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ON THE DYNAMICS OF SYSTEMS WITH
ONE-SIDED NON-INTEGRABLE CONSTRAINTS

Valery V. Kozlov

Abstract. In the paper we take the first steps in studying the dynamics of
systems with one-sided differential constraints defined by inequalities in the

phase space. We give a general definition of motion for systems with such
constraints. Within the framework of the classical non-holonomic model, and

also for systems with servoconstraints (according to Béghin), we present the

conditions under which the system leaves two-sided differential constraints.
As an example, we consider the Chaplygin sleigh with a one-sided constraint,

which is realized by means of an anisotropic force of viscous friction. Vari-

ational principles for the determination of motion of systems with one-sided
differential constraints are presented.

1. Introduction

Let 𝑥1, . . . , 𝑥𝑛 be generalized coordinates of a mechanical system and 𝑀 =
{𝑥1, . . . , 𝑥𝑛} be the configuration space. The inertial properties of the system are
defined by the kinetic energy

𝑇 =
1

2

∑︁
𝑔𝑖𝑗 𝑥̇𝑖𝑥̇𝑗 .

Here 𝑇 is a positively defined quadratic form w.r.t. the velocities 𝑥̇1, . . . , 𝑥̇𝑛 with
smooth coefficients 𝑔𝑖𝑗 . Let

𝐹 = (𝐹1, . . . , 𝐹𝑛)

be generalized forces acting on the system; they depend on the state 𝑥, 𝑥̇ of the
system.

The phase space Γ = 𝑇𝑀 is the tangent bundle of the configuration space. The
dimension of Γ is 2𝑛; the local coordinates on Γ are coordinates 𝑥 and velocities 𝑥̇
of the system.

Let 𝑓 : Γ → R be a smooth function defined on the phase space. We assume
that

(1.1)
𝜕𝑓

𝜕𝑥̇
̸= 0
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at all points of Γ. Usually, two-sided (bilateral) constraints are considered, i.e., for
each moment of time, the state of our system satisfies the following condition

(1.2) 𝑓(𝑥̇, 𝑥) = 0.

In the paper, we consider the dynamics of a mechanical system with a one-sided
(unilateral) constraint for which, for each moment of time, we have

(1.3) 𝑓(𝑥̇, 𝑥) > 0.

The boundary of this region is defined by equation (1.2).
We will call one-sided constraint (1.3) integrable (or, respectively, non-integrable)

if boundary (1.2) is integrable (respectively, non-integrable). Recall that constraint

(1.2) is integrable if 𝑓 = 𝑔ℎ̇, where 𝑔 : Γ → R is a positive smooth function, ℎ is a
smooth regular function defined on the configuration space 𝑀 . By regularity we
mean that 𝑑ℎ ̸= 0 at all points of 𝑀 . In case of an integrable one-sided constraint,
the motion of system 𝑡 ↦→ 𝑥(𝑡) satisfies inequality ℎ̇ > 0.

The dynamics of a system with a one-sided differential integrable constraint
ℎ̇(𝑥) > 0 should be distinguished from the dynamics of the corresponding holonomic
system with a one-sided constraint ℎ(𝑥) > 𝑐, where 𝑐 is a constant. In the first case,

the system can move in any level set of the function ℎ when ℎ̇ = 0. In the second
case, the system moves in the only possible level set. Therefore, in the second case,
the impact on the boundary is possible. In the first case, the main phenomenon
is the situation when the system leaves the constraint (or switches to a two-sided
constraint).

In mechanics, we usually consider linear in velocities constraints

𝑓 = (𝑎, 𝑥̇),

where 𝑎 is a non-zero covector field on the configuration space. However, in con-
trolled systems, it is possible to impose constraints which are non-linear in veloci-
ties.

Below we consider the simplest case when only one constraint (1.3) is imposed
on the system. In general, it is possible to consider more than one constraint. Yet,
in this case, other constraints should be imposed as equalities. Otherwise, we face
additional difficulties that stem from the analysis of motion in the ‘corner points’.

When we consider the motion of a constrained system, it is important to keep
in mind the following fact: the dynamics of such systems significantly depends
on the realization of the constraints. This remark is especially relevant when we
consider controlled systems (see [1]).

The main principles of dynamics of systems with one-sided holonomic (geomet-
rical) constraints are well-known (a worth mentioning exposition of the history of
this problem can be found in [2]). In our paper, we take the first steps in studying
the dynamics of systems with one-sided non-integrable constraints.

It should be noted that the dynamics of systems with unilateral differential
constraints has already been studied before. For instance, one can find references
on the matter in the survey [4] by V. F. Zhuravlev. The name ‘unilateral’ has
been proposed for constraint (1.2) if this constraint is active under the additional
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condition on the acceleration: 𝐹 (𝑥̈, 𝑥̇, 𝑥) > 0. The constraint is removed when this
condition does not hold. The reader can find some similarities of this definition with
our approach which we present below. However, in the definition of a unilateral
constraint, nothing was said on the motion of a system in a region of the phase
space where inequality (1.3) holds. Therefore, the theory developed in our paper
should not be confused with the theory of systems with unilateral constraints dis-
cussed in [4].

A ball rolling on a rough plane is the main example considered in [4]: the
velocity of the contact point is zero provided 𝑓𝑁 − |𝜏 | > 0. Here 𝑁 (respectively,
𝜏) is the normal (respectively, tangential) component of the reaction at the point
of contact, 𝑓 is the dry friction coefficient. Another example considered in [4] is
jumps of a ball rolling on a surface. In the first example, when the constraint is
removed, the dimension of the phase space increases by two. In the second example
it increases by four. As we mentioned above, these cases are not of interest here.

2. Non-holonomic model

In the region where 𝑓 > 0, the mechanical system can be considered as free
and the dynamics is described by the Lagrange equations

(2.1) [𝑇 ] = 𝐹,

where [ · ] is the so-called variational (or Lagrange) derivative:

[Φ] =
𝑑

𝑑𝑡

𝜕Φ

𝜕𝑥̇
− 𝜕Φ

𝜕𝑥
.

At first, we consider the simplest case when the system with constraint (1.2) is
described by the classical non-holonomic model:

(2.2) [𝑇 ] = 𝐹 + 𝜆
𝜕𝑓

𝜕𝑥̇
, 𝑓 = 0.

These equations for the non-linear constraints (1.2), apparently, were first proposed
by N. G. Chetaev. Taking into account the constraint, 𝜆 can be presented as a
function of state of the system, without solving the equations of motion.

It is needed to give a definition of the motion of a system with the one-sided
constraint (1.3). Suppose that the system moves in accordance with the two-sided
constraint (1.2) and then leaves this constraint; we should present conditions un-
der which the system leaves (1.2) (the boundary of (1.3)). Then, after reversing
the time 𝑡 ↦→ −𝑡, we obtain conditions under which the system switches to the
constraint (1.2).

The determination of the moment when the system leaves two-sided constraint
𝑓 = 0 is based on the following simple consideration: this constraint cannot prevent
the system from switching to the free motion in region 𝑓 > 0. To be more precise,
let 𝑥𝜏 and 𝑥̇𝜏 be the position and the velocity of the system at the moment 𝑡 = 𝜏
and the following equality holds

𝑓(𝑥̇𝜏 , 𝑥𝜏 ) = 0.



4 KOZLOV

Next, we consider the motion of the free system 𝑡 ↦→ 𝑥(𝑡) such that 𝑥(𝜏) = 𝑥𝜏 ,
𝑥̇(𝜏) = 𝑥̇𝜏 for 𝑡 = 𝜏 . Function 𝑥(·) is a solution to the Lagrange equations (2.1). If

𝑓(𝑥̇(𝑡), 𝑥(𝑡)) > 0

for small 𝑡 > 𝜏 , then we say that the mechanical system leaves the two-sided
constraint (1.2) at the moment 𝑡 = 𝜏 . For 𝑡 > 𝜏 (until the system is on the one-
sided constraint again) the dynamics is described by the Lagrange equations (2.1).

How should we determine the moment when the system leaves the constraint?
Let 𝑡 ↦→ 𝑧(𝑡) be a solution to the non-holonomic equations with the same initial
conditions for 𝑡 = 𝜏 : 𝑥(𝜏) = 𝑥𝜏 , 𝑥̇(𝜏) = 𝑥̇𝜏 . Functions 𝑥(𝑡) and 𝑧(𝑡) satisfy the
following equations:

(2.3) 𝐴𝑥̈+𝐵 = 0, 𝐴𝑧 +𝐵 = 𝜆
𝜕𝑓

𝜕𝑧̇
.

Here

(2.4) 𝐴 =
⃦⃦⃦𝜕2𝑇

𝜕𝑥̇2

⃦⃦⃦
is a positively defined operator and 𝐵 is a function of 𝑥 and 𝑥̇.

If function 𝑡 ↦→ 𝑧(𝑡) satisfies equation 𝑓 = 0, then

(2.5)
𝜕𝑓

𝜕𝑧
𝑧̇ +

𝜕𝑓

𝜕𝑧̇
𝑧 = 0.

Since the position and velocities of the free and constrained systems at the moment
𝜏 are the same, then from (2.3)–(2.5) we obtain

𝑑

𝑑𝑡
𝑓(𝑥̇(𝑡), 𝑥(𝑡))

⃒⃒
𝑡=𝜏

= −𝜆
(︁
𝐴−1 𝜕𝑓

𝜕𝑥̇
,
𝜕𝑓

𝜕𝑥̇

)︁
.

Therefore, if 𝜆(𝜏) < 0, then the system has already left the boundary of the one-
sided constraint (1.3).

We come to the following rule: if for the moment 𝑡 = 𝜏 the multiplier 𝜆(𝑡) (from
(2.2)) changes the sign from positive to negative, then 𝑡 = 𝜏 is the moment when
the system leaves the constraint. This rule has a clear mechanical interpretation.
The force of reaction of the two-sided constraint 𝑓 = 0 (the force that acts on the
system from the constraint) can be presented as follows

𝑅 = 𝜆
𝜕𝑓

𝜕𝑥̇
.

If 𝜆 < 0, then the force 𝑅 keeps the system on the constraint 𝑓 = 0, which is
impossible.

In the smooth (infinitely differentiable) case, zeros of the function 𝜆 can be non-
isolated. This fact may cause additional technical difficulties for the determination
of the moment when the system leaves the constraint. However, if all functions are
analytic, there are no such difficulties.
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3. Chaplygin sleigh

The Chaplygin sleigh is a well-studied non-holonomic system. Below we con-
sider the simplest case in which the center of mass coincides with the contact point
of the blade (Fig. 1, the star defines the orientation of the blade). Let 𝑢 be the
velocity of the contact point along the blade and 𝑣 be the orthogonal projection of
the velocity w.r.t. the blade. By 𝜔 we denote the angular velocity of the sleigh.

Let

𝑣 > 0

be the one-sided non-integrable constraint. The Chaplygin sleigh is a non-holonomic
system with the two-sided non-integrable constraint 𝑣 = 0.

Figure 1.

Let us consider the simplest case when the sleigh is moving by inertia. It is
a well-known fact that in this case the sleigh is moving in a circle and the radius
of this circle depends on 𝑢 and 𝜔. If 𝜔 = 0 then we have a degenerate circle—a
straight line.

We omit detailed discussion concerning the mechanical realization of the one-
sided constraint 𝑣 > 0 for the Chaplygin sleigh. Note, however, that this type of
constraint can be realized by means of blades having the form as shown in Fig. 2.
Such a blade can freely slide to the left and cannot slide to the right. At the same
time, the angular velocity of the sleigh with such a blade does not change with
time.

Figure 2.
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Let us give the sleigh an initial motion along the blade and an initial clockwise
rotation (as it is shown in Fig. 3). The one-sided constraint does not prevent the
system from moving to the right from the blade oriented as shown in the picture.
Initially we have 𝑣 = 0. At this very moment the system leaves the two-sided
constraint 𝑣 = 0 (in accordance with the principle presented in Section 2). Then
the contact point (which coincides with the center of mass of the sleigh) moves along
a straight line with a constant velocity and the blade rotates uniformly. When the
blade changes its orientation (makes a half turn), the motion along the straight
line becomes impossible due to the one-sided constraint 𝑣 > 0. After this, our non-
holonomic sleigh continues its circular motion in accordance with the two-sided
constraint 𝑣 = 0, never leaving the circle (as it is shown in Fig. 3).

Figure 3.

From this elementary analysis, we obtain the following counter-intuitive con-
clusion: the system with a one-sided constraint is non-reversible. The dynamics
of the sleigh is not invariant under the change of the direction of time 𝑡 ↦→ −𝑡.
Indeed, if we reverse the motion of the sleigh, it will continue to move along the
same circle but in the opposite direction and will never leave the circle (in accor-
dance with the general principle from Section 2). It is worth mentioning that the
equations of motion for systems with two-sided constraints and without constraints
are reversible.

Moreover, the differential equations of motion of a mechanical system with a
one-sided non-integrable constraint do not define a dynamical system. For instance,
there is no uniqueness of the solution for such a system. Among other arguments,
we mention that these problems are related to the fact that the dimension of the
phase space of a system with a one-sided differential constraint is not constant.

4. Anisotropic friction and one-sided constraints

As it became known after a classical work by Caratheodory, the motion of a
free system under the action of a viscous friction tends to the motion with a two-
sided differential constraint as we infinitely increase the coefficient of the viscous
friction [5]. A similar idea has been considered in the theory of holonomic systems
with one-sided constraints: the ‘forbidden’ region of the configuration space is
filled by the visco-elastic Kelvin-Foight continuum, then a limit passage, for which
the coefficients of viscosity and elasticity are increased in a consistent manner, is



ONE-SIDED NON-INTEGRABLE CONSTRAINTS 7

applied. As a result, various models of impact and conditions under which the
system leaves the constraints are obtained [6, 7].

We apply this idea in order to explain the paradox of non-reversibility of the
Chaplygin sleigh with a one-sided constraint.

Let us consider the ‘free’ motion of the Chaplygin sleigh taking into account an
additional viscous friction force 𝐹 , which is directed orthogonally to the plane of
the blade. In the moving coordinate system the equation of motion can be written
as follows

(4.1) 𝑢̇ = 𝜔𝑣, 𝑣̇ = −𝜔𝑢− 𝐹

𝑚
, 𝜔̇ = 0.

Here 𝑚 is the mass of the sleigh. The force of anisotropic friction is defined as
follows:

(4.2) 𝐹 = 𝑚𝑁𝑣, if 𝑣 6 0; 𝐹 = 0, if 𝑣 > 0.

The positive coefficient of friction 𝑁 will be increased to infinity. In other words,
if the blade moves to the right (when 𝑣 < 0), a large braking force appears.

Since 𝜔 = const, the first two equations in (4.1) form an independent piecewise
linear system of differential equations w.r.t. the variables 𝑢 and 𝑣. The righthand
sides of this system are continuous and satisfy the Lipschitz condition. Therefore,
for this system, the theorem on the existence and uniqueness of a solution holds.

Let us now consider the solutions to this system with the initial data considered
in Section 3. Let

𝑢 = 𝑢0 > 0, 𝑣 = 0, 𝜔 = 𝜔0 < 0

for 𝑡 = 𝜋/𝜔0 < 0. Since system (4.1)–(4.2) is autonomous, the initial moment of
time can be chosen arbitrarily. For 𝜋/𝜔0 < 𝑡 < 0, the solution to (4.1) has the form

𝑢 = −𝑢0 cos𝜔0𝑡, 𝑣 = 𝑢0 sin𝜔0𝑡.

In this time interval we have 𝑣(𝑡) > 0; the point of contact moves along a straight
line with a constant velocity.

Next it is needed to solve the following linear system

𝑢̇ = 𝜔0𝑣, 𝑣̇ = −𝜔0𝑢−𝑁𝑣

with the initial conditions 𝑢 = −𝑢0, 𝑣 = 0 for 𝑡 = 0. The characteristic equation is
as follows

𝜆2 + 𝜆𝑁 + 𝜔2
0 = 0.

For large 𝑁 > 0 this equation has the following real roots

(4.3) 𝜆1 = −𝑁 + 𝑜(𝑁), 𝜆2 = −𝜔2
0

𝑁
+ 𝑜

(︁ 1

𝑁

)︁
.

Taking into account the initial conditions, we obtain

(4.4) 𝑣(𝑡) =
𝜆1𝜆2

𝜆1 − 𝜆2

𝑢0

𝜔0
(𝑒𝜆1𝑡 − 𝑒𝜆2𝑡).

From (4.3), we have

(4.5)
𝜆1𝜆2

𝜆1 − 𝜆2
= −𝜔2

0

𝑁
+ 𝑜

(︁ 1

𝑁

)︁
.
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Then, for large 𝑁 , we have
𝑒𝜆2𝑡 > 𝑒𝜆1𝑡

provided 𝑡 > 0. Finally, from (4.4) and (4.5), for 𝑁 ≫ 1, we have for all 𝑡 > 0

𝑣(𝑡) < 0 and 𝑣(𝑡) = 𝑂
(︁ 1

𝑁

)︁
.

Here we take into account that 𝜔0 is negative. Therefore, for 𝑡 > 0 and large 𝑁 , the
sleigh never leaves the region of the phase space where 𝑣 < 0. If 𝑁 = ∞, then the
sleigh with anisotropic viscous friction (4.2) moves exactly along the trajectories
considered in Section 3.

5. Variational principle

Let us now return to the case of motion of a mechanical system with a one-sided
constraint

(5.1) 𝑓(𝑥̇, 𝑥) > 0

within the framework of the classical non-holonomic model. Let us have a contin-
uously differentiable piecewise smooth path

(5.2) 𝑥 : [𝑡1, 𝑡2] → 𝑀,

which satisfies inequality (5.1). The property of piecewise smoothness means that
there exists a finite number of points

𝜏1 = 𝑡1 < 𝜏2 < · · · < 𝜏𝑘 = 𝑡2

such that at each interval (𝜏𝑝, 𝜏𝑝+1) function 𝑥(·) is infinitely differentiable.
Let us formulate an integral variational principle that defines the motions of a

mechanical system with a one-sided differential constraint in the form (5.1).
First we define the variation of the path

𝛿𝑥 : [𝑡1, 𝑡2] → 𝑇𝑥(𝑡)𝑀.

As usual, we consider a family of piecewise smooth paths 𝑥𝛼(𝑡), −𝜀 < 𝛼 < 𝜀,
𝑡1 6 𝑡 6 𝑡2, where for 𝛼 = 0 we have the initial path (5.2). Moreover, we impose
the following additional requirement

(5.3) 𝑥𝛼(𝜏𝑝) = 𝑥(𝜏𝑝)

for all 𝑝 = 1, . . . , 𝑘. By the variation of the path (5.2) we will understand

𝛿𝑥(𝑡) =
𝜕𝑥

𝜕𝛼

⃒⃒⃒
𝛼=0

.

It is clear that

(𝛿𝑥)· =
(︁𝜕𝑥

𝜕𝛼

⃒⃒⃒
𝛼=0

)︁·
=

𝜕𝑥̇

𝜕𝛼

⃒⃒⃒
𝛼=0

= 𝛿𝑥̇.

For our purposes, we can restrict ourselves to a special class of variations

𝑥𝛼(𝑡) = 𝑥(𝑡) + 𝛼𝛿𝑥(𝑡) + 𝑜(𝛼),

where functions 𝛿𝑥(·) satisfy the following conditions:

(1) 𝛿𝑥(𝜏𝑝) = 0 (in accordance with (5.3)) and, in the intervals (𝜏𝑝, 𝜏𝑝+1),
functions 𝛿𝑥(·) are infinitely differentiable,
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(2) for 𝑓(𝑥̇(𝑡), 𝑥(𝑡)) = 0 and 𝑡 ̸= 𝜏𝑝, 𝛿𝑥(𝑡) can be an arbitrary vector such
that (︁𝜕𝑓

𝜕𝑥̇

⃒⃒⃒
𝑥(𝑡)

, 𝛿𝑥(𝑡)
)︁
> 0,

(3) for 𝑓(𝑥̇(𝑡), 𝑥(𝑡)) > 0 and 𝑡 ̸= 𝜏𝑝, 𝛿𝑥(𝑡) can be an arbitrary vector from
𝑇𝑥(𝑡)𝑀 .

In particular, for the case 2), any vector from the hyperplane

(5.4)
(︁𝜕𝑓
𝜕𝑥̇

⃒⃒⃒
𝑥(𝑡)

, 𝛿𝑥(𝑡)
)︁
= 0

can be the variation 𝛿𝑥 at the moment of time 𝑡.
There is the following extention of Hölder’s variational principle.
Path (5.2) is the motion of a mechanical system with a one-sided constraint

(5.1) iff

(5.5) 𝛿

∫︁ 𝑡2

𝑡1

𝑇𝑑𝑡+

∫︁ 𝑡2

𝑡1

(𝐹, 𝛿𝑥)𝑑𝑡 6 0

for all special variations 𝛿𝑥 defined above.
This proposition can be considered as a definition of motion for systems with

one-sided differential constraints.
Let us give a short commentary/proof on/of this principle. First, note that

the special variations can be chosen in such a way that 𝛿𝑥(𝑡) = 0 in all intervals of
the subdivision of [𝑡1, 𝑡2] except one, for instance, (𝜏𝑝, 𝜏𝑝+1). Then in (5.5) we can
replace 𝑡1 (𝑡2) by, respectively, 𝜏𝑝 (𝜏𝑝+1).

Next, inequality (5.5) can be written in the following form (taking into account
the fixed endpoints of the variation):∫︁ 𝜏𝑝+1

𝜏𝑝

(([𝑇 ]− 𝐹 ), 𝛿𝑥)𝑑𝑡 > 0.

Since the variation can be localized (𝛿𝑥 can be chosen to be zero outside an ar-
bitrarily small neighbourhood of any moment of time) this integral inequality is
equivalent to the inequality

(5.6) (([𝑇 ]− 𝐹 ), 𝛿𝑥) > 0.

Let us rewrite this inequality in the form (𝑅, 𝛿𝑥) > 0, where 𝑅 is the force of
reaction.

This inequality holds if the system moves accordingly to the two-sided con-
straint 𝑓 = 0. Moreover, this motion satisfies non-holonomic equation (2.2). In-
deed, from the condition 2) for variations, inequality (5.6) holds for any vector
𝛿𝑥 = 𝜉 from the hyperplane (5.4). In particular, this inequality holds if we re-
place 𝜉 by −𝜉. Therefore, inequality (5.6) becomes an equality which defines the
well-known D’Alambert-Lagrange principle for systems with two-sided constraints.

If inequality (5.6) does not hold (i.e., for some variation 𝛿𝑥, satisfying condition
2), we have (𝑅, 𝛿𝑥) < 0), then it means that the force 𝑅 ‘keeps’ the system on the
one-sided constraint, which is impossible.
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When the system is in the region 𝑓 > 0, variations 𝛿𝑥 can be chosen to be
arbitrary vectors. In this case, (5.6) becomes the Lagrange equation for a free
system.

6. Béghin’s servoconstraints

As it is known, constrained motions can be realized by means of a special control
applied to the system. For instance, a system with the constraint 𝑓(𝑥̇, 𝑥) = 0 can
be realized using control forces 𝜆Φ, where Φ(𝑥̇, 𝑥) is a given covector field and 𝜆 is
a parameter.

[𝑇 ] = 𝐹 + 𝜆Φ, 𝑓 = 0.

As it was shown in [1], the controllability condition (determination of the multiplier
𝜆) can be presented in the form

(6.1)
(︁
𝐴−1Φ,

𝜕𝑓

𝜕𝑥̇

)︁
̸= 0,

where the symmetrical operator 𝐴 is defined by (2.4). This type of constraints was
first introduced by Béghin (on this regard, see [8]). In [1], such constraints are
called servoconstraints of type I.

Is it possible to realize motions with a one-sided constraint 𝑓 > 0 in a similar
way? The answer is proved to be positive. For this, it is needed to slightly mod-
ify the definition of variations (5.2) of a path satisfying condition (5.1). Special
variations are defined as in Section 5, but property 2) should be replaced by the
following

(2) on the boundary of the constraint, for 𝑡 ̸= 𝜏𝑝, we have(︁
Φ
⃒⃒
𝑥(𝑡)

, 𝛿𝑥(𝑡)
)︁
> 0 (6 0),

when at this moment of time the following inequality holds

(6.2)
(︁
𝐴−1Φ,

𝜕𝑓

𝜕𝑥̇

)︁
> 0 (< 0).

The following generalization of the variational principle from Section 5 holds.
A path (5.2) is a motion of a mechanical system with a servoconstraint of type

I (5.1) iff

𝛿

∫︁ 𝑡2

𝑡1

𝑇𝑑𝑡+

∫︁ 𝑡2

𝑡1

(𝐹, 𝛿𝑥)𝑑𝑡 6 0 (> 0)

for all special variations 𝛿𝑥.
Sign 6 (>) is chosen in accordance with the sign in the inequality (6.2). When

Φ = 𝜕𝑓/𝜕𝑥̇, we have the variational principle from Section 5. The only difference
from the principle in Section 5 is in the modification of the definition of variations
(possible motions) of the system. The meaning of inequality (6.2) is the following:
when this scalar product is positive, the covector Φ is directed toward the covector
𝜕𝑓/𝜕𝑥̇ (i.e., toward the ‘allowed’ region of the phase space).

The above variational principle can be explained in a similar way as we did
it in Section 5. However, this principle can also be considered as the definition of
motions of a system with a one-sided servoconstraint of I type.
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The problem of realization of constraints by means of control forces can be
considered from another, dual, point of view. We will explain this approach on
the example of Béghin’s servoconstraints. Suppose that there are control forces 𝜆Φ
acting on the system. Here, Φ is a given covector field, 𝜆 is a control parameter,
which is supposed to be non-negative. We also suppose that the following inequality
holds (︁

𝐴−1Φ,
𝜕𝑓

𝜕𝑥̇

)︁
> 0.

Otherwise, we can change the sign of Φ. In particular, condition (6.2) is always
satisfied. Our goal is to realize—by means of such a control (when 𝜆 > 0)—the
dynamics of a mechanical system with a unilateral constraint 𝑓(𝑥̇, 𝑥) > 0. It is not
hard to understand that the solutions to this problem with the additional condition
𝜆 > 0 are the paths defined by the above variational principle.

7. Vakonomic model and servoconstraints of type II

Besides the classical non-holonomic model, there is a whole family of models of
systems with non-integrable two-sided constraints, which appear as a results of a
forced anisotropy of the inertial properties of the systems. The simplest one (and,
in some sense, the most natural) can be described by the Hamilton-Ostrogradsky
variational principle

𝛿

∫︁ 𝑡2

𝑡1

𝑇𝑑𝑡+

∫︁ 𝑡2

𝑡1

(𝐹, 𝛿𝑥)𝑑𝑡 = 0

for all variations with fixed endpoints satisfying the condition 𝑓 = 0. These varia-
tions satisfy the following equation

𝛿𝑓 =
𝜕𝑓

𝜕𝑥̇
𝛿𝑥̇+

𝜕𝑓

𝜕𝑥
𝛿𝑥 = 0.

This is the so-called vakonomic model. For description, see [3].
There is another, and more general, model of motion for systems with servo-

constraints of type II (in accordance with the terminology used in [1]). In this
approach, the constraint is realized by means of a suitable control of the inertial
properties of the system. Let us introduce and fix a function 𝜙 : Γ → R and consider
the system with the kinetic energy 𝑇 + 𝜆𝜙 (𝜆 is a control parameter, an unknown
function of time) under the action of the force 𝐹 . Taking into account the two-sided
constraint, the equations of motion have the form

[𝑇 ] = 𝐹 − 𝜆̇
𝜕𝜙

𝜕𝑥̇
− 𝜆[𝜙], 𝑓 = 0.

Function 𝑡 ↦→ 𝜆(𝑡) is chosen to satisfy the constraint. The condition of realization
of the two-sided constraint has the form(︁

𝐴−1 𝜕𝜙

𝜕𝑥̇
,
𝜕𝑓

𝜕𝑥̇

)︁
̸= 0.

In this case, 𝜆 satisfies a differential equation of first order with non-zero coefficients
at 𝜆̇. In particular, for the determination of the motion it is required to give not
only initial data 𝑥0, 𝑥̇0 but also the initial value of 𝜆. When 𝜙 = 𝑓 we have the
vaconomic model.
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As an example, let us consider a rigid body rotating about a fixed point in a
three-dimensional Euclidean space. Let us fix in the moving space (associated to
the moving body) two axes 𝑚 and 𝑙. Suppose we are trying to realize the following
non-integrable constraint: the projection of the angular velocity on 𝑚 is zero. The
body is controlled by a kinetic moment of a symmetric flywheel rotating around
axis 𝑙. As it was shown in [1], if 𝑙 and 𝑚 are not orthogonal w.r.t. the metric
defined by the kinetic energy, then the above two-sided constraint can be realized
by a suitable rotation of the flywheel. When 𝑙 and 𝑚 coincide, we obtain vakonomic
motions of the rigid body.

Similarly to Section 6, we can consider the problem of realization of a one-sided
constraint by means of change of the inertial properties of the system (as mentioned
above) assuming that 𝜆 > 0. For instance, in the example above, we may consider
a restriction that the flywheel rotates only in one direction.

Suppose that (︁
𝐴−1 𝜕𝜙

𝜕𝑥̇
,
𝜕𝑓

𝜕𝑥̇

)︁
̸= 0.

Then, similarly to Section 5, consider a continuously differentiable piecewise smooth
path (5.2) and its variations, which satisfy the following additional condition

(7.1) 𝛿𝜙 =
𝜕𝜙

𝜕𝑥̇
𝛿𝑥̇+

𝜕𝜙

𝜕𝑥
𝛿𝑥 > 0.

If (5.2) is a motion of the system with a one-sided constraint, then

(7.2) 𝛿

∫︁ 𝑡2

𝑡1

𝑇𝑑𝑡+

∫︁ 𝑡2

𝑡1

(𝐹, 𝛿𝑥)𝑑𝑡 6 0

for all variations 𝛿𝑥 satisfying condition (7.1).
Indeed, in this case the reaction 𝑅 equals

−𝜆̇
𝜕𝜙

𝜕𝑥̇
− 𝜆[𝜙].

Therefore, for variations with fixed endpoints satisfying (7.1), we have∫︁ 𝜏𝑝+1

𝜏𝑝

(𝑅, 𝛿𝑥)𝑑𝑡 =

∫︁ 𝜏𝑝+1

𝜏𝑝

(︁
−
(︁
𝜆
𝜕𝜙

𝜕𝑥̇
𝛿𝑥

)︁·
+𝜆

𝜕𝜙

𝜕𝑥̇
𝛿𝑥̇+𝜆

𝜕𝜙

𝜕𝑥
𝛿𝑥

)︁
𝑑𝑡 =

∫︁ 𝜏𝑝+1

𝜏𝑝

𝜆𝛿𝜙 𝑑𝑡 > 0.

And, in this case, the inequality (7.2) holds.
Therefore, sufficient conditions that should be met along a motion of a mechan-

ical system with one-sided differential constraints have the same form for different
models. The only difference is in the definitions of the variations.
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О ДИНАМИЦИ СИСТЕМА СА JЕДНОСТРАНИМ
НЕИНТЕГРАБИЛНИМ ВЕЗАМА

Резиме. У раду jе направљен први корак у проучавању динамике система
са jедностраним диференциjалним везама коjе су дефинисане неjеднакости-
ма у фазном простору. Дата jе општа дефинииjа кретања система са таквим
везама. У оквиру класичних нехоломних модела и система са сервовезама (де-
финисаних Бенгином), дат jе услов под коjима систем напушта двострану ди-
ференциjалну везу. Посматра се пример Чаплигиновог сечива с jедностраном
везом коjа се реализуjе преко анизотропне силе вискозног трења. Представље-
ни су и вариjациони принципи за одређивање кретања система са jедностраним
диференциjалним везама.
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