐸 ⊂ 𝐸 + (︀𝐸,𝐸⌋︀ is one or two,
then the block 𝐵2 in (3.6) is zero.

Proof. We slightly change the notational conventions as follows. Suppose 𝜔 is
a specially adapted coframe for this distribution for which 𝜔𝜑, 4 ⩽ 𝜑 ⩽ 𝑟, span ℐ(1).
When can we add multiples of 𝜔Φ, 𝑟+1 ⩽ Φ ⩽ 𝑛 to the 𝜔𝑖, 1 ⩽ 𝑖 ⩽ 3, while preserving
the straightest path equations?

Let (︀𝜔𝑖𝑗⌋︀ be the Levi-Civita connection forms matrix relative to the coframe

𝜔. Expand the components of 𝜔 as 𝜔𝑖𝑗 = ∑𝑛
𝑘=1 𝜔

𝑘
𝑖𝑗𝜂

𝑘. The nh trajectories are then

�̇�1 = −𝑣2(𝜔1
12𝑣1 + 𝜔2

12𝑣2 + 𝜔3
12𝑣3) − 𝑣3(𝜔1

13𝑣1 + 𝜔2
13𝑣2 + 𝜔3

13𝑣3)
�̇�2 = 𝑣1(𝜔1

12𝑣1 + 𝜔2
12𝑣2 + 𝜔3

12𝑣3) − 𝑣3(𝜔1
23𝑣1 + 𝜔2

23𝑣2 + 𝜔3
23𝑣3)(4.6)

�̇�3 = 𝑣1(𝜔1
13𝑣1 + 𝜔2

13𝑣2 + 𝜔3
13𝑣3) − 𝑣2(𝜔1

23𝑣1 + 𝜔2
23𝑣2 + 𝜔3

23𝑣3).

Now suppose 𝐵2 ≠ 0 and we modify 𝜔 by adding linear combinations 𝑀𝑖 = ∑𝑎Φ𝜔Φ

to the 𝜔𝑖, 1 ⩽ 𝑖 ⩽ 3, to obtain a new coframe �̃�. The distribution 𝐸 is preserved,
but the metric has changed. Denote the Levi-Civita connection form relative to
the modified coframe by �̃� = (︀�̃�𝑖𝑗⌋︀ with components �̃�𝑖𝑗 = ∑𝑛

𝑘=1 �̃�
𝑘
𝑖𝑗𝜂

𝑘.
The equations for the quasivelocities (the same as above) are now

�̇�1 = −𝑣2(�̃�1
12𝑣1 + �̃�2

12𝑣2 + �̃�3
12𝑣3) − 𝑣3(�̃�1

13𝑣1 + �̃�2
13𝑣2 + �̃�3

13𝑣3)
�̇�2 = 𝑣1(�̃�1

12𝑣1 + �̃�2
12𝑣2 + �̃�3

12𝑣3) − 𝑣3(�̃�1
23𝑣1 + �̃�2

23𝑣2 + �̃�3
23𝑣3)(4.7)

�̇�3 = 𝑣1(�̃�1
13𝑣1 + �̃�2

13𝑣2 + �̃�3
13𝑣3) − 𝑣2(�̃�1

23𝑣1 + �̃�2
23𝑣2 + �̃�3

23𝑣3).

Subtracting the expressions for �̇�1 in (4.6) and (4.7) and equating the coefficients
in 𝑣𝑖𝑣𝑗 to zero we obtain

𝜔1
12 − �̃�1

12 = 𝜔2
12 − �̃�2

12 = 𝜔1
13 − �̃�1

13 = 𝜔3
13 − �̃�3

13 = 0

and

(4.8) 𝜔3
12 − �̃�3

12 = −(𝜔2
13 − �̃�2

13).

Doing the same for �̇�2 and �̇�3 we find that

𝜔3
12 − �̃�3

12 = (𝜔1
23 − �̃�1

23)(4.9)

𝜔2
13 − �̃�2

13 = −(𝜔1
23 − �̃�1

23)(4.10)

with the difference between all other pairs equal to zero.
Equations (4.8), (4.9), and (4.10) are not independent and we can write

(4.11) 𝜔3
12 − �̃�3

12 = −(𝜔2
13 − �̃�2

13) = 𝜔1
23 − �̃�1

23 = 𝑄.
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We know that connection forms 𝜔 and �̃� = 𝜔+Δ lead to the same nH trajectories
if and only if

Δ =
⎛
⎜⎜⎜
⎝

0 𝑄𝜂3 −𝑄𝜂2 ∗ ∗
−𝑄𝜂3 0 𝑄𝜂1 ∗ ∗
𝑄𝜂2 −𝑄𝜂1 0 ∗ ∗
∗∗ ∗ ∗ 0 ∗

⎞
⎟⎟⎟
⎠

(mod 𝐼).

Since 𝑑�̃� = −�̃� ∧ �̃� = −(𝜔 +Δ) ∧ �̃� we must have

(4.12) 𝑑
⎛
⎜
⎝

𝑀1

𝑀2

𝑀3

⎞
⎟
⎠
≡
⎛
⎜
⎝

−2𝑄𝜂2 ∧ 𝜂3

2𝑄𝜂1 ∧ 𝜂3

−2𝑄𝜂1 ∧ 𝜂2

⎞
⎟
⎠

(mod 𝐼).

Since the 𝑑𝑀𝑖 are linearly independent, the 𝑀𝑖 must be linearly independent.
This is only possible if the corank of 𝐸 in 𝐸 + (︀𝐸,𝐸⌋︀ is three or more. �

The conclusion of this proposition is also true for distributions of rank greater
than three. In this case (4.11) becomes

𝑄 = 𝜔𝐾
𝑖𝑗 − �̃�𝑘

𝑖𝑗 = −(𝜔
𝑗
𝑖𝑘 − �̃�𝑗

𝑖𝑘) = 𝜔𝑖
𝑗𝑘 − �̃�𝑖

𝑗𝑘

and, modulo 𝜂 − {𝜂𝑖, 𝜂𝑗 , 𝜂𝑘}, (4.12) becomes

𝑑
⎛
⎜
⎝

𝑀𝑖

𝑀𝑗

𝑀𝑘

⎞
⎟
⎠
≡
⎛
⎜
⎝

−2𝑄𝜂𝑗 ∧ 𝜂𝑘

2𝑄𝜂𝑖 ∧ 𝜂𝑘

−2𝑄𝜂𝑖 ∧ 𝜂𝑗

⎞
⎟
⎠

(mod 𝐼)

and the conclusion follows as before.

4.6. The example in 𝑄 = 𝑆𝑂(4) by Terra and Oliva [76]. In this ex-
ample, 𝑛 = 6, 𝑠 = 𝑟 = 3. First we will discuss it using the Cartan approach, and
afterwards by a modification of the “master equations”, which may be helpful in
concocting other families of examples.

4.6.1. Via Cartan equations. Let {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} be a basis for 𝑠𝑜(4)
with

𝑥1 =
⎛
⎜⎜⎜
⎝

0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
, 𝑥2 =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
, 𝑥3 =

⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟
⎠
,

𝑥4 =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, 𝑥5 =

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, 𝑥6 =

⎛
⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

Let 𝑋 = {𝑋1,𝑋2,𝑋3,𝑋4,𝑋5,𝑋6} be the corresponding left invariant frame for
𝑇𝑄. Consider the bi-invariant metric 𝑔 on 𝑆𝑂(4) induced by the Cartan–Killing
form:

𝑔(𝑋𝑖,𝑋𝑗) = −
1

2
tr(𝑥𝑖, 𝑥𝑗).
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It is easy to see that relative to 𝑔, 𝑋 is an orthonormal frame. The distribution
𝐸 = span{𝑋1,𝑋2,𝑋3} is 1-step bracket generating with

(︀𝑋2,𝑋3⌋︀ =𝑋4, (︀𝑋3,𝑋1⌋︀ =𝑋5, (︀𝑋1,𝑋2⌋︀ =𝑋6.

Let 𝜔 = (︀𝜔𝑖⌋︀ be the dual coframe with 𝜔𝑖(𝑋𝑗) = 𝛿𝑖𝑗 . The structure equations are

𝑑𝜔1 = −(−𝜔3 ∧ 𝜔5 + 𝜔2 ∧ 𝜔6)
𝑑𝜔2 = −(−𝜔1 ∧ 𝜔6 + 𝜔3 ∧ 𝜔4)
𝑑𝜔3 = −(𝜔1 ∧ 𝜔5 − 𝜔2 ∧ 𝜔4)
𝑑𝜔4 = −(𝜔2 ∧ 𝜔3 + 𝜔5 ∧ 𝜔6)
𝑑𝜔5 = −(−𝜔1 ∧ 𝜔3 − 𝜔4 ∧ 𝜔6)
𝑑𝜔6 = −(𝜔1 ∧ 𝜔2 + 𝜔4 ∧ 𝜔5).

ℐ is spanned by {𝜔4, 𝜔5, 𝜔6} and ℐ1 = 0. The connection forms are

(︀𝜔𝑖𝑗⌋︀ =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −𝜔6 𝜔5 0 −𝜔3 𝜔2

𝜔6 0 −𝜔4 𝜔3 0 −𝜔1

−𝜔5 𝜔4 0 −𝜔2 𝜔1 0
0 −𝜔3 −𝜔2 0 −𝜔6 𝜔5

𝜔3 0 −𝜔1 𝜔6 0 −𝜔4

−𝜔2 𝜔1 0 −𝜔5 𝜔4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

If 𝑐 is a straightest path with �̇� = 𝑣1𝑋1 + 𝑣2𝑋2 + 𝑣3𝑋3, the nonholonomic equations
are simply

𝑣1 = 𝑣2 = 𝑣3 = 0 (since 𝜔𝑖𝑗(�̇�) = 0, 1 ⩽ 𝑖, 𝑗 ⩽ 3).
For 0 < 𝑎 < 1 let 𝐺 be a deformation of 𝑔 given by (relative to the ordered basis 𝑋)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 𝑎 0 0
0 1 0 0 𝑎 0
0 0 1 0 0 𝑎
𝑎 0 0 1 0 0
0 𝑎 0 0 1 0
0 0 𝑎 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since the distribution 𝐹 spanned by 𝑋4, 𝑋5, 𝑋6 is not orthogonal to 𝐸 when
𝑎 ≠ 0, the nh connections are different. Terra and Oliva observed in [76] that one
gets the same nonholonomic paths.

In terms of the original coframe 𝜔, the coframe �̃� for this metric is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

�̃�1

�̃�2

�̃�3

�̃�4

�̃�5

�̃�6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔1 + 𝑎𝜔4

𝜔2 + 𝑎𝜔5

𝜔3 + 𝑎𝜔6
⌋︂
1 − 𝑎2𝜔4

⌋︂
1 − 𝑎2𝜔5

⌋︂
1 − 𝑎2𝜔6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Note that we have added to 𝜔1, 𝜔2, and 𝜔3 multiples of 𝜔4, 𝜔5, and 𝜔6, which are
not in the first derived ideal. So the connection form restricted to 𝐸 will change.
True enough, the structure equations for �̃� are

𝑑𝜔1 = −(−𝜔3 ∧ 𝜔5 + 𝜔2 ∧ 𝜔6) − 𝑎(𝜔2 ∧ 𝜔3 + 𝜔5 ∧ 𝜔6)
𝑑𝜔2 = −(−𝜔1 ∧ 𝜔6 + 𝜔3 ∧ 𝜔4) − 𝑎(−𝜔1 ∧ 𝜔3 − 𝜔4 ∧ 𝜔6)
𝑑𝜔3 = −(𝜔1 ∧ 𝜔5 − 𝜔2 ∧ 𝜔4) − 𝑎(𝜔1 ∧ 𝜔2 + 𝜔4 ∧ 𝜔5)

𝑑𝜔4 = −
⌋︂
1 − 𝑎2(𝜔2 ∧ 𝜔3 + 𝜔5 ∧ 𝜔6)

𝑑𝜔5 = −
⌋︂
1 − 𝑎2(−𝜔1 ∧ 𝜔3 − 𝜔4 ∧ 𝜔6)

𝑑𝜔6 = −
⌋︂
1 − 𝑎2(𝜔1 ∧ 𝜔2 + 𝜔4 ∧ 𝜔5).

As expected the connection form, when restricted to 𝐸 changes: mod (ℐ) we get

�̃�12 = −
𝑎

2
�̃�3, �̃�13 =

𝑎

2
�̃�2, �̃�23 = −

𝑎

2
�̃�1.

The nonholonomic equations for the deformed metric are then

�̇�1 = −𝑣1𝜔11(�̇�) − 𝑣2𝜔12(�̇�) − 𝑣3𝜔13(�̇�) = −𝑣1(0) − 𝑣2( −
𝑎

2
𝑣3) − 𝑣3(

𝑎

2
𝑣3) = 0

�̇�2 = −𝑣1𝜔21(�̇�) − 𝑣2𝜔22(�̇�) − 𝑣3𝜔23(�̇�) = −𝑣1(
𝑎

2
𝑣3) − 𝑣2(0) − 𝑣3( −

𝑎

2
𝑣1) = 0

�̇�3 = −𝑣1𝜔31(�̇�) − 𝑣2𝜔32(�̇�) − 𝑣3𝜔33(�̇�) = −𝑣1( −
𝑎

2
𝑣2) − 𝑣2(

𝑎

2
𝑣1) − 𝑣3(0) = 0.

While the nonholonomic connection has changed, the changes cancel exactly in the
straightest path equations. A mathematical gem indeed!

4.6.2. Via Euler-Arnold equations (2.6). With the expectation to concoct other
examples, we invoke Proposition 2.1 on a Lie algebra of dimension 𝑛. We denote
by 𝐺 the matrix of the metric relative to a basis 𝑒𝐼 , 𝑖 = 1, . . . 𝑛, and we denote
by Ω𝐼 , 𝐼 = 1, . . . , 𝑛 the coordinates in this basis. Denote by 𝑃𝐺 the orthogonal
projection over 𝐸, spanned by the first vectors 𝑖 = 1, . . . , 𝑠. The equations for the
nonholonomic system are obtained by applying 𝑃𝐺 to the right hand side of Ω̇ in
the Euler-Arnold equations for geodesics in the Lie group.

We now recall a Linear Algebra formula to project over a subspace generated
by vectors 𝑎1, . . . , 𝑎𝑠. Let 𝐴 be the 𝑛 × 𝑠 matrix whose columns are the 𝑎𝑖.

𝑃𝐺(Ω) = 𝐴(𝐴†𝐺𝐴)−1𝐴†𝐺Ω.

This is often more convenient than a Gram–Schmidt procedure on the 𝑎𝑖.
When the 𝑎𝑖 = 𝑒𝑖 are the first 𝑠 vectors of the basis 𝑒𝐼 , then

𝐴 = ⌊︀𝐼𝑠×𝑠
0𝑟×𝑠

}︀ , 𝑟 = 𝑛 − 𝑠.

A simple computation yields that the projection has matrix

𝑃𝐺 = ⌊︀𝐼 (𝐺11)−1𝐺12

0 0
}︀ ,
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or simplifying the notation, by cutting the rows of zeros

𝑃𝐺(Ω̇) = (︀𝐼 ⋃︀ (𝐺11)−1𝐺12⌋︀Ω̇

where 𝐺 is partitioned as (𝐺11 is 𝑠 × 𝑠 and 𝐺12 is 𝑠 × 𝑟)

𝐺 = ⌊︀𝐺11 𝐺12

∗ ∗ }︀ .

We thus get a recipe to compute the nh equations for the Ω̇𝑖, 𝑖 = 1, . . . , 𝑠: Add
to each of the first 𝑠 equations Ω̇𝑖 a suitable combination of the remaining Ω̇𝛼,
𝛼 = 𝑠 + 1, . . . , 𝑛, and afterwards cross out all terms containing one of the Ω𝛼’s
(since they vanish on 𝐸). The coefficients on the combination are 𝑔𝑖𝑗𝑔𝑗𝛼, where

the tilde means that we are inverting the minor block 𝐺11 (that we denote �̃�).

(Notice that the formulas for all the Ω̇𝐼 require the inverse of the full matrix 𝐺).
We now construct a family of metrics for which the projections become very

simple. Consider an even dimensional vector space, of dimension 𝑛 = 2𝑠, where half
of the basis is denoted 𝐴𝑖 and the other half 𝐵𝛼. Let

𝐺 = ⌊︀ 𝐼 𝑆
𝑆† 𝐼

}︀ .

where 𝐾 is a symmetric matrix so that 𝐺 is still invertible. Actually, we only need
𝐾 to commute with its transpose. It is immediate to verify that in this case

𝐺−1 = ⌊︀ (𝐼 − 𝑆𝑆†)−1 −𝑆(𝐼 − 𝑆𝑆†)−1
−𝑆†(𝐼 − 𝑆𝑆†)−1 (𝐼 − 𝑆𝑆†)−1 }︀ .

𝑃𝐺 = (︀𝐼 ⋃︀ 𝑆⌋︀.

Taking into account that

𝑔𝐽𝑚 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝛿𝐽𝑚, 1 ⩽ 𝐽 ⩽ 𝑠

𝑆𝛼𝑚, 𝑠 + 1 ⩽ 𝐽 = 𝑠 + 𝛼 ⩽ 𝑛

the resulting equations for the nh dynamics are

Ω̇𝑖 = ∑
1⩽𝑚,ℓ⩽𝑠

(𝑐𝑚ℓ𝑖 +
𝑠

∑
𝛼=1

𝑐𝑠+𝛼ℓ𝑖 𝑆𝛼𝑚)Ω𝑚Ωℓ, 𝑖 = 1 . . . 𝑠.

We reintroduced the summation symbols for better clarity. We obtain a result
similar to the “master equations”.

Proposition 4.5. The nonholonomic dynamics is independent of the matrix
𝑆 if and only if the expression

(4.13) 𝐴𝑖
ℓ,𝑚 =

𝑠

∑
𝛼=1

𝑐𝑠+𝛼ℓ𝑖 𝑆𝛼𝑚

is skew symmetric in the indices ℓ,𝑚, for all 𝑖 = 1, . . . 𝑠.
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We can now re-check Terra and Oliva’s example. We shuffle the basis for 𝑠𝑜(4).
For 𝑒4, 𝑒5, 𝑒6 we take the standard 3×3 skew symmetric matrices bordered by zeros
in the fourth row and column,

(𝑒𝑖)𝑗𝑘 = (𝐴𝑖)𝑗𝑘 = −𝜖𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 = 1,2,3

and for 𝑒1 = 𝐵1, 𝑒2 = 𝐵2, 𝑒3 = 𝐵3 the only nonzero entries will be in the last row
and colum, as shown below:

𝐴1 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎬⎠⎠⎠⎠⎠⎠⎠⎮

, 𝐴2 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎬⎠⎠⎠⎠⎠⎠⎠⎮

, 𝐴3 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎬⎠⎠⎠⎠⎠⎠⎠⎮

,

𝐵1 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎬⎠⎠⎠⎠⎠⎠⎠⎮

, 𝐵2 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎬⎠⎠⎠⎠⎠⎠⎠⎮

, 𝐵3 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎬⎠⎠⎠⎠⎠⎠⎠⎮

.

The structure constants are

(︀𝐴𝑖,𝐴𝑗⌋︀ = 𝜖𝑖𝑗𝑘𝐴𝑘, (︀𝐵𝑖,𝐵𝑗⌋︀ = 𝜖𝑖𝑗𝑘𝐴𝑘, (︀𝐴𝑖,𝐵𝑗⌋︀ = 𝜖𝑖𝑗𝑘𝐵𝑘.

Relative to the basis 𝑒1 = 𝐵1, 𝑒2 = 𝐵2, 𝑒3 = 𝐵3, 𝑒4 = 𝐴1, 𝑒5 = 𝐴2, 𝑒6 = 𝐴3, as
done in the previous subsection, the family of metrics is given by the 6 × 6 matrix
(symmetric, positive definite) 𝐺 with

𝑆 = 𝑎𝐼3×3.

For 𝑎 = 0 the metric is bi-invariant. The unconstrained dynamics system is trivial:
Ω̇𝐼 = 0, 𝐼 = 1, . . . ,6. In fact, since 𝑔𝐽𝑀 = 𝛿𝐽𝑀 , we get Ω̇𝐾 = 𝑐𝐽𝐿𝐾Ω𝐽Ω𝐿. Observe
that all the non-vanishing structure constants satisfy 𝑐𝐽𝐿𝐾 = −𝑐𝐿𝐽𝐾 so the terms in
the right hand side cancel in pairs6.

We test the condition (4.13) with 0 < 𝑎 < 1.
Due to the symmetries between the indices 1,2,3 in 𝐺 and in the Lie brackets,

it is enough to test for 𝑖 = 1 and ℓ,𝑚 = 2,3, with 𝑆𝑝𝑞 = 𝑎𝛿𝑝𝑞.

ℓ =𝑚 = 2 ∶ 𝑐521𝑆22 but 𝑐521 = 𝜖212 = 0.

ℓ =𝑚 = 3 ∶ 𝑐631𝑆22 but 𝑐631 = 𝜖313 = 0.

ℓ = 2,𝑚 = 3 ∶ 𝑐621𝑆33 but 𝑐621 = 𝜖213 = −1.
ℓ = 3,𝑚 = 2 ∶ 𝑐531𝑆22 but 𝑐531 = 𝜖312 = +1.

The skew symmetry requirement of Proposition 4.5 is fulfilled. Although the
unconstrained Euler–Arnold system does not vanish, it projects orthogonally over
𝐸, so the nonholonomic dynamics is trivial.

6This is true for 𝑆𝑂(𝑛). The standard bi-invariant metric in 𝑠𝑂(𝑛) is given by the Killing
form, ∐︀Ω1,Ω2̃︀ = −(1⇑2) tr(Ω1Ω2) which defines an isomorphim 𝑠𝑂(𝑛) ≡ 𝑠𝑂(𝑛)∗. Euler’s equations
then write as �̇� = (︀𝑀,Ω⌋︀, 𝑀 = 𝐺(Ω) ∈ 𝑠𝑂(𝑛). The positive definite bilinear operator giving the
total energy of the 𝑛-dimensional rigid body is defined by 𝐻 = ∐︀𝐺(Ω1),Ω2̃︀. Obviously for 𝐺 = 𝑖𝑑,

�̇� = (︀Ω,Ω⌋︀ ≡ 0. 𝑆𝑂(4) is special: it has a two parameter family of bi-invariant metrics.
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5. Cartan meets Chaplygin

We outline a research proposal: equivalence problems for Chaplygin systems.
There is a new twist. One can focus on the dynamics on the base. The horizontal
lift to the total space will be considered “just” a quadrature (this makes no justice
to linear ODEs with time varying coefficients).

Given two purely inertial 𝐺-Chaplygin systems (symmetry group 𝐺),

(5.1) (𝐺𝑟 ↪ 𝑄𝑛 → 𝑆𝑠, 𝑇, 𝜔 ∶ 𝑇𝑄→ 𝒢), (𝐺↪ �̃�𝑛 → 𝑆𝑠, 𝑇,�̃� ∶ 𝑇�̃�→ 𝒢),

with constraint distributions 𝐸 = ker𝜔, �̃� = ker �̃�, respectively, find what are the
invariants that imply the existence of a local diffeomorphism 𝜑 ∶ 𝑄 → �̃� satisfying
a required criterion, which could be, if 𝐸 = �̃�,

i) Preserving the nh connections, as discussed in sections 3 and 4:

�̃��̃�𝑌 = 𝜑∗(𝐷𝑋𝑌 ), �̃� = 𝜑∗(𝑋), 𝑌 = 𝜑∗𝑌.

ii) Sending the straightest paths in 𝑄 to the straightest paths in �̃�.

�̃��̃��̃� = 𝜑∗(𝐷𝑋𝑋), �̃� = 𝜑∗(𝑋).

If 𝐸 ≠ �̃� (we change the connection in addition to the metric):
iii) Preserving the projected connections in 𝑆.

iv) Sending the reduced paths in 𝑆 to the reduced paths in 𝑆.

In equivalence problems it is traditional to work locally, on neighborhoods of
points 𝑞 ∈ 𝑄 and 𝑞 ∈ �̃�. So there is no loss in generality to assume

𝑄 = 𝑈 ×𝐺, �̃� = �̃� ×𝐺,

with 𝑈 = �̃� an open set in R𝑠. To start, one needs to describe the initial subbundles
inside the full coframe bundle 𝐹 ∗(𝑈 ×𝐺) and the corresponding matrix group.

5.1. The reduced affine connection. Let 𝑇 be a 𝐺-invariant riemannian
metric in 𝑄. Given 𝑋,𝑌 vectorfields in 𝑆, one defines an affine connection in 𝑆
as follows. Lift them to horizontal vectorfields ℎ(𝑋), ℎ(𝑌 ) in 𝑄. Going back to
definition 1.1, compute

𝐷ℎ(𝑋)ℎ(𝑌 ) = Proj𝐸 ∇ℎ(𝑋)ℎ(𝑌 )

where ∇ is the Levi-Civita connection in 𝑄 associated to the metric 𝑇 . It is easy
to see that it is also 𝐺-invariant.

Definition 5.1. The reduced affine connection is

(5.2) 𝐷𝑆
𝑋𝑌 = 𝜋∗(𝐷ℎ(𝑋)ℎ(𝑌 )).

Query 5.1. 𝐷𝑆 is an affine connection in 𝑆 in the usual sense. One should be
able to compute its structure equations, plus the torsion and curvature tensors in
terms of moving frames in 𝑆. For this task, one can use results by A. Lewis in [69].
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Definition 5.2. The reduced Chaplygin dynamics is governed by

𝐷𝑆
𝑋𝑋 = 0

the geodesic (i.e. straightest path) equation of the affine connection 𝐷𝑆 . It is a
metric connection with respect to the projected metric 𝑇𝑆 .

Problem. In (5.1), fix a principal bundle 𝐺𝑟 ↪ 𝑄𝑛 → 𝑆𝑠, with vertical spaces
𝑉 . We allow 𝑇 and 𝜔 to change. When do the reduced connections 𝐷 = 𝐷𝑆 and
�̃� = �̃�𝑆 given by the definition (5.2) have the same geodesics (criterion iv)?

One considers the difference tensor

𝐵(𝑋,𝑌 ) = �̃�𝑆
𝑋𝑌 −𝐷𝑆

𝑋𝑌

which is easily seen to be bilinear. As it is well known (see [52, section 5.4.]), 𝐷 and

�̃� have the same geodesics if and only if 𝐵 is skew-symmetric, which is equivalent
to the (obvious) condition

𝐷𝑆
𝑋𝑋 = �̃�𝑆

𝑋𝑋.

At the 𝑄 level, this amounts to the requirement that

(5.3) Proj𝐸(∇ℎ(𝑋)ℎ(𝑋)) −Proj�̃�(∇̃ℎ̃(𝑋)ℎ̃(𝑋)) ∈ 𝑉

for all vectorfields 𝑋 in 𝑆. 𝑉 is the (same) vertical distribution of the two principal
connections, the first orthogonal projection is relative to metric 𝑇 and the second
to 𝑇 , and likewise one takes the two distinct Levi-Civita covariant derivatives.

6. Final comments and other research directions

6.1. Cartan equivalence of Chaplygin systems. The basic task is how to
use (5.3) in section 5 to obtain the initial structure for Cartan equivalence in terms
of frames in 𝑆 and the Lie algebra of the group 𝐺. For integrable distributions the
solution is very simple. Both reduced dynamics are hamiltonian, with 𝐻 = �̃� being
the respective kinetic energies in 𝑄 restricted to the corresponding distributions
and then projected to 𝑆. Since for metrics the unique invariant is the Riemannian
curvature, the requirement is that 𝑇 ⋃︀𝐸 and 𝑇 ⋃︀�̃� be the lifts (to their distributions)
of a same metric 𝑔 in 𝑆, the complements being arbitrary. The reduced connection
is simply the Levi-Civita connection of the metric 𝑔𝑆.

For nonintegrable distributions there is a complication: the projected system in
𝑆 non-hamiltonian. The reduced equations are of the form 𝐷𝑔

𝑋𝑋 = 𝐹 (𝑋), where 𝐹
is a “gyroscopic type” force, i.e. 𝑔(𝐹 (𝑋),𝑋) ≡ 0. This force comes from a “(𝐽,𝐾)”
term combining the momentum map of the 𝐺-action in 𝑄 and the curvature of the
connection (see eg [62]). The problem becomes more interesting and is related to
the query 5.1. We also thank the referee for pointing out that a duality exists
between a Levi-Civita type connection and an almost-Poisson bracket, in the more
abstract context of mechanics in Lie algebroids [9,49,67].

6.2. Non-equivalent connections with the same straightest paths.
The example of Terra and Olive generates interest in finding in what circumstances
the weak equivalence does not imply the strong. We saw that there is a need for
having “room” for at least three dimensions between 𝐸 and 𝐸 + (︀𝐸,𝐸⌋︀. In such
cases, are there consequences for the equivalence problem? For hamiltonization?
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6.3. Perspectives on Hamiltonization. Chaplygin’s reducing multipliers
method was geometrized in [21]. We mentioned in the introduction that it is
tied intimately to hamiltonization and integrability. Currently, the almost Poisson
description of nh systems is how one starts the quest for hamiltonization [19].
Hamiltonization is done usually after reduction of symmetries and a change of time
scale depending on reduced variables (in Chaplygin systems the base manifold).
Time change is related to the existence of a smooth invariant measure.

Unfortunately, our impression is that Cartan’s equivalence approach (changing
the metric) is of no avail for these purposes (we hope to be wrong). At any rate,
we are preparing a sequel paper, in which Cartan moving frames in 𝑄 are extended
to moving frames in 𝑇 ∗𝑄 and then used to produce a simple way to obtain the
Maschke/Schaft bracket [24,72,79]7.

Necessary and sufficient conditions for the existence of invariant measures can
be found in eg. [25,43]. Compiling a list of the known nh systems with a smooth
invariant measure is in order, together with information about which ones have been
hamiltonized and their integrability. For a rolling rigid body (several versions of
the problem) results on the existence of an invariant measure and Hamiltonization
have been gathered in the form of tables [15,16,18]. In these papers, a conformally
Hamiltonian representation is found for a reduced system on 𝑇 ∗𝑆2. See [46] for
a negative case. Chaplygin sphere was shown to be Hamiltonizable in [13] and
the methodology explained in [17]. A glimpse of the subject (we apologize for the
many omissions since the theme is booming) can be found in references such as (in
random order) [6,7,34,39–42,44,48,53,56–61,85,86]. There are many more and
more will be coming! Some recent information follows, kindly given to us by Luis
Naranjo and Ivan Mamaev.

6.3.1. Possibility of hamiltonization in the first level (𝐿𝑒𝑔(𝐸) = ℳ ⊂ 𝑇 ∗𝑄).
Sufficient conditions in order for a Chaplygin system to be hamiltonizable at the
first level 𝑇 ∗(𝑄⇑𝐺), similar to Stanchenko’s [83], were found by Naranjo and Mar-
rero (personal communication). For Chaplygin’s sphere, such conditions are not
satisfied. It is believed that, in general, one cannot achieve hamiltonization at the
first level. However, this question should be formulated in a clearer manner8.

6.3.2. Obstructions to Hamiltonization. The conformal Hamiltonization of a
bivector 𝐵 seems a very interesting problem. Given a function 𝐻, a mandatory
requirement is the existence of an invariant measure for 𝑋𝐻 = 𝐵 ⋅ 𝑑𝐻. In the case
of nh systems, some obstructions to Hamiltonization are discussed in [14,19,20].

6.3.3. Turning integrals into Casimirs. The underlining idea is to modify the
Mashke van der Schaft bracket [72,79] to make first integrals into Casimirs of the
reduced system [47].

7Adding semi-basic bivectors that do not affect the dynamics (à la Stanchenko [83]) will
become evident in this approach. The experts will agree that such preliminary constructions,

before reduction, can help hamiltonization.
8 For instance, in the case of Chaplygin’s sphere, if it is homogeneous, then the system

on ℳ can be understood as an invariant subsystem of a Hamiltonian system, namely, that of a

homogeneous sphere moving in 𝑅2 without constraints. In this case 𝐿𝑒𝑔(𝐸) is a level set of the
first integrals of the Hamiltonian system on 𝑇 ∗𝑄.
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6.4. Themes from Cartan’s ICM1928 paper. One wonders why Cartan
did not discuss the weak notion of equivalence. We believe that he was concerned
mainly with 𝐷𝐸

𝑋𝑌 in the strongly nonholonomic case (1 step, 𝐸 + (︀𝐸,𝐸⌋︀ = 𝑇𝑄).
Recall, we saw that in this case, for the preservation of the partial nh-connection
on 𝐸, the metric can be changed outside 𝐸 as long as the orthogonal space 𝐹 = 𝐸⊥

with respect to the original metric in 𝑄 stays the same. Cartan was interested in
a complementary partial connection on 𝐹 . For this he shows in § 6 to 8 that there
is an intrinsically defined metric in 𝐹 such that the partial connection 𝐷𝐹 (now
projecting to 𝐹 ) plus a suitable 2-tensor has zero torsion.

Moreover, it seems to us that at their time Cartan and contemporaries antici-
pated a construction that is nowadays popular in robotics, control theory, computer
vision and statistics on manifolds (see eg. [74,81]). Namely, obtaining the devel-
opment of a curve in 𝑄 over a fixed tangent space using the connection. The ‘true’
mechanics at a point 𝑞 ∈ 𝑄 is transported to a mirror Euclidian setting. The in-
ertial motion in 𝑄 becomes a motion with Euclidian metric but with an applied
force (using parallel transport of an object at 𝑞). We think it will be rewarding
to revisit those aspects of Cartan’s paper, not discussed in this review, and just
touched upon in [63].
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6. P. Balseiro, L. C. Garćıa-Naranjo, Gauge transformations, twisted Poisson brackets and

Hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal. 205 (2012), 267–310.

7. P. Balseiro, O. E. Fernandez, Reduction of nonholonomic systems in two stages and Hamil-
tonization, Nonlinearity 28(8) (2015) 2873–2891.
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КАРТАН СРЕЋЕ ЧАПЛИГИНА

Резиме. На Међународном конгресу математичара 1928, Картан jе напо-
менуо да његов “метод еквиваленциjе” доводи до инвариjанти нехолономног си-
стема на конфигурационом простору 𝑄 са Лагранжиjаном одређеним кинетич-
ком енергиjом [29]. Картан jе дао карактеристику промене метрике ван дистри-
буциjе веза 𝐸 ⊂ 𝑇𝑄 коjа очувава нехолономну повезаност 𝐷𝑋𝑌 = Proj𝐸 ∇𝑋𝑌 ,
𝑋,𝑌 ∈ 𝐸, где jе ∇𝑋𝑌 Леви-Чивита повезаност на 𝑄 и Proj𝐸 ортогонална про-
jекциjа на 𝐸. Овде разматрамо наведени проблем еквиваленциjе нехолономних
повезаности за Чаплигинове системе [30,31,62]. Такође разматрамо и пример
- математички драгуљ! - кога су пронашли Олива и Тера [76]. Ту имамо више
слободе (дакле и више могућности) користећи слабиjу еквивалентност - чуваjу
се само наjправљи путеви: 𝐷𝑋𝑋 = 0. Ипак, тражење примера коjи су слабо,
али не строго еквивалентни доводи до преодређеног система jедначина, што
даjе индициjу да су такви системи ретки. Ми показуjемо да се два приступа
поклапаjу у следећим случаjевима: i) Дистрибуциjама ранка 2. На пример, у
Картановом примеру сфере коjа се котрља по равни без клизања и увиjања
када имамо (2,3,5) дистрибуциjу; ii) Када jе дистрибуциjа ранка 3 или више,
неопходан услов да се приступи разликуjу jе да jе коранк од D у D+[D,D]
барем 3. Ово искључуjе могућност налажења примера у случаjу (3,5) дистри-
буциjа, као код Чаплигинове сфере. Дакле предиван пример (3,6) дистрибуциjе
коjи су добили Олива и Тера jе минималан.
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