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MATHEMATICAL ANALYSIS OF HYDRODYNAMICS
AND TISSUE DEFORMATION INSIDE

AN ISOLATED SOLID TUMOR

Meraj Alam, Bibaswan Dey, and G. P. Raja Sekhar

Abstract. In this article, we present a biphasic mixture theory based math-
ematical model for the hydrodynamics of interstitial fluid motion and me-
chanical behavior of the solid phase inside a solid tumor. The tumor tissue
considered here is an isolated deformable biological medium. The solid phase
of the tumor is constituted by vasculature, tumor cells, and extracellular ma-
trix, which are wet by a physiological extracellular fluid. Since the tumor is
deformable in nature, the mass and momentum equations for both the phases
are presented. The momentum equations are coupled due to the interaction
(or drag) force term. These governing equations reduce to a one-way coupled
system under the assumption of infinitesimal deformation of the solid phase.
The well-posedness of this model is shown in the weak sense by using the
inf-sup (Babuska–Brezzi) condition and Lax–Milgram theorem in 2D and 3D.
Further, we discuss a one-dimensional spherical symmetry model and present
some results on the stress fields and energy of the system based on 𝐿2 and
Sobolev norms. We discuss the so-called phenomena of “necrosis” inside a solid
tumor using the energy of the system.

1. Introduction

Tumors (or biological tissues) are a mixture of several cell populations. These
cells are attached to the extracellular matrix (ECM) which is wet by an extracellular
fluid (see Fig. 1) [29]. In general, the domain classification of such a model consists
of five constituents: two fluid and three solid. Intravascular (mainly blood plasma)
and interstitial fluids are the two fluid constituents. Depending on the type of cell,
the three constituents are (i) normal host cells (ii) viable tumor cells which can
proliferate (iii) dead or necrotic cells [30]. Typically, intravascular and interstitial
fluids form principal fluid phases. The three types of cell and ECM components of
tumor tissue are treated as a single solid phase [13,25]. The extracellular matrix
acts as a scaffolding system which gives a structure and rigidity to the cells. In
this work, we adopt a biphasic mixture theory [9] to model a solid tumor as a
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macromolecular mixture of one solid and one fluid phase. In earlier mathematical
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Figure 1. Anatomy of a tumor within a representative elemen-
tary volume (REV)

models of avascular tumor growth [2], it is assumed that a tumor is made of a single
type of cells having a constant density [19]. Consequently, various experimental
and theoretical evidence has shown that the earlier description was not sufficient
to study the tumor dynamics. Hence, the multiphase models came into the exis-
tence [1,3,5,6,9,10,18]. In this description, one can consider the density variations
within the components to evaluate the evolution of stresses and to take into con-
sideration mechanical interactions among the constituents [26]. Ambrosi et al. [1]
presented an alternative way of closing mass and momentum equations. They have
provided a mechanical basis using the Darcy equation for porous media which re-
lates the velocities of cells to their corresponding pressures. Byrne et al. [9] gave a
mathematical model of avascular tumor growth using a mixture theory. The main
feature is the dependency of the proliferation rate upon cellular stress, rather than
on the nutrient concentration alone. Their model is capable of determining stress
distribution inside the solid tumor. Preziosi and Tosin [26] have proposed a multi-
phase model for tumor growth, which involves multiple components like tumor cells,
host cells, extracellular matrix and extracellular fluid inside a tumor. The advection
term of the chemical transport reaction equation involves composite velocity which
is the volume averaged velocity of all the constituents present in the mixture. Kim
et al. [23] have discussed a three-dimensional continuum model of tumor growth
treating the tumor as a hypoelastic material. Growth has been estimated using
the nutrient concentration obtained from the diffusion-advection equation and the
stress has been determined from the constitutive equation for a hypoelastic ma-
terial. Recently, Dey and Raja Sekhar [13] have presented a detailed description
of a mixture theory model that represents the hydrodynamics and nutrients trans-
port inside solid tumors. This study is a prerequisite to understanding solid tumor
growth. The solid phase velocity is useful in understanding the mechanical behavior
of the cellular phase towards the extracellular fluid. Further, this study helps us to
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understand the convective solute transport based on the biphasic mixture theory. A
detailed literature survey shows that the concept of biphasic mixture theory is use-
ful in describing the mechanics of interstitial fluid flow, solute transport and growth
inside a solid tumor. While the above studies are more focused on modeling aspects
and obtaining a corresponding solution analytically or numerically, there does exist
some limited literature dealing with more mathematical treatment of existence and
uniqueness results. For example, Showalter [31] considered a homogeneous and
isotropic elastic medium to form a system that consists of the equilibrium equation
for solid momentum balance and the diffusion equation for Darcy flow. This system
describes the Biot consolidation model in poroelasticity as well as a coupled quasi-
static problem in thermoelasticity. The existence, uniqueness, and regularity theory
for this system has been studied there. Further, Cao et al. [12] have considered
the same model as in [31] with the dilation-dependent permeability. The modified
Rothe’s method has been used to establish the existence of a weak solution. On the
other hand, the convergence of the finite element approximation has been proved
and verified through numerical experiments. In another study, Cao et al. [11] have
considered a nonlinear steady flow model which has applications in a deformable
biological medium, using the theory of poroelasticity that consists of an elasticity
equation for the displacement of the solid phase and Darcy’s equation for the inter-
stitial fluid phase pressure. Their model becomes nonlinear due to the assumption
of dilation-dependent interstitial permeability of the solid matrix. Existence and
uniqueness of a weak solution is established. Convergence of the finite element
approximation is proved and verified through numerical experiments. Giverso et
al. [37] proposed a simple way of describing a tumor as a linear elastic material
from a reference configuration that is continuously evolving in time due to growth
and remodeling. They assumed that the tumor mass is a very ductile material, so
that it can only sustain moderate stresses while the deformation induced by growth,
that can actually be quite big, mainly induces a plastic reorganization of malignant
cells. Further, Mascheroni et al. [38] presented a biphasic model for tumor growth
based on the mechanics of fluid-saturated porous media. They assumed that the
porous medium is identified with the tumor cells and the extracellular matrix, and
represents the system’s solid phase, whereas the interstitial fluid constitutes the liq-
uid phase. Moreover, they analyzed the dependence of tumor development on the
mechanical environment, with a particular focus on cell reorganization and its role
in stress relaxation. Apart from that, there also exists quite an extensive literature
on the existence of solutions in non-linear elasticity, see e.g., [34–36]. A. Tosin [32]
considered multiphase models of tumor growth in interaction with a surrounding
tissue, also taking into account the interplay with diffusible nutrients feeding the
cells. He has discussed some qualitative properties such as a priori non-negativity,
boundedness, and uniqueness of the solutions. Existence of the solution is studied
in the one-dimensional time-independent case. Recently, Maurizio Verri et al. [33]
have considered a one-dimensional poro-visco-elastic model for which they derive
explicit solutions in the cases where the external applied load is characterized by
a step pulse or a trapezoidal pulse in time. Also, the well-posedness of the one-
dimensional model is studied in the presence or absence of viscoelasticity. They
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have shown, by means of mathematical analysis, the role of structural viscoelastic-
ity in the biomechanical response of deformable porous media with incompressible
constituents to sudden changes in external applied loads. In most of the earlier
literature, the hydrodynamics and mechanics of growth process are simulated for a
radially symmetric spherical domain without understanding the well-posedness of
the system in a higher dimension. In this direction, we have found limited literature
on the existence and uniqueness of the hydrodynamic model based on the theory
of poroelasticity corresponding to deformable biological tissues. Our attempt is to
show the well-posedness of poroelastodynamics inside an isolated non-growing solid
tumor based on the mixture theory model in the weak sense. This study gives the
existence of a unique weak solution of the model using the Lax–Milgram theorem
and inf-sup condition. Further, we comment on the stability estimates of the solu-
tion. Explicit behavior of stress fields inside the tumor is discussed corresponding
to the one-dimensional spherical symmetry model. A detailed analysis of the stress
field is presented.

2. Mathematical formulation

The present model considers an isolated tumor which behaves as a homogeneous
deformable porous medium. Fig. 1 represents a solid tumor attached to a parent
vessel on a macroscopic scale. A representative elementary volume (REV) that
consists of various cell population (necrotic tumor cells, living tumor cells, healthy
cells), microvasculature, ECM (to which cells are attached), interstitial fluid etc. are
shown as part of Fig. 1. The deformable solid phase of the tumor is assumed to be
constituted by an ensemble of interstitial, vascular regions and cell population and
the fluid phase is constituted by extracellular fluid in which tumor cells can survive.
Fluid in the extracellular matrix is viscous and contains various nutrients, drug
molecules, electrolytes and plasma proteins. The movement of the extracellular
fluid within the interstitial space causes solid phase deformation. Suppose Ω ⊂ R𝑑,
𝑑 = 2, 3, denotes a bounded, Lipschitz domain in which a tumor is occupied. Let
V𝑓 and V𝑠 denote the extracellular fluid velocity and velocity of the solid phase
respectively. The apparent densities of the fluid and solid phases are denoted by
𝜌𝑓 and 𝜌𝑠 respectively, and 𝜑𝑓 and 𝜑𝑠 are the respective volume fractions. The
following are the mass conservation equations for each phase in a generic form.
Thus, for 𝑥 ∈ Ω [1,9,13], we have

𝜕(𝜌𝑓𝜑𝑓 )

𝜕𝑡
+∇ · [(𝜌𝑓𝜑𝑓 )V𝑓 ] = 𝜌𝑓𝑆𝑓 (𝑥, 𝑡),(2.1)

𝜕(𝜌𝑠𝜑𝑠)

𝜕𝑡
+∇ · [(𝜌𝑠𝜑𝑠)V𝑠] = 𝜌𝑠𝑆𝑠(𝑥, 𝑡),(2.2)

where 𝑆𝑓 (𝑥, 𝑡) and 𝑆𝑠(𝑥, 𝑡) represent the fluid phase and solid phase generation
(mainly the growth of cell population) respectively. For the saturated mixture
𝜑𝑓 + 𝜑𝑠 = 1 we have the following combined form of (2.1)–(2.2) as (when the
apparent densities of the fluid and solid phase are equal and constant i.e., 𝜌𝑓 = 𝜌𝑠),
we have

(2.3) ∇ · (𝜑𝑓V𝑓 + 𝜑𝑠V𝑠) = 𝑆𝑓 (𝑥, 𝑡) + 𝑆𝑠(𝑥, 𝑡).
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When the mixture is closed, equation (2.3) reduces to

(2.4) ∇ · (𝜑𝑓V𝑓 + 𝜑𝑠V𝑠) = 0.

Note that the time scale of the tumor cell growth process is significantly larger
compared to the perfusion process and the interstitial nutrients transport. Fur-
ther, this cell growth process dominates other growth factors inside the interstitial
space. Therefore, during perfusion and interstitial transport, typically no new cell
generation is detected [4,25]. Based on these assumptions Eq. (2.3) becomes

(2.5) ∇ · (𝜑𝑓V𝑓 + 𝜑𝑠V𝑠) = 𝑆𝑓 (𝑥, 𝑡).

Typically, the fluid source 𝑆𝑓 (𝑥, 𝑡) is assumed to be driven by the average trans-
mural pressure and is given by [13,25],

(2.6) 𝑆𝑓 (𝑥, 𝑡) = 𝑆𝑉 (𝑥, 𝑡)−𝑆𝐿(𝑥, 𝑡) =
𝐿𝑝𝐴(𝑃𝑒𝑣 − 𝑃 )

𝑉
− 𝐿𝑝𝐿

𝐴𝐿(𝑃 − 𝑃𝐿)

𝑉
, 𝑥 ∈ Ω,

where 𝑆𝑉 and 𝑆𝐿 represent the volumetric flow rate across the capillary and lym-
phatic drainage rate per unit tissue volume respectively. Further, 𝐿𝑝 and 𝐿𝑝𝐿

are
the average hydraulic conductivity coefficients of capillary and lymphatic walls re-
spectively; 𝐴/𝑉 and 𝐴𝐿/𝑉 respectively denote the capillary and lymphatic surface
area per unit tissue volume in the tumor tissue (i.e. vascular and lymphatic surface
densities); 𝑃𝑒𝑣 = 𝑃𝑉 −𝜎𝑓 (𝑃

𝑜𝑠
𝑉 −𝑃 𝑜𝑠

𝑖𝑛𝑡) is regarded as the effective vascular pressure;
𝑃𝑉 and 𝑃𝐿 are the average vascular and lymphatic pressures, respectively and 𝑃
is the average interstitial fluid pressure (IFP). 𝑃 𝑜𝑠

𝑉 and 𝑃 𝑜𝑠
𝑖𝑛𝑡 are respectively, the

osmotic pressure of plasma within the capillary and the osmotic pressure of the
interstitial fluid. 𝜎𝑓 is the average osmotic reflection coefficient, whose value lies in
(0, 1] depending on the solute and structure of the micro-vessel. The vessel wall
becomes impermeable to the solute when 𝜎𝑓 = 1. With the help of (2.6) the mass
conservation equation (2.5) becomes

(2.7) ∇ · (𝜑𝑓V𝑓 + 𝜑𝑠V𝑠) = −𝐿𝑝𝐴

𝑉
(1 + 𝐿𝑟𝐴𝑟)(𝑃 − 𝑃𝐹 ),

where 𝐿𝑟𝐴𝑟 = 𝐿𝑝𝐿𝐴𝐿/𝐿𝑝𝐴 and 𝑃𝐹 = (𝐿𝑝𝐴𝑃𝑒𝑣 + 𝐿𝑝𝐿𝐴𝐿𝑃𝐿)/(𝐿𝑝𝐴+ 𝐿𝑝𝐿𝐴𝐿).
𝐿𝑟𝐴𝑟 denotes the ratio of the strength of the distributed solute source through
the vasculature and sink through the lymph vessels and 𝑃𝐹 is the weighted vascu-
lar pressure.

A momentum balance equation for each of the constituent phases (solid and
fluid) in the binary mixture of the cellular phase (solid) and extracellular fluid is
given by [1,9,13],

(2.8) 𝜌𝑗

(︁𝜕V𝑗

𝜕𝑡
+ (V𝑗 · ∇)V𝑗

)︁
= ∇ ·T𝑗 +Π𝑗 + b𝑗 for 𝑗 ∈ {𝑓, 𝑠},

where 𝜌𝑗 = 𝜑𝑗𝜌𝑗 is the true mass density of the 𝑗𝑡ℎ phase of the mixture. T𝑗 is
the stress tensor for the 𝑗𝑡ℎ phase of the mixture. Π𝑗 is the resultant of the forces
acting on the 𝑗𝑡ℎ phase of mixture due to the interactions with the other phase.
b𝑗 is the body force of the 𝑗𝑡ℎ phase of mixture. Constitutive relations for the



258 MERAJ, DEY, AND SEKHAR

corresponding stress tensors for each phase are [1,9,13],

T𝑓 = −𝜑𝑓𝑃 I+ 𝜆𝑓 (∇ ·V𝑓 )I+ 𝜇𝑓 (∇V𝑓 + (∇V𝑓 )
𝑇 ),(2.9)

T𝑠 = −𝜑𝑠𝑃 I+ 𝜒(𝜑𝑠)(∇ ·U𝑠)I+ 𝜇𝑠(𝜑𝑠)(∇U𝑠 + (∇U𝑠)
𝑇 ).(2.10)

Here
∙ 𝑃 is hydrodynamic pressure,
∙ 𝜆𝑓 , 𝜇𝑓 are first and second coefficients of viscosity corresponding to interstitial

fluid,
∙ U𝑠 is displacement vector,
∙ V𝑠 = 𝜕U𝑠/𝜕𝑡 is velocity vector of the solid phase,
∙ 𝜒, 𝜇𝑠 are elastic parameters corresponding to the solid phase,
∙ 𝜒 = 𝜈𝑝𝒴/(1+ 𝜈𝑝)(1− 2𝜈𝑝) and 𝜇𝑠 = 𝒴/2(1+ 𝜈𝑝), 𝒴 and 𝜈𝑝 are Young’s modulus

and Poisson ratio respectively.
Preziosi and Farina [27], Byrne and Preziosi [9], Ambrosi and Preziosi [1] and

Dey and Raja Sekhar [13] have reported the generic form of the interaction forces
Π𝑗 as a function of pressure, volume fractions, source terms, and relative velocity.
These satisfy the following relation

(2.11) Π𝑓 +Π𝑠 + 𝑆𝑠V𝑠 + 𝑆𝑓V𝑓 = 0.

For both closed and non-closed mixture, from the above relation, the interaction
forces (Π𝑗) can be reduced to the following form [1,9,13,27]

(2.12a) Π𝑠 = 𝑃∇𝜑𝑠 +
1

𝐾

(︁
1− 𝑆𝑓𝐾

2

)︁
(V𝑓 −V𝑠),

and

(2.12b) Π𝑓 = 𝑃∇𝜑𝑓 +
1

𝐾

(︁
1 +

𝑆𝑓𝐾

2

)︁
(V𝑠 −V𝑓 ).

The structure as in (2.12a) and (2.12b) is more general and is very challenging to
handle. However, literature indicates that the product 𝑆𝑓𝐾 which is called the
biological number has no contribution towards the momentum transfer across the
constituent phases [1,9,13,27]. Correspondingly, the above form of Π𝑠 and Π𝑓

reduces to

(2.13) −Π𝑠 = Π𝑓 = 1
𝐾 (V𝑠 −V𝑓 ) + (∇𝜑𝑓 )𝑃.

where 𝐾 represents hydraulic conductivity of tumor tissue. The term (1/𝐾) is
known as the drag coefficient. The hydraulic conductivity (𝐾) of tumor tissue is
given by 𝐾 = 𝑘/𝜇𝑓 , where 𝑘 is a permeability prefactor, and 𝜇𝑓 is the viscosity of
the interstitial fluid. The equation (2.13) shows that the interaction forces satisfy
Newton’s third law.

It may be noted that the permeability of a porous medium can be character-
ized as isotropic or anisotropic depending on whether the same depends on the
direction or not. When it depends on the direction, the permeability is no longer
a scalar and it becomes a tensor according to dimension. On the other hand,
if the permeability is a function of space, it is called heterogeneous, otherwise
homogeneous. Most of the biological applications involving tissue may demand
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anisotropic/heterogeneous permeability. For example, some of the biological tis-
sues and cells display anisotropic permeability [46]. In particular, articular car-
tilage typically shows anisotropic nature [47, 49]. Further, the variations in the
porosity sometimes may induce nonlinear permeability [48]. Such a general nature
of permeability may lead to some mathematical challenges like invertibility etc.
and we avoid those issues in this study. Hence, we assume that the permeability is
isotropic so that it is a scalar constant.

2.1. Assumptions on the present model. The above formulation as in
(2.1)–(2.13) is very generic and appears very difficult to handle straight away.
Hence, we propose to follow a step-by-step simplification. To this extent, we con-
sider a simplified model based on the following assumptions:
∙ The nutrient perfusion and transport rate is much faster than tumor cell growth.

We consider the tumor as a static perfused biological domain. Thus during the
generation of nutrients inside the interstitial space, tumor cells cannot divide to
produce new cells. In the absence of cell generation term (i.e., 𝜑𝑠), 𝜑𝑠 becomes
constant (for details one can refer to Dey and Raja Sekhar [13]).

∙ Due to the absence of growth of the cell phase, the deformation inside the solid
phase does depend on the interstitial drag. The resistance from the cellular
phase becomes negligible due to the absence of growth. Hence, one can ignore
cell velocity (𝜕U𝑠/𝜕𝑡 = V𝑠 ≃ 0). The corresponding deformation is regarded as
the infinitesimal deformation of the solid phase [39]. Due to this assumption,
the momentum equation for the fluid phase does not contain any solid velocity
term and the corresponding situation is called one-way coupling between the
interstitial fluid velocity and solid displacement [13]. However, one can relax
this assumption by taking the time variation of cellular displacement due to
interstitial drag into account [40].

∙ The motion of interstitial fluid flow and solid phase deformation are slow (i.e.
we can neglect inertial terms compared to viscous stress terms).

Under these assumptions, by substituting constitutive relations (2.9), (2.10) and
(2.13) in the momentum equation (2.8), we get the following system of equations
along with the mass conservation equation,

−∇ · (2𝜇𝑓𝐷(V𝑓 ) + 𝜆𝑓 (∇ ·V𝑓 )I− 𝜑𝑓𝑃 I) +
1

𝐾
V𝑓 = b𝑓 in Ω,(2.14)

−∇ · (2𝜇𝑠𝐷(U𝑠) + 𝜒(∇ ·U𝑠)I− 𝜑𝑠𝑃 I)− 1

𝐾
V𝑓 = b𝑠 in Ω,(2.15)

∇ · (𝜑𝑓V𝑓 ) = 𝑆𝑓 in Ω,(2.16)

where 𝐷(·) denotes the deviatoric matrix which is defined as

𝐷(u) = 1
2 (∇u+ (∇u)𝑡),

(∇u)𝑡 denotes the transpose of the matrix ∇u. In order to close the above system
of equations, we need to support it with suitable boundary conditions. The model
at hand is in-vitro analogous, which is typically handled while maintaining suitable
ambient pressure or stress conditions during experiments. Most of the studies
involving in-vitro model have considered pressure conditions [4,9,13,25]. However,
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it may be noted that pressure, being the pore pressure, relates directly to the fluid
phase of the tissue. On the other hand, the ambient solid phase stress condition
relates to the tissue deformation. Hence, the stress boundary condition is expected
to show a significant impact on the mechanical behavior of the tissue. Accordingly,
we propose the following ambient conditions.

2.2. Boundary conditions.

(2.17) T𝑠 · n = 0 in 𝜕Ω, (T𝑓 −T∞) · n = 0 on 𝜕Ω,

where n denotes the outward normal unit vector to the boundary 𝜕Ω. We relate
ambient stress T∞ as −𝑃∞I (𝑃∞ is the ambient pressure). Since the in-vitro envi-
ronment deals with tumors in isolation with fixed ambient conditions, the overall
normal stress is made equal to the atmospheric pressure.

3. Non-dimensional Equations

Using the following transformations

x̂ =
x

𝑅
, ∇′ = 𝑅∇, 𝑃 =

𝑃

𝑃𝐹
, V̂𝑓 =

V𝑓

𝑅𝑃𝐹

𝜇𝑓

, Û𝑠 =
U𝑠

𝑅3𝑃𝐹

𝜇𝑓𝜈

,

we get the following dimensionless form of the governing equations (2.14)–(2.17)

−∇ ·
(︁
2𝐷(V𝑓 ) +

𝜆𝑓

𝜇𝑓
(∇ ·V𝑓 )I− 𝜑𝑓𝑃 I

)︁
+

1

Da
V𝑓 = b𝑓 in Ω,(3.1)

−∇ ·
(︁ 𝜚𝑡
(1 + 𝜈𝑝)

𝐷(U𝑠)+
𝜈𝑝𝜚𝑡

(1 + 𝜈𝑝)(1− 2𝜈𝑝)
(∇ ·U𝑠)I− 𝜑𝑠𝑃 I

)︁
− 1

Da
V𝑓 =b𝑠 in Ω,(3.2)

∇ · (𝜑𝑓V𝑓 ) = −𝛼2
𝑡 (1 + 𝐿𝑟𝐴𝑟)(𝑃 − 1) in Ω,(3.3)

where b𝑓 , and b𝑠 are modified non-dimensional body force terms, 𝛼𝑡 is the strength
of the solute source, 𝐿𝑟𝐴𝑟 is the ratio of the hydraulic conductivities of blood and
lymph vessels and Da is the Darcy number (Permeability parameter). Expressions
for these non-dimensional parameters are defined in section 5.

Boundary conditions become:(︁
2𝐷(V𝑓 ) +

𝜆𝑓

𝜇𝑓
(∇ ·V𝑓 )I− 𝜑𝑓𝑃 I

)︁
· n = T∞ · n on 𝜕Ω,(3.4) (︁ 𝜚𝑡

(1 + 𝜈𝑝)
𝐷(U𝑠) +

𝜈𝑝𝜚𝑡
(1 + 𝜈𝑝)(1− 2𝜈𝑝)

(∇ ·U𝑠)I− 𝜑𝑠𝑃 I
)︁
· n = 0 on 𝜕Ω.(3.5)

For the sake of computational convenience, we assume 𝜆 =
𝜆𝑓

𝜇𝑓
, 𝛼1 = 𝜚𝑡

2(1+𝜈𝑝)
,

𝛼2 =
𝜈𝑝𝜚𝑡

(1+𝜈𝑝)(1−2𝜈𝑝)
, and 𝑎0 = 𝛼2

𝑡 (1 + 𝐿𝑟𝐴𝑟).

4. Well-posedness

In this section, we establish the well-posedness of the system of equations (3.1)-
(3.5). Well-posedness of a partial differential equation or a system of partial dif-
ferential equations consists of a three-step verification in the sense of J. Hadamard
[7,20], namely (i) there should exist at least one solution, (ii) the existing solution is
unique, and (iii) the solution depends continuously on the given data (or stability),
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i.e. a small error in the data entails a small error in the solution. The existence
of a solution means that the given model is coherent and uniqueness and stability
increase the possibility of providing accurate numerical approximations [28].

In the system of Eqs. (3.1)–(3.3), V𝑓 , 𝑃 , and U𝑠 are the unknown functions.
Parameters 𝜇𝑖, 𝜑𝑖, 𝜆𝑓 , 𝐾, 𝜒 are the known constants, and functions b𝑖 ∈ 𝐿2(Ω)𝑑

where 𝑖 = 𝑠, 𝑓 , T∞ · n ∈ 𝐿2(𝜕Ω)𝑑 are the known functions. 𝑐0 > 0, 𝑐𝑝 are some
real constants which appear in Korn’s and Poincare’s inequalities, respectively1.

4.1. Weak formulation. We choose the test functions W ∈ X, Z ∈ X,
𝑞 ∈ 𝑀 and then multiply correspondingly, with each of the equations (3.1)–(3.3).
We perform integration by parts while using the boundary conditions to obtain the
following weak formulation:

Find (V𝑓 ,U𝑠, 𝑃 ) ∈ X×X×𝑀 such that

(𝑄𝑤𝑠𝑓 )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(𝐷(V𝑓 ) : 𝐷(W))Ω + 𝜆(∇ ·V𝑓 ,∇ ·W)Ω

−𝜑𝑓 (𝑃,∇ ·W)Ω + 1
Da (V𝑓 ,W)Ω = (b𝑓 ,W)Ω + (T∞ · n,W)𝜕Ω

2𝛼1(𝐷(U𝑠) : 𝐷(Z))Ω + 𝛼2(∇ ·U𝑠,∇ · Z)Ω
−𝜑𝑠(𝑃,∇ · Z)Ω − 1

Da (V𝑓 ,Z)Ω = (b𝑠,Z)Ω

𝜑𝑓 (∇ ·V𝑓 , 𝑞)Ω = (𝑆𝑓 , 𝑞)Ω

holds for all (W,Z, 𝑞) ∈ X × X × 𝑀 . One may observe that the above system
(𝑄𝑤𝑠𝑓 ) is a one-way coupled system in variables V𝑓 and U𝑠, i.e. the fluid momen-
tum equation is free from the solid phase velocity. However, the solid momentum
equation is coupled to the fluid phase velocity. It should be noted that the intersti-
tial fluid pressure couples the fluid and solid momentum equations. Thus, we can
split the weak formulation (𝑄𝑤𝑠𝑓 ) into two subparts.

(A) Find (V𝑓 , 𝑃 ) ∈ X×𝑀

(𝑄𝑤𝑓 )

⎧⎪⎨⎪⎩
2(𝐷(V𝑓 ) : 𝐷(W))Ω + 𝜆(∇ ·V𝑓 ,∇ ·W)Ω + 1

Da (V𝑓 ,W)Ω

−𝜑𝑓 (𝑃,∇ ·W)Ω = (b𝑓 ,W)Ω + (T∞ · n,W)𝜕Ω

𝜑𝑓 (∇ ·V𝑓 , 𝑞)Ω = (𝑆𝑓 , 𝑞)Ω

holds for all (W, 𝑞) ∈ X×𝑀 , and
(B) For a given V𝑓 ∈ X and 𝑃 ∈ 𝑀 , find U𝑠 ∈ X such that

(𝑄𝑤𝑠)

{︃
2𝛼1(𝐷(U𝑠) : 𝐷(Z))Ω + 𝛼2(∇ ·U𝑠,∇ · Z)Ω
= 𝜑𝑠(𝑃,∇ · Z)Ω + 1

Da (V𝑓 ,Z)Ω + (b𝑠,Z)Ω

holds for all Z ∈ X.

4.2. Abstract formulation corresponding to the weak formulation.
One may note that the fluid source term appears/disappears depending on whether
the mixture is not closed/closed with respect to the mass. When the mixture is not
closed, the source term 𝑆𝑓 is of the form 𝑆𝑓 = −𝑎0𝑃 +𝑎0 where 𝑎0 = 𝛼2

𝑡 (1+𝐿𝑟𝐴𝑟).

1For function spaces and other preliminary results we refer to the Appendix section 8.
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We consider both the possibilities while writing the abstract formulation. In order
to write the abstract formulation, we introduce the following bilinear forms

𝑎(· , ·) : X×X → R, 𝑏(· , ·) : X×𝑀 → R, and 𝑐(· , ·) : 𝑀 ×𝑀 → R,

defined by

𝑎(V𝑓 ,W) = 2(𝐷(V𝑓 ) : 𝐷(W))Ω + 𝜆(∇ ·V𝑓 ,∇ ·W)Ω +
1

Da
(V𝑓 ,W)Ω,(4.1)

𝑏(W, 𝑃 ) = −𝜑𝑓 (𝑃,∇ ·W)Ω, and 𝑐(𝑃, 𝑞) = 𝑎0(𝑃, 𝑞)Ω.(4.2)

The linear forms
F : X → R, and 𝐺 : 𝑀 → R

are defined by

(4.3) ⟨F,W⟩ = (b𝑓 ,W)Ω + (T∞ · n,W)𝜕Ω, and ⟨𝐺, 𝑞⟩ = −(𝑎0, 𝑞)Ω.

With respect to these bilinear and linear forms, we get the following abstract
formulation corresponding to the weak formulation (𝑄𝑤𝑓 ) in case of a non-closed
mixture:

Find (V𝑓 , 𝑃 ) ∈ X×𝑀 such that

(𝑄𝑎𝑓 )

{︃
𝑎(V𝑓 ,W) + 𝑏(W, 𝑃 ) = ⟨F,W⟩
𝑏(V𝑓 , 𝑞)− 𝑐(𝑃, 𝑞) = ⟨𝐺, 𝑞⟩

holds for all (W, 𝑞) ∈ X×𝑀 .
Further, in case of a closed mixture, the weak formulation (𝑄𝑎𝑓 ) reduces to the

following abstract formulation:
Find (V𝑓 , 𝑃 ) ∈ X×𝑀 such that

(𝑄′
𝑎𝑓 )

{︃
𝑎(V𝑓 ,W) + 𝑏(W, 𝑃 ) = ⟨F,W⟩
𝑏(V𝑓 , 𝑞) = 0

holds for all (W, 𝑞) ∈ X×𝑀 .
Finally, we have the following abstract formulation corresponding to the weak

formulation (𝑄𝑤𝑠):
Define a bilinear form 𝐵𝑠(· , ·) : X×X → R by

(4.4) 𝐵𝑠(U𝑠,Z) = 2𝛼1(𝐷(U𝑠) : 𝐷(Z))Ω + 𝛼2(∇ ·U𝑠,∇ · Z)Ω,

and a linear form 𝐿 : X → R by

(4.5) 𝐿(Z) = 𝜑𝑠(𝑃,∇ · Z)Ω +
1

Da
(V𝑓 ,Z)Ω + (b𝑠,Z)Ω.

The abstract formulation becomes:
For a given V𝑓 ∈ X and 𝑃 ∈ 𝑀 , find U𝑠 ∈ X such that

(𝑄′
𝑎𝑠)

{︀
𝐵𝑠(U𝑠,Z) = 𝐿(Z), ∀Z ∈ X.

One may note that the problem (𝑄𝑤𝑠) involves the derivative terms of the dis-
placement function U𝑠, and the velocity function V𝑓 . Hence, it is clear that the
corresponding solution will never be unique with respect to U𝑠. This difficulty
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can be resolved by seeking U𝑠 in the quotient space 𝐻1(Ω)𝑑/R𝑑 equipped with the
quotient norm

(4.6) ‖V̇‖𝐻1(Ω)𝑑/R𝑑 = inf
V∈V̇

‖V‖𝐻1(Ω)𝑑 ,

where for any element V ∈ 𝐻1(Ω)𝑑, V̇ denotes an equivalence class in 𝐻1(Ω)𝑑/R𝑑.
The following theorem says that the quotient norm ‖V̇‖𝐻1(Ω)𝑑/R𝑑 in the space
𝐻1(Ω)𝑑/R𝑑 is equivalent to the seminorm ‖∇V‖𝐿2(Ω)𝑑 in the space 𝐻1(Ω)𝑑. We
refer to [24] for the proof.

Theorem 4.1. [17] Let Ω be a bounded, connected and Lipschitz-continuous
open subset of R𝑑. The space 𝐻1(Ω)𝑑/R𝑑 is a Hilbert space for the quotient norm
(4.6). Moreover, in this space the functional V̇ ↦→ ‖∇V‖𝐿2(Ω)𝑑 is a norm equivalent
to (4.6).

Hence, in order to get a unique solution, we define ℋ = 𝐻1(Ω)𝑑/R𝑑. The
abstract weak formulation (𝑄′

𝑎𝑠) in the space ℋ becomes:
For a given V𝑓 ∈ X and 𝑃 ∈ 𝑀 , find U̇𝑠 ∈ ℋ such that

(𝑄𝑎𝑠)
{︁
𝐵𝑠(U̇𝑠, Ż) = 𝐿(Ż), ∀Ż ∈ ℋ,

where

(4.7) 𝐵𝑠(U̇𝑠, Ż) = 2𝛼1(𝐷(U𝑠) : 𝐷(Z))Ω+𝛼2(∇·U𝑠,∇·Z)Ω, ∀U𝑠 ∈ U̇𝑠, Z ∈ Ż

and

(4.8) 𝐿(Ż) = 𝜑𝑠(𝑃,∇ · Z)Ω +
1

Da
(V𝑓 ,Z)Ω + (b𝑠,Z)Ω, ∀Z ∈ Ż

4.3. Existence and uniqueness. In this section we show the existence and
uniqueness of the weak solution for the abstract problems (𝑄𝑎𝑓 ), (𝑄′

𝑎𝑓 ) and (𝑄𝑎𝑠).
For this purpose we would like to turn to some standard theorems available in the
literature for help. Let us rewrite these abstract formulations as

(I) Find (V𝑓 , 𝑃 ) ∈ X×𝑀 such that

(𝑄𝑎𝑓 )

{︃
𝑎(V𝑓 ,W) + 𝑏(W, 𝑃 ) = ⟨F,W⟩
𝑏(V𝑓 , 𝑞)− 𝑐(𝑃, 𝑞) = ⟨𝐺, 𝑞⟩

holds for all (W, 𝑞) ∈ X×𝑀 .
(II) Find (V𝑓 , 𝑃 ) ∈ X×𝑀 such that

(𝑄′
𝑎𝑓 )

{︃
𝑎(V𝑓 ,W) + 𝑏(W, 𝑃 ) = ⟨F,W⟩
𝑏(V𝑓 , 𝑞) = 0

holds for all (W, 𝑞) ∈ X×𝑀 .
(III) For a given V𝑓 ∈ X and 𝑃 ∈ 𝑀 , find U̇𝑠 ∈ ℋ such that

(𝑄𝑎𝑠)
{︁
𝐵𝑠(U̇𝑠, Ż) = 𝐿(Ż), ∀ Ż ∈ ℋ.

Correspondingly, we present the proof as follows:
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(I)s Problem (𝑄𝑎𝑓 ) satisfies all the assumptions of Proposition 1.4 (see [8] p. 45).
Indeed, we have

|𝑎(V𝑓 ,W)| 6 𝛽‖V𝑓‖X‖W‖X(4.9)
|𝑏(W, 𝑃 )| 6 𝜑𝑓‖𝑃‖𝑀‖W‖X(4.10)
|𝑐(𝑃, 𝑞)| 6 𝑎0‖𝑃‖𝑀‖𝑞‖𝑀(4.11)

where 𝛽 = max{2 + |𝜆|, 1/Da}. These estimates establish the boundedness (conti-
nuity) of the bilinear forms 𝑎(· , ·), 𝑏(· , ·), and 𝑐(· , ·).

Further, in order to show the coercivity of 𝑎(· , ·), and 𝑐(· , ·), choose W = V𝑓

in the definition of 𝑎(· , ·), to get

𝑎(V𝑓 ,V𝑓 ) = 2(𝐷(V𝑓 ) : 𝐷(V𝑓 ))Ω + 𝜆(∇ ·V𝑓 ,∇ ·V𝑓 )Ω +
1

Da
(V𝑓 ,V𝑓 )Ω(4.12)

> 2‖𝐷(V𝑓 )‖2𝑀𝑑2 +
1

Da
‖V𝑓‖2𝑀𝑑

> 𝛼‖V𝑓‖2X, (by Korn’s inequality),

where 𝛼 = min
{︀
2, 1

Da

}︀
/𝑐0. Next, choose 𝑞 = 𝑃 in the definition of 𝑐(· , ·), to get

(4.13) 𝑐(𝑃, 𝑃 ) = 𝑎0‖𝑃‖2𝑀 .

Further, we have the following bounds for 𝐹 and 𝐺

‖F‖X′ 6 ‖b𝑓‖𝑀𝑑 + 𝑡𝑟‖T∞ · n‖𝐿2(𝜕Ω)𝑑 ,(4.14)
‖𝐺‖𝑀 ′ 6 ‖𝑎0‖𝑀 ,(4.15)

which shows that 𝐹 ∈ X′ and 𝐺 ∈ 𝑀 ′, where 𝑡𝑟 is a constant that appears due to
the use of the trace theorem. Hence, according to Proposition 1.4 (see [8], p. 45),
there exists a unique pair (V𝑓 , 𝑃 ) which will satisfy (𝑄𝑎𝑓 ). Moreover, the following
stability bound holds

(4.16)
𝛼

2
‖V𝑓‖2X +

𝑎0
2
‖𝑃‖2𝑀 6

1

2𝛼

(︀
‖b𝑓‖𝑀𝑑 + 𝑡𝑟‖T∞ · n‖𝐿2(𝜕Ω)𝑑

)︀2
+

1

2𝑎0
‖𝑎0‖2𝑀 .

Remark 4.1. It is required to note that 𝜆 =
𝜆𝑓

𝜇𝑓
(which is the ratio of the two

viscosity coefficients) needs some attention while showing coercivity. The literature
[41–45] suggests that researchers have debated on the sign (or value) of 𝜆𝑓

𝜇𝑓
. If

𝜆 > 0, then the coercivity of 𝑎(· , ·), as shown by us in (4.12), holds good. But
when 𝜆 < 0 (i.e., typical Stoke’s hypothesis), we lose the coercivity of 𝑎(· , ·) in the
present case. In such a situation, i.e. when 𝜆 < 0, we can recover coercivity of
𝑎(· , ·) easily by redefining the boundary condition corresponding to the fluid phase.
One can assume a mixed boundary condition or a Dirichlet boundary condition on
the fluid phase velocity. In either of the cases, the coercivity can be shown by using
Korn’s inequality.

(𝐼𝐼)𝑠 To show the existence of a unique solution for the abstract problem (𝑄′
𝑎𝑓 )

we shall verify the assumptions of Corollary 4.1 (see [17], p. 61).
Claim:
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(i) 𝑎(· , ·) is bounded and Y-coercive, where Y = {V ∈ X : 𝑏(V, 𝑞) = 0
∀𝑞 ∈ 𝑀}.

(ii) 𝑏(· , ·) is bounded and satisfies the inf-sup condition.
(iii) The linear operator F belongs to X′.

The boundedness of 𝑎(· , ·) and 𝑏(· , ·) holds by virtue of the estimates (4.9) and
(4.10) respectively. Equation (4.14) shows that F belongs to X′. In order to show
the coercivity of 𝑎(· , ·) on the subspace Y of X, we choose W = V𝑓 in the definition
of 𝑎(· , ·), to get

𝑎(V𝑓 ,V𝑓 ) = 2(𝐷(V𝑓 ) : 𝐷(V𝑓 ))Ω +
1

Da
(V𝑓 ,V𝑓 )Ω(4.17)

= 2‖𝐷(V𝑓 )‖2𝑀𝑑2 +
1

Da
‖V𝑓‖2𝑀𝑑

> 𝛼‖V𝑓‖2X, (by Korn’s inequality),

where 𝛼 = min
{︀
2, 1

Da

}︀
/𝑐0. Further, the inf-sup condition says that

(4.18) sup
V𝑓∈X,V𝑓 ̸=0

(𝑞,∇ ·V𝑓 )

‖V𝑓‖X
> 𝛾‖𝑞‖𝑀 , ∀𝑞 ∈ 𝑀

for some positive constant 𝛾. To prove (4.18), we have for any 𝑞 ∈ 𝑀

(4.19) sup
V𝑓∈X,V𝑓 ̸=0

(𝑞,∇ ·V𝑓 )

‖V𝑓‖X
>

(𝑞,∇ ·W)

‖W‖X
, ∀W ∈ X,

or in particular for any W ∈ 𝐻1
0 (Ω)

𝑑 ⊂ X, and for any 𝑞 ∈ 𝑀 , we have

(4.20) sup
V𝑓∈X,V𝑓 ̸=0

(𝑞,∇ ·V𝑓 )

‖V𝑓‖X
>

(𝑞,∇ ·W)

‖W‖X

Now, as 𝑞 ∈ 𝑀 there exists a unique function W ∈ (Y0)
⊥ ⊂ 𝐻1

0 (Ω)
𝑑 (by

Corollary 8.1) such that

(4.21) ∇ ·W = 𝑞, ‖W‖X 6 𝛿‖𝑞‖𝑀 ,

where 𝛿 is a positive constant. Hence (4.20) and (4.21) give

(4.22) sup
V𝑓∈X,V𝑓 ̸=0

(𝑞,∇ ·V𝑓 )

‖V𝑓‖X
>

(𝑞,∇ ·W)

‖W‖X
=

‖𝑞‖2𝑀
‖W‖X

> (1/𝛿)‖𝑞‖𝑀 .

Equation (4.22) implies that the inf − sup condition (4.18) holds for 𝛾 =
1/𝛿. Hence, Corollary 4.1 (see [17], p. 61) implies that there exists a unique pair
(V𝑓 , 𝑃 ) ∈ X × 𝑀 of functions which solve the problem (𝑄′

𝑎𝑓 ), which means the
problem (𝑄𝑤𝑓 ) is well-posed in a weak sense. Also, the following bound holds

(4.23) ‖V𝑓‖X + ‖𝑃‖𝑀 6 𝑐0(‖b𝑓‖𝑀𝑑 + ‖T∞ · n‖𝐿2(𝜕Ω)𝑑).

(𝐼𝐼𝐼)𝑠 Further, in order to show the well-posedness of the solid phase prob-
lem (𝑄𝑎𝑠), we use the Lax–Milgram theorem (see [14], p. 297). For a given pair
(V𝑓 , 𝑃 ) ∈ X × 𝑀 (which exists from the above problems (𝑄𝑎𝑓 ) and (𝑄′

𝑎𝑓 )) we
have the following claims corresponding to the problem (𝑄𝑎𝑠)

(i) 𝐵𝑠(· , ·) is bounded and coercive on ℋ,
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(ii) 𝐿(·) belongs to the dual space ℋ′ of ℋ.
The following estimates prove the above claims:

(4.24) |𝐵𝑠(U̇𝑠, Ż)| 6 (2𝛼1 + 𝛼2)‖U̇𝑠‖ℋ‖Ż‖ℋ
and

(4.25) 𝐵𝑠(U̇𝑠, U̇𝑠) = 2𝛼1‖𝐷(U𝑠)‖2𝑀𝑑2 + 𝛼2‖∇ ·U𝑠‖2𝑀 >
2𝛼1

𝑐0
‖U̇𝑠‖2ℋ.

The estimates (4.24) and (4.25) show that 𝐵𝑠(· , ·) is bounded and coercive and we
have

(4.26) |𝐿(Ż)| 6 (𝜑𝑠‖𝑃‖𝑀 +
𝑐𝑝
Da

‖V𝑓‖𝑀𝑑 + 𝑐𝑝‖b𝑠‖𝑀𝑑)‖Ż‖ℋ.

We note, (4.26) indicates that 𝐿(·) belongs to ℋ′. According to the Lax–Milgram
theorem there exists a unique solution U̇𝑠 ∈ ℋ = 𝐻1(Ω)𝑑/R𝑑 which satisfies (𝑄𝑎𝑠).
Further, the following stability estimate holds,

(4.27) ‖U̇𝑠‖ℋ 6
𝑐0
2𝛼1

(︁
𝜑𝑠‖𝑃‖𝑀 +

𝑐𝑝
Da

‖V𝑓‖𝑀𝑑 + 𝑐𝑝‖b𝑠‖𝑀𝑑

)︁
.

The above analysis shows that both the subproblems (𝑄𝑤𝑠), and (𝑄𝑤𝑓 ) are well-
posed in a generalized sense, hence the system of equations (2.14)–(2.16) with
boundary conditions (2.17) is well-posed in a weak sense.

Remark 4.2. In addition, we can consider more general data in Proposition.
1.4 (see [8], p. 45) and the Lax–Milgram Theorem (see [14], p. 297) by choosing
reflexive Banach spaces instead of a Hilbert space (see [16, Theorem 3.6] and [15,
Theorem 4.2]). Further, T∞ · n can also be chosen in the space 𝐻−1/2(𝜕Ω)𝑑 (the
dual space of 𝐻1/2(𝜕Ω)𝑑) instead of the space 𝐿2(𝜕Ω)𝑑, and b𝑖 for 𝑖 = 𝑓, 𝑠 can also
be chosen in the space 2 (𝐸−1(Ω))𝑑 ⊂ (𝐻1(Ω)𝑑)′ instead of the space 𝐿2(Ω)𝑑.

5. One-dimensional spherical symmetry stress fields

Studying well-posedness of steady poroelastodynamics inside a solid tumor
gives us a good understanding of the solution in the theoretical sense. The next
task is to know the solution behavior in the physical sense that we can achieve by
either doing numerical simulation or by solving our system of equations analytically.
We seek an analytical solution of the spherical symmetry poroelastodynamic model
corresponding to Eqs. (2.14)–(2.17) to understand the interstitial fluid motion and
the infinitesimal solid phase deformation. In this context, we recall a recent study
by Dey and Raja Sekhar [13], where one-dimensional poroelastodynamics inside an
isolated tumor is presented. There they have assumed that such an isolated tumor
is connected to the host tissue through a filling blood vessel and a drainage lymph
vessel. This is as per existing clinical methods [21]. Dey and Raja Sekhar [13]
have considered the continuity of pore pressure with the ambient pressure together
with the stress-free condition at the tumor boundary. However, as indicated ear-
lier, the deviations in the solid phase stress show influence on the corresponding
tissue deformation. Hence, we have considered stress boundary conditions as in

2For details of the space (𝐸−1(Ω))𝑑 one can see [22] p. 171–172.
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Eq. (2.17). Since the one-dimensional model equation and the solution method do
not deviate much from Dey and Raja Sekhar [13], we do not present the detailed
solution procedure, rather we show a detailed analysis of the behavior of stress. It
may be noted that such an analysis of the stress fields is not attempted in [13]. The
non-dimensional governing equations (3.1)–(3.3) can be rewritten (when no body
force is present in the model)

𝜑𝑓∇𝑃 in =
1

3
∇(∇ ·Vin

𝑓 ) +∇2Vin
𝑓 − 1

Da
Vin

𝑓(5.1)

𝜑𝑠∇𝑃 in =
𝜚𝑡

2(1 + 𝜈𝑝)(1− 2𝜈𝑝)
∇(∇ ·Uin

𝑠 ) +
𝜚𝑡

2(1 + 𝜈𝑝)
∇2Uin

𝑠 +
1

Da
Vin

𝑓(5.2)

∇ · (𝜑𝑓V
in
𝑓 ) = 𝑆𝑓 , where 𝑆𝑓 = −𝛼2

𝑡 (1 + 𝐿𝑟𝐴𝑟)(𝑃
in − 1)(5.3)

Note that “in” represents the interstitial transport corresponding to the radial flow
inside the solid tumor.

Multiplying by 𝜑𝑓 and taking the divergence into the equation (5.1), we obtain

(5.4) 𝜑2
𝑓∇2𝑃 in =

4

3
∇2(∇ · (𝜑𝑓V

in
𝑓 ))− 1

Da
(∇ · (𝜑𝑓V

in
𝑓 ))

Further, by the use of (5.3) in the above equation, we have

(5.5) 𝜑2
𝑓∇2(𝑃 in − 1) =

4

3

(︁
∇2 − 3

4Da

)︁
𝑆𝑓

using 𝑆𝑓 = −𝛼2
𝑡 (1+𝐿𝑟𝐴𝑟)(𝑃

in−1), and some manipulation, we obtain the following
steady Helmholtz equation for the IFP

(5.6) (∇2 − 𝛾2)(𝑃 in(x)− 1) = 0,

where

(5.7) 𝛾2 =
1

Da
(︀
4
3 +

𝜑2
𝑓

𝛼2
𝑡 (1+𝐿𝑟𝐴𝑟)

)︀ .
Following Dey and Raja Sekhar [13], we list the dimensionless parameters: 𝛼𝑡 is
the strength of the solute source, 𝐿𝑟𝐴𝑟 is the ratio of the hydraulic conductivities
of blood and lymph vessels and Da is the Darcy number (Permeability parameter).
These can be expressed as

𝛼𝑡 =
√︁

𝐿𝑝𝜇𝑓 (𝐴/𝑉 ),

Da = 𝑘in/𝑅
2,

𝐿𝑟𝐴𝑟 = 𝐿𝑝𝐿
𝐴𝐿/𝐿𝑝𝐴,

where 𝐿𝑝 and 𝐿𝑝𝐿
are the average hydraulic conductivities of capillary and lym-

phatic walls respectively, 𝐴/𝑉 and 𝐴𝐿/𝑉 respectively denote vascular and lym-
phatic surface densities, 𝑘in is a permeability prefactor, 𝜇𝑓 is the dynamic viscosity
of the interstitial fluid, and 𝑅 is the radius of the spherical tumor. The extracellular
fluid velocity (EFV) field satisfies

(5.8) ∇.[𝜑𝑓V
in
𝑓 (x)] = −𝛼2

𝑡 (1 + 𝐿𝑟𝐴𝑟)(𝑃
in(x)− 1).
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Finally, the displacement field is found to satisfy

(5.9) ∇2𝑃 in(x) =
4

3
∇2(∇.Vin

𝑓 (x)) +
𝜚𝑡(1− 𝜈𝑝)

(1 + 𝜈𝑝)(1− 2𝜈𝑝)
∇2(∇.Uin

𝑠 (x)),

where
∙ 𝜚𝑡 = 𝒴𝑅2𝜌𝑓/𝜇

2
𝑓 is the dimensionless Young’s modulus (𝒴) associated with

the solid phase, which represents the response of the solid phase (cellular
phase + extracellular matrix) towards viscous drag due to interstitial fluid
movement.

∙ 𝜈𝑝 is the Poisson ratio of the solid phase (cellular phase + extracellular
matrix).

In the current study, we are rather interested in the spherical symmetry stress field
for both the phases. Accordingly, we assume 𝑃 in(x) = 𝑃 in(𝑟), Uin

𝑠 (x) = 𝑈 in
𝑠 (𝑟)ê𝑟,

Vin
𝑓 (x) = 𝑉 in

𝑓 (𝑟)ê𝑟 etc. Thus, in the spherical symmetry form, Eqs. (5.6)–(5.9) are
restated as [︁ 1

𝑟2
𝑑

𝑑𝑟

(︁
𝑟2

𝑑

𝑑𝑟

)︁
− 𝛾2

]︁
(𝑃 in(𝑟)− 1) = 0,(5.10)

1

𝑟2
𝑑

𝑑𝑟
(𝑟2𝜑𝑓𝑉

in
𝑓 ) = −𝛼2

𝑡 (1 + 𝐿𝑟𝐴𝑟)(𝑃
in(𝑟)− 1),(5.11)

1

𝑟2
𝑑

𝑑𝑟

(︁
𝑟2

𝑑

𝑑𝑟

)︁[︁
𝑃 in(𝑟)− 4

3

1

𝑟2
𝑑

𝑑𝑟
(𝑟2𝑉 in

𝑓 )− 𝜚𝑡(1− 𝜈𝑝)

(1+𝜈𝑝)(1−2𝜈𝑝)

1

𝑟2
𝑑

𝑑𝑟
(𝑟2𝑈 in

𝑠 )
]︁
=0.(5.12)

One can compute the analytical solution of Eqs. (5.10)–(5.12) using boundary
conditions (2.17). For example, Dey and Raja Sekhar [13] have computed such
solutions despite using different boundary conditions. Since the solution procedure
remains the same, we do not present the detailed solution here. Using the solution
of Eqs. (5.10)–(5.12), we compute normal stresses corresponding to the fluid and
solid phases (i.e., 𝑇 in

𝑓,𝑟𝑟 and 𝑇 in
𝑠,𝑟𝑟) and display their variation at each point inside

the tumor. We compute 𝑇 in
𝑓,𝑟𝑟 and 𝑇 in

𝑠,𝑟𝑟 as

(5.13) (𝑇 in
𝑓,𝑟𝑟 + 𝑇 in

𝑠,𝑟𝑟)(𝑟) + 1 = 𝐴(𝑋(𝑟) + 𝑌 (𝑟)) +𝐵𝑍(𝑟),

where

𝑋(𝑟) = −𝜑𝑓 i0(𝛾𝑟)−
4Da𝛼2

𝑡

3𝜑𝑓
(1 + 𝐿𝑟𝐴𝑟)i0(𝛾𝑟) +

4Da𝛼2
𝑡

𝜑𝑓𝛾𝑟
(1 + 𝐿𝑟𝐴𝑟)i1(𝛾𝑟),(5.14)

𝑌 (𝑟) = −𝜑𝑠i0(𝛾𝑟)+
{︁
1 +

4Da𝛼2
𝑡

3𝜑𝑓
(1 + 𝐿𝑟𝐴𝑟)

}︁[︁
i0(𝛾𝑟)−

(1− 2𝜈𝑝)

(1− 𝜈𝑝)𝛾𝑟
i1(𝛾𝑟)

]︁
,(5.15)

𝑍(𝑟) =
𝜚𝑡Da

3(1− 2𝜈𝑝)
, 𝐴 =

(1 + 𝜑𝑓 )

𝑋(1)
, 𝐵 =

1

𝑍(1)

[︁
𝜑𝑠 −

𝑌 (1)(1 + 𝜑𝑓 )

𝑋(1)

]︁
.(5.16)

Note that corresponding to the spherical symmetry model, the IFP can be expressed
as 𝑃 in(𝑟) = 1 +𝐴i0(𝛾𝑟). The behavior of IFP towards 𝛼𝑡 in this context is similar
to an isolated tumor with the imposed ambient pressure (the same as atmospheric
pressure) on the boundary. We follow the standard literature on modeling transport
phenomena inside tumors [4,25] and identify a range of various parameters involved.
Correspondingly, we vary the parameters in the specified range to generate results.
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Fig. 2(a) depicts that increase in the IFP can be noted with increase in 𝛼𝑡. At a
fixed radius 𝑟, for 𝛼𝑡 < 1, a small increment in 𝛼𝑡 causes a significant increment in
the magnitude of IFP. In addition, beyond 𝛼𝑡 = 1, the IFP variation is marginal
with increasing 𝛼𝑡. 𝑃 in(𝑟) attains the fixed minimum (which is close to 0.25) at
𝑟 = 1 corresponding to 𝛼𝑡 6 2. The corresponding minimum value of IFP increases
further with 𝛼𝑡. Evidently, tumor center is a region with high IFP. The difference in
IFP in the peripheral region and the core region becomes marginal corresponding to
larger 𝛼𝑡. This scenario is not favorable for interstitial convection. This situation
is quite opposite to the case where IFP meets ambient pressure on the tumor
surface [13].

With the one-dimensional spherical symmetry model, we generate some results
on the stress fields (solid + fluid phases) inside the tumor. Since in [13], a detailed
analysis of the velocity fields is discussed, we focus our attention on the stress fields,
which play a crucial role in clinical designs. Fig. 2(b) shows that the magnitude of
the normal fluid and solid stresses (𝑇 in

𝑓,𝑟𝑟 and 𝑇 in
𝑠,𝑟𝑟) increases with the interstitial

permeability (Da = 𝑘in/𝑅
2) of the tumor. The inner region of a tumor is a high

pressurized zone. Consequently, in order to meet the interstitial flow characteris-
tics, EFV gradients decrease towards the tumor core and hence, the magnitude of
fluid stress decays towards the core. Moreover, increasing hydraulic conductivity
reduces the interstitial resistance towards the seepage of the fluid. Therefore, 𝑇 in

𝑓,𝑟𝑟

increases with Da. Dey and Raja Sekhar [13] have shown that the tumor core
region (spherical) is a necrotic prone zone due to the absence of adequate vascular-
ization and lack of convective transport (EFV goes to zero towards the core). On
the other hand, an increase in Da corresponds to increased hydraulic conductivity
of the interstitial space. Both the shear and bulk stresses corresponding to the solid
phase decrease with the hydraulic conductivity. This can be understood when the
stress field is made dimension-free (one can find Da as the common coefficient of
shear and bulk stress terms). Moreover, decrease in Da enhances the drag coef-
ficient. Thus, the drag force on the solid phase increases due to the presence of
the magnitude of the drag force term in the momentum equations corresponding to
the solid phase. We observe a sharp decay in the normal component of solid stress
near the tumor boundary due to the corresponding drop in the pressure when the
hydraulic conductivity is small.

Fig. 2(c) indicates that the fluid stress is low in the necrotic core region. On the
other hand, low values of 𝛼𝑡 correspond to a region with low nutrient perfusion. We
observe that 𝑇 in

𝑓,𝑟𝑟 increases with decrease in 𝛼𝑡. A rapid decay in the normal stress
field with 𝑟 is observed corresponding to larger 𝛼𝑡. The EFV gradient becomes
high towards the core region of a tumor, due to the rapid decrease in the normal
stress field. Thus, one can conclude that larger velocity gradient is observed with
larger perfusion. Inside a low perfused region, velocity gradient must be low. On
the other hand, the strength of the solute perfusion has a potential impact on the
normal solid stress field, which is depicted in Fig. 2(c). We observe that, similarly
to the radial displacement field, 𝑇 in

𝑠,𝑟𝑟 increases with 𝛼𝑡. An increase in 𝛼𝑡 enhances
both shear and bulk stresses on the solid phase. Besides, increase in 𝛼𝑡 influences
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Figure 2. (a) Normal component of IFP versus radial distance
for different 𝛼𝑡 (c) Normal component of fluid and solid stresses
versus radial distance for different Da (d) Normal component of
fluid and solid stresses versus radial distance for different 𝛼𝑡 and
(e) Normal component of solid stress versus radial distance for
different Poisson ratio of the solid phase.

the normal pressure and EFV. In addition, increase in 𝛼𝑡 leads to a saturation such
that beyond 𝛼𝑡 = 1, 𝑇 in

𝑠,𝑟𝑟 becomes more or less independent of 𝛼𝑡.
The behavior of the solid stress field towards the interstitial flow can be dis-

cussed in terms of hydraulic conductivity, and elastic moduli corresponding to the
isolated solid tumor. Fig. 2(d) shows the variation of the normal component of
solid stress (𝑇 in

𝑠,𝑟𝑟) with Poisson ratio 𝜈𝑝. The Poisson ratio close to 0 and 0.5
corresponds to the hard and soft tissue phase (cellular phase + extracellular ma-
trix) respectively. The magnitude of 𝑇 in

𝑠,𝑟𝑟 is maximum at the core and decreases
to zero at the boundary to meet the zero contact force criteria. Moreover, 𝑇 in

𝑠,𝑟𝑟

increases with 𝜈𝑝. When 𝜈𝑝 = 0, the coefficient of the bulk stress becomes zero and
the coefficient of the shear stress becomes maximum. On the other hand, when
𝜈𝑝 = 0.5 the shear stress is minimum and the corresponding volume strain becomes
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maximum (incompressible solid phase). It has been observed that the radial dis-
placement field shows different nature from the normal stress field. The maximum
(minimum) normal stress field corresponds to minimum (maximum) displacement
in the solid phase. We can state that the magnitude of the solid stress becomes
maximum inside the necrotic zone.

6. Energy levels corresponding to 𝐿2 and 𝐻1 norms

In this section, we focus on the insights of 𝐿2 and 𝐻1 norms of the physical
quantities EFV and SPD of the corresponding spherical symmetry mode. In gen-
eral, 𝐿2 norm of the velocity does represent the kinetic energy of the corresponding
phase inside the system. On the other hand, 𝐻1 norm of velocity represents a
higher state of energy in which the gradient of velocity is involved. In this study,
we discuss the formation of necrosis in the light of system energy. For a system in
a steady state, deformation of the solid phase is discussed in terms of displacement
vector. Equivalent form of the system energy corresponding to the solid phase can
be discussed in terms of 𝐿2 and 𝐻1 norms of the displacement vector. For a spher-
ical symmetry system, 𝐿2 and 𝐻1 norms of velocity and displacement for fluid and
solid phases are respectively given by

𝐸𝑉𝑓𝐿2 = ‖𝑉𝑓‖𝐿2
𝑟
= 2

√
𝜋

[︂ ∫︁ 1

𝑟=0

(|𝑉𝑓 (𝑟)|2)𝑟2𝑑𝑟
]︂1/2

,

𝐸𝑉𝑓𝐻1 = ‖𝑉𝑓‖𝐻1
𝑟
= 2

√
𝜋

[︂ ∫︁ 1

𝑟=0

(|𝑉𝑓 (𝑟)|2 + |𝑑𝑉𝑓/𝑑𝑟|2)𝑟2𝑑𝑟
]︂1/2

,

𝐸𝑈𝑠𝐿2 = ‖𝑈𝑠‖𝐿2
𝑟
= 2

√
𝜋

[︂ ∫︁ 1

𝑟=0

(|𝑈𝑠(𝑟)|2)𝑟2𝑑𝑟
]︂1/2

,

𝐸𝑈𝑠𝐻1 = ‖𝑈𝑠‖𝐻1
𝑟
= 2

√
𝜋

[︂ ∫︁ 1

𝑟=0

(|𝑈𝑠(𝑟)|2 + |𝑑𝑈𝑠/𝑑𝑟|2)𝑟2𝑑𝑟
]︂1/2

.

It is observed through Figures 3(a)–3(b) that both 𝐸𝑉𝑓𝐿2 and 𝐸𝑉𝑓𝐻1 increase
with 𝛼𝑡 due to increase in EFV. It always holds that the strength 𝛼𝑡 > 0. Thus,
the higher rate of nutrient proliferation causes increase in internal system energy.
At a higher state of system energy, the convective transport of nutrient becomes
more significant inside the interstitial space to reduce the necrosis formation. It is
obvious that increase in the system energy leads to increase in the cell proliferation.
Thus at the higher level of energy, increased volume of cell population leads to
increase in the size of the tumor. Increase of 𝐸𝑉𝑓𝐻1 is rapid compared to 𝐸𝑉𝑓𝐿2 .
Increasing interstitial permeability (increase in Da) enhances the system internal
energy. The low permeable tumor interior possesses less nutrient concentration
due to low convective transport and this shows a reduction of the system energy.
We choose Da in the range (10−4, 10−3), which is appropriate for a deformable
Brinkman model. In case of 𝐿𝑝𝐿

𝐴𝐿/𝐿𝑝𝐴 > 1, conductivity of a lymph vessel is
supposed to be higher than that of a blood vessel. The convective drain timing
through the wall of lymph vessel is lesser compared to the filling through the blood
vessel. As a result, the system can drain out waste materials (metabolic products)
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fast. Such a system possesses higher internal energy. It is also illustrated that
increase in the magnitude of 𝐿𝑝𝐿

𝐴𝐿/𝐿𝑝𝐴 results in a fast increment of 𝐸𝑉𝑓𝐻1 as
compared to the 𝐸𝑉𝑓𝐿2 .
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Figure 3. One dimensional form of energy levels for EFV and
solid phase (cell population + ECM) displacement corresponding
to 𝐿2 and 𝐻1 norms: Variation with 𝛼𝑡 for different (a) Da (b)
𝐿𝑟𝐴𝑟 (c) Da (d) 𝜈p and (e) 𝜚𝑡.
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Figures 3(c)–3(e) depict variation of internal system energy corresponding to
the solid phase with respect to Da, 𝜈𝑝 and 𝜚𝑡 respectively. We find that both 𝐸𝑈𝑠𝐿2

and 𝐸𝑈𝑠𝐻1 increase with 𝛼𝑡 up to a certain magnitude and thereafter both of them
become constant. The increment of 𝐸𝑈𝑠𝐻1 is more rapid as compared to 𝐸𝑈𝑠𝐿2 .
Increase in 𝛼𝑡 suggests increase in the drag force on the solid phase. The drag
force from the fluid phase is found to be only responsible for the deformation of
the solid phase. At higher magnitude of solute perfusion, growth of solid phase
internal energy becomes stable. On the other hand, decrease in 𝐸𝑈𝑠𝐿2 and 𝐸𝑈𝑠𝐻1

with increase in Da can be observed. Smaller Da corresponds to the larger surface
area constituted by the solid phase of tumor tissue. Also, decrease in Da enhances
the Drag coefficient. As a result, increase in the Drag force causes growth in the
internal energy of the solid phase. From this discussion, one can claim that the
low permeable region inside a tumor possesses high internal energy. On the other
hand, with increase in 𝜈𝑝, decrease in 𝐸𝑈𝑠𝐿2 and 𝐸𝑈𝑠𝐻1 results. We choose four
different Poisson ratios as 𝜈𝑝 = 0.3, 0.35, 0.4, 0.45 and this choice is appropriate for
biological tissues. Smaller (larger) values of Poisson ratio correspond to hardness
(softness) of the solid phase. The hard (soft) solid matrix of the tumor possesses
higher (lower) internal energy and shows higher (lower) tendency to be deformed.
The solid phase internal energy varies with the Young’s modulus of the solid phase.
Here 𝜚𝑡 represents the response of the solid phase towards the viscous drag. Based
on the choice of Young’s modulus in the range 1.46 − 1.74 kPa, plasma viscosity
in the range 1.3− 1.7× 10−3 PaS, plasma density equal to 1025 kg/m3 and tumor
radius equal to 0.1 cm, we can consider the following range for 𝜚𝑡 is 3 − 6 × 105.
Larger (smaller) Young’s modulus of the solid phase corresponds to the smaller
(higher) internal energy of the solid phase. Thus, due to increase in the internal
energy at low Young’s modulus, the solid phase is prone to deform towards the
hydrodynamic drag.

7. Conclusion

It is observed that mechanics of tumor growth is mainly dependent on the trans-
port of different fluids and nutrients inside a solid tumor. In the context of mixture
theory, one can study the density variations within the components to evaluate
the evolution of the stresses and mechanical interactions among the constituents.
This was not possible with the previous modeling where the Darcy/Brinkman sin-
gle phase model was used to describe the hydrodynamics inside a solid tumor. In
this paper, we have shown the well-posedness of the poroelastodynamics inside
an arbitrary solid tumor in the weak sense. We realize that in the absence of a
classical solution of the poroelastodynamics, one can find a weak solution to es-
tablish the well-posedness. We have converted the partial differential equations
corresponding to the poroelastodyamic model into an equivalent weak formulation.
The corresponding abstract formulation has also been obtained by introducing bi-
linear and linear forms. Using the Lax–Milgram theorem and inf-sup condition, the
well-posedness (existence, uniqueness and stability) of the weak solution is shown.

Based on the analytical solution for the one-dimensional tumor model, we
have observed that inside a necrotic or low fluid perfused region, normal stresses
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corresponding to the fluid and solid phases are minimum and maximum respec-
tively. A high solid phase stress causes less deformation due to increasing rigidity
in the solid phase. The solute perfusion strength showed a positive influence on
the fluid stress, but the solid stress field was negatively affected by the strength of
the perfusion. Increasing hydraulic conductivity enhanced the normal fluid stress
and caused the normal solid stress to diminish. Finally, we have observed that in-
creasing softness of the matrix of the tumor causes increased magnitude of the solid
stress. Since a solid tumor is a living biological system, we try to get the system
internal energy by computing 𝐿2 and 𝐻1 norms of both the EFV and SPD. Later,
we define the necrotic zone as a region with less internal system energy. Also, a
low permeable interstitial space possesses less system energy. With the increasing
strength of solutes, system energy corresponding to the fluid phase shows increasing
behavior while stability is noted in case of solid phase system energy. The stiffer
solid phase of a biological tissue (when 0.3 6 𝜈𝑝 6 0.5) possesses significant high
internal energy so that deformation is notable.

In general, linear models are first steps to understand non-linear models of
tumor growth. On the other hand, non-linear models are more challenging than
the linear ones from a mathematical point of view as well as their physical inter-
pretations. In the present model, the processes like nutrient transport, solid phase
deformation, and hydrodynamics are very slow, due to which the non-linearity does
not appear. Authors believe that these results will give useful insights to under-
stand the non-linear system. We may explore the same in the near future.

8. Appendix

To establish well-posedness, we need the following function spaces and prelim-
inary results.

8.1. Function spaces and some useful results. 𝑀 = 𝐿2(Ω) is a space of
all measurable functions 𝑢 defined on Ω for which

‖𝑢‖𝑀 =

(︂∫︁
Ω

|𝑢|2 𝑑Ω
)︂1/2

< +∞,

‖ ‖𝑀 defines a norm on 𝑀 .
For any u = (𝑢1, 𝑢2, . . . , 𝑢𝑑) ∈ 𝑀𝑑 = 𝐿2(Ω)𝑑, the norm ‖u‖𝑀𝑑 is defined as

‖u‖𝑀𝑑 =

(︂∫︁
Ω

𝑑∑︁
𝑖=1

|𝑢𝑖|2 𝑑Ω
)︂1/2

,

and for any element K = (𝐾𝑖𝑗)16𝑖,𝑗6𝑑 ∈ 𝑀𝑑2

= 𝐿2(Ω)𝑑×𝑑, the norm ‖K‖𝑀𝑑2 is
defined as

‖K‖𝑀𝑑2 =

(︂∫︁
Ω

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

|𝐾𝑖𝑗 |2 𝑑Ω
)︂1/2

.

( , )Ω, and ( , )𝜕Ω denote the inner products in 𝑀 , 𝑀𝑑, and 𝑀𝑑2

and in correspond-
ing trace spaces 𝐿2(𝜕Ω), 𝐿2(𝜕Ω)𝑑, and 𝐿2(𝜕Ω)𝑑×𝑑.
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We choose the space X := 𝐻1(Ω)𝑑 where the norm of a function u ∈ X is
defined as

‖u‖X =

(︂∫︁
Ω

𝑑∑︁
𝑖=1

|𝑢𝑖|2 𝑑Ω+

∫︁
Ω

𝑑∑︁
𝑖=1,𝑗=1

|𝜕𝑥𝑗
𝑢𝑖|2 𝑑Ω

)︂1/2

,

and X′ = (𝐻1(Ω)𝑑)′ denotes the dual space of X. The norm on X′ is defined as

‖f‖X′ = sup
0 ̸=u∈X

|⟨f ,u⟩|
‖u‖X

.

⟨·, ·⟩ denotes the duality pairing between X and its dual X′.
Further, 𝐻1/2(𝜕Ω)𝑑 := {u|𝜕Ω : u ∈ 𝐻1(Ω)𝑑} denotes the trace space with the

norm
‖g‖𝐻1/2(𝜕Ω)𝑑 = inf{‖w‖𝐻1(Ω)𝑑 |w ∈ 𝐻1(Ω)𝑑,w|𝜕Ω = g}.

Theorem 8.1 (Trace theorem [28]). Assume Ω is either R𝑛
+ or a bounded, Lip-

schitz domain. Then there exists a trace operator 𝜏0 : 𝐻1(Ω) → 𝐿2(𝜕Ω) such that:

∙ 𝜏0𝑢 = 𝑢|𝜕Ω if 𝑢 ∈ 𝒞∞
0 (Ω),

∙ ‖𝜏𝑢0‖𝐿2(𝜕Ω) 6 𝑡𝑟(𝑛,Ω)‖𝑢‖𝐻1(Ω),

where 𝑡𝑟 is a constant depending on 𝑛 and Ω.

The image of the operator 𝜏0 is given by

𝐼𝑚𝜏0 = 𝐻1/2(𝜕Ω) = {𝜏0𝑢|𝑢 ∈ 𝐻1(Ω)}.

Corollary 8.1. [17] If we set Y0 = {v ∈ 𝐻1
0 (Ω)

𝑑|∇ · v = 0}, then

𝐻1
0 (Ω)

𝑑 = Y0 ⊕ (Y0)
⊥

and the operator div (divergence operator) is an isomorphism of (Y0)
⊥ onto 𝐿2(Ω)/R.

Theorem 8.2 (Korn’s Inequality [17]). Let Ω be a domain in R𝑑, for 𝑑 = 2, 3.
Then there exists a constant 𝑐0 = 𝑐0(Ω) such that

‖V‖2𝐻1(Ω)𝑑 6 𝑐0(‖V‖2𝐿2(Ω)𝑑 + ‖𝐷(V)‖2𝐿2(Ω)𝑑×𝑑), ∀V ∈ 𝐻1(Ω)𝑑.

Theorem 8.3 (Poincare’s Inequality [28]). Let Ω be a bounded Lipschitz do-
main in R𝑑, for 𝑑 = 2, 3. Then there exists a constant 𝑐𝑝 = 𝑐𝑝(Ω) such that

‖V‖2𝐿2(Ω)𝑑 6 𝑐𝑝‖∇V‖2𝐿2(Ω)𝑑×𝑑 , ∀V ∈ 𝐻1
0 (Ω)

𝑑,

where 𝑐𝑝 denotes the Poincare’s constant.
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МАТЕМАТИЧКА АНАЛИЗА ХИДРОДИНАМИКЕ
И ДЕФОРМАЦИJЕ ТКИВА У ИЗОЛОВАНОМ

ЧВРСТОМ ТУМОРУ

Резиме. У овом чланку представљамо математички модел за хидродина-
мику међукретања флуида и механичког понашања чврсте фазе унутар чвр-
стог тумора. Тумор коjи се овде разматра jе изолована деформабилна биоло-
шка средина. Чврста фаза тумора jе састављена од васкулатуре, туморских
ћелиjа и екстрацелуларне мреже, коjа jе овлажена физиолошком екстрацелу-
ларном течности. Пошто jе тумор по природи деформабилан, приказане су
jедначине масе и импулса за обе фазе. Jедначине импулса су везане услед
силе међудеjства (или превлачења). Ове jедначине кретања се редукуjу на
jедносмерни везани систем под претпоставком инфинитезималне деформациjе
чврсте фазе. Ваљаност овог модела jе показана у слабом смислу коришћењем
inf-sup (Babuska–Brezzi) услова и Lax–Milgram-ове теореме у 2D и 3D. Даље,
дискутуjемо jеднодимензионални сферно симетрични модел и изводимо резул-
тате о пољу напона и енергиjе система засноване на 𝐿2 и нормама Собољева.
Дискутуjемо тзв. феномене “некрозе” унутар чврстог тумора користећи енер-
гиjу система.
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