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CONSTITUTIVE MODELING FOR FRP
COMPOSITE MATERIALS SUBJECT

TO EXTREME LOADING

Robert J. Asaro and David Benson

Abstract. A physically based, finite deformation, rate and temperature de-
pendent theory and model have been developed to simulate the deformation
and failure of FRP composite materials and structures. Failure modes include:
inter alia, fiber crushing and kinking as occurs during extreme compressive
loading; fiber fracture as occurs in for example fragmentation; interlaminar
shear as occurs at elevated temperatures and that leads to kinking; debonding
and delamination including the coupling with laminate kinking; and debond-
ing as occurs in cored FRP panels. The theory/model is capable of describing
quasi-static (including creep) as occurs at elevated temperatures, and dynamic
deformation and failure as occurs during shock, blast or impact.

The model is implemented within LS DYNA and specific example simu-
lations are described that illustrate the theory/model capabilities. In Part I,
fragmentation is not covered in detail. Fiber fracture and fragmentation are
to be covered to detail with specific examples in Part II.

1. Introduction

Whereas failure mechanisms in FRP composite are well known via experimental
observations and by direct observations of failures that occur in actual applications,
the modeling of them has to date been ad-hoc and phenomenological [1, 2]. This
has led to what has been recognized as serious limitations on the accuracy and de-
pendability of such modeling and hence to limitations on the reliability of theoretical
designs that depend on such modeling. Moreover, the numerical implementation of
such models has often times been problematical in that computational efficiency is
low and issues of numerical stability are quite common. Moreover, the inclusion of
important characteristics of the deformation and failure of FRP composites such as
rate sensitivity of deformation and failure are typically not included [1, 2]. Rate
effects are, however, of vital importance when dealing with deformations that occur
at high rates such as during shock, impact, or blast like loading or during exposure
to elevated temperatures that occur during fire or blast. We call loading under
such conditions, extreme loading.
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Herein we present a novel constitutive model describing deformation and fail-
ure, including progressive failure and material separation, i.e., fragmentation, of
laminated FRP composite materials. Our model has evolved over the years through
the analysis of failure of FRP composite materials, and complex FRP composite
structures, subject to extreme loading via blast, shock, impact, and fire as illus-
trated in Fig. 1; the particular example shown is that of the failure (i.e., complete
breaching) of a composite joint taken from a large ship structure.
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Figure 1. Failure of a composite joint extracted from a large
ship structure following experimental simulated blast loading at
UCSD’s Blast Facility. This joint was fabricated from balsa cored
carbon-vinylester skin sandwich panels. Note that the failure in-
volves a combination of material failure (i.e., shear in the balsa
core) and an important phase of delamination of the overlayer
within the fillet zone.

Our model includes failure via interlaminar shear (affected by elevated tem-
perature), fiber rupture in tension, fiber crushing (aka kinking) in compression and
that also involves interlaminar shear (again as affected by temperature), micro-
cracking, and failure via delamination. Element designs accommodate all types of
failure modes. In this we focus on structural failure as influenced by material failure
modes such as fiber crushing or kinking that leads to delamination; the affects of
core failures are also included. Future extenions will deal with ballistic phenom-
ena, e.g., ballistic penetration, events that involve fiber rupture. Specifically, future
analysis will extend the analysis contained herein by examining subsequent effects
of fiber rupture whether caused by ballistic loading per se or the intense stresses
caused by progressive structural collapse.

The development of this model has paid special attention to eliminating issues
of numerical instability and to providing for computational efficiency; benchmarks
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of such are provided in the discussions. The model is readily implemented in well
known FEM codes such as LS DYNA and ABAQUS as described, and demon-
strated, below.

Our developments specifically realize the deficiencies in models currently in use
and that include, inter alia,

(1) No satisfactory FRP failure models for design use that simulate pene-
tration exist at present; the sort of computational analysis required to
simulate failure in FRP composites is both computationally costly and
numerically challenging.

(2) Phenomenological models often contain large numbers of ad-hoc “ad-
justable” parameters that have no clear physical meaning and are very
costly in time and money to determine with confidence. It is often un-
clear how to physically interpret the various terms within these ad-hoc
models as they are not based on clear physical observations.

(3) Current FRP composite progressive failure models are numerically ineffi-
cient and often display numerical instability.

(4) Important physical aspects of FRP composite material deformation and
failure such as rate sensitivity are not included; most all existing models
idealize deformation and failure as rate independent. An example of the
rate dependence of FRP composite material failure is shown in the load
vs. time histories of Fig. 2 following the tests depicted in Fig. 3.

As an example of rate effects, Fig. 2 shows how failures via delamination are affected
by loading rate. The failures in this case were observed in experimental tests such
as shown in Fig. 3. These tests subjected balsa cored short sandwich beams, with
carbon/vinyester skins, to bending at various loading rates as shown and sketched
in Fig. 3.

Our model development addresses all these deficiencies and others as explained
throughout the text. In particular, the second of the two example simulated cases
described below in Section 4 deals directly with material defect driven local failures
that lead to faceskin/core delamination.

2. Background & general perspectives on composite failure

Among the great impediments to the use of FRP composites in the design and
construction of high performance structures, such as ship and aircraft structures,
are their susceptibility to degradation due to exposure to the elevated tempera-
tures caused by fire and the as yet inability to assess damage to them caused by
the dynamic loading due to blast, shock, or impact. During exposure to fire FRP
materials degrade through the direct loss of material by ablation and char forma-
tion, as well as simply by exposure to elevated temperatures in the range of say,
60 ∘C < 𝑇 < 125 ∘C. Losses in material strength result from such exposures while
the materials are at these temperatures and they undergo losses even after the
materials are returned to ambient temperatures. Residual material properties fare
better and for FRP material systems currently proposed for use for load bearing
structures, residual properties can be maintained at near 100% even after exposures
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Figure 2. Failure of a composite balsa cored carbon fiber beam
at various loading rates that span an induced strain rate range
of 10−2–102 s−1. Failures in this case were primarily due to de-
lamination. Note that not only are the reaction forces affected by
loading rate, but also the failure time, i.e., the failure progression,
is affected as well.

to temperatures of up to 200 ∘C. When subject to impact or blast loading FRP com-
posite materials undergo damage, and consequent degradation of their properties,
via mechanisms that include, inter alia, interlamellar delamination within skins or
at laminate/core interfaces, laminate failure through kinking or fiber crushing, or
fracture. Assessment of the behavior and response of FRP composite materials is
therefore required to allow for adequate design and risk assessment vis-à-vis threat
scenarios consistent with blast and/or fire induced damage. A constitutive frame-
work is therefore required for describing the elastic-viscoplastic response of FRP
materials to dynamic loading such as due to blast, and to the elevated temperatures
of fire, that can be used, in turn, to analyze the observations of material behav-
ior during laboratory testing and that can be used to perform full-scale structural
analyses of structures. Herein we present such a constitutive framework.

The framework described herein was guided by the dual needs of developing a
theory that could embody the phenomenology of material loss as well as degrada-
tion in properties of intact material, yet be analytically tractable and computation-
ally efficient to allow for engineering design. The material model would is hence
amenable to implementation along with the co-developed algorithms being describ-
ing property degradation and/or phase transformations as occur during material
ablation. It was envisioned that the theory would have a relatively straightforward
implementation in standard finite element codes and thus serve as a useful tool for
the assessment of material damage and structural response.
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Figure 3. Bend tests of a composite balsa cored carbon fiber
beam at various loading rates that span an induced strain rate
range of 10−2–102 s−1. Failures in this case were primarily due
to delamination. Note that failure is initially induced via balsa
core shear that then leads to delamination of the face skin/core
interface. After delamination, skin laminate rupture may occur
leading to complete breach, i.e., separation, of the assembly.

Figure 4 shows examples of typical failure modes found in FRP composites
subject to high compressive stress. Figures 4a,b show examples of structural buck-
ling and delamination. What is noteworthy, however, it that even though the most
prominent feature of Figs. 4a,b are the obvious delamination, the cause of failure
itself may not be apparent in the post failure images at all. On the one hand, de-
lamination leads to severe losses in buckling resistance and load carrying capacity.
On the other hand, delamination may be caused by the large compressive stresses
that result from compressive buckling, i.e., delamination may well be a result of
a structural buckling failure and not the primary cause of it. Still an additional
possibility is that delamination may have resulted from a more local material fail-
ure mode such as the kinking shown in Fig. 4c. Such local material failures-that
result from high compressive stresses-also result in losses in global stiffness, that in
turn induce global response such as buckling. Thus what was clear is that a theory
was required that captures the complete gambit of all such phenomena so that their
important interactions are fully accounted for in a rigorous and consistent manner.

In many of its aspects, our new theory borrows from the successful development
of the theory for crystal plasticity, especially as laid out by Asaro (1977, 1985)
[3, 4], and Harren and Asaro (1989) [5]; specific citations in context are given
where appropriate in the text. The theory will account fully for the anisotropy
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Figure 4. Typical compressive failure modes for FRP compos-
ite laminates and panels. (a) and (b) show examples of global
buckling of FRP panels subject to compressive loads (Asaro et al.
2007), where delamination is evident. (c) shows an example, cour-
tesy of Prof. J. Lesko, Virginia Technical University, of a local
material failure via kinking in a single laminate “skin”, caused by
applied compressive loading [9]. Note that local material failure
mechanisms such as kinking, seen in (c), affect global stiffness and
global response as seen in (a) and (b). Such local↔ global mode
interactions make it necessary to incorporate both levels of phe-
nomenology into a consistent physically based theory.

of FRP laminate elastic behavior as well as for the highly anisotropic inelastic
response that occurs due to interlaminar shear. The latter process is strongly
influenced by temperature and strain rate. As noted above, there was the very real
need for computational efficiency and this has led us to avoid constructing a discrete
aggregate model, which while attractive in its ability to separately describe the roles
of polymer matrix and fabric, would inevitably lead to a far more computationally
expensive implementation that would render performing (many) engineering design
simulations inviable. The framework for constructing such models, in fact, already
exists as the need may arise and a particularly relevant foundation lies in the cell
models recently proposed by Gu and Asaro [11]. On the other hand, we present
here an explicit algorithm for the numerical integration of the theory within a finite
element framework that is both stable and highly efficient.

As noted above, of particular interest is the ability to describe common failure
mechanisms that occur in FRP materials. Along with general elastic-viscoplastic
deformation at elevated temperature these are seen to arise particularly as a result
of compressive loading. One such failure mode is micro-buckling or kinking, which
typically leads to rapid, often localized, degradation and fracture (e.g., as in the ex-
amples shown in Fig. 4). We desired, therefore, a theory that naturally contains the
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occurrence of such phenomena. The model need also contain an accurate descrip-
tion of the temperature dependence of material stiffness and material resistance to
interlaminar shear-these were, accordingly, key focuses of our development.

The plan of the paper is as follows. In the next section notations and conven-
tions are defined. Background on our physically based model follows along with
a more detailed kinematical scheme upon which the theory is based. The theory
is laid out in subsequent sections. Our integration algorithm is described. Ma-
terial calibration using experimental data taken from past work concerned with
quasi-static and high rate deformation of FRP panels is described to add further
perspective and to provide detailed calibration of the constitutive parameters. Two
specific example simulations are given that include failures due to extreme dy-
namic compressive loading; the second of which includes superimposed bending
arising from the imposition of lateral pressure, say as arising from blast of impact.

3. Constitutive & failure model

3.1. Nomenclature & conventions. Standard notations are used through-
out. Bold-faced symbols are used to denote vectors and higher order tensors, the
order of which will be clear in context. Products are indicated with dots or double
dots, which denote summation over repeated Latin or Greek indices, and products
without dots are dyadic products. Latin indices range from one to the number of
spatial dimensions (usually three), and repeated Latin indices are always summed.
However, indices that are within parentheses are not summed. Inverses, transposes,
and transpose inverses are denoted with a superscripted −1, 𝑇 , and −𝑇 , respec-
tively, and superposed dots indicate differentiation with respect to time, 𝑡. For
instance,

A ·B = 𝐴𝑖𝑘𝐵𝑘𝑗b𝑖b𝑗 , A : B = 𝐴𝑖𝑗𝐵𝑗𝑖, cd = 𝑐𝑖𝑑𝑗b𝑖b𝑗 ,

c · d = 𝑐𝑖𝑑𝑖, H : A = 𝐻𝑖𝑗𝑘𝑙𝐴𝑙𝑘b𝑖b𝑗 , A : H = 𝐴𝑘𝑙𝐻𝑙𝑘𝑖𝑗b𝑖b𝑗 ,

Ḃ =
𝜕𝐵𝑖𝑗

𝜕𝑡
b𝑖b𝑗 , B · c = 𝐵𝑖𝑘𝑐𝑘b𝑖,

𝜕c

𝜕d
=

𝜕𝑐𝑖
𝜕𝑑𝑗

b𝑖b𝑗 .

where the base vectors b are Cartesian and independent of time. Greek indices are
slip system identifiers ranging from one to four for the case of an orthotropic lami-
nate such as considered herein and as explained below. In the above we represent
tensor products as, for instance, ab or AB rather than use the familiar ⊗ symbol
as in a⊗ b.

3.2. The laminate model: background. The basic kinematics is illus-
trated in Fig. 5. We consider the FRP material to be composed of an essentially
orthotropic laminate, and to contain a sufficient number of plies so that homog-
enization is a reasonable way to describe the material behavior.1 The principal
directions of the fibers are described by a set of mutually orthogonal unit base

1The homogeneous view taken here is, on the other hand, not necessary and it is indeed pos-
sible to apply the theory developed here on a “ply-by-ply” level. In a finite element model separate
elements may be used for each ply along with the use of cohesive elements at the interlamellar
layers. The latter would be a logical way to describe intralamellar delamination if desired.
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vectors, a𝑖, as depicted in Fig. 5. The resulting orthotropic elastic response of the
laminated composite will, thus, be fixed on, and described by these vectors. The
material can also deform via slipping in the plane of the laminate, i.e., via inter-
laminar shear, and this slipping is confined to this interlaminar plane. Slipping is
possible in all directions in the plane, but not necessarily with equal ease. We thus
introduce two slip systems aligned with the slip directions s1 and s2. The normal to
the laminate plane is m, and clearly s1 ·m = 0 and likewise s2 ·m = 0. It may well
be natural, but not necessary, to take s1 and s2 to be orthogonal, i.e., s1 · s2 = 0,
but note that due to elastic distortions they may not remain so during deformation.
These vectors will be called s*1, s*2, and m* in the deformed state, but since m* is
to be the normal to the slip plane, i.e., the plane of the laminate, it will always be
the case that s*1 ·m* = 0 and s*2 ·m* = 0 as shown to be naturally described by
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Figure 5. Kinematics of deformation. Note, the total deforma-
tion as prescribed by F is decomposed into a process of interlam-
inar shear followed by an elastic deformation of the orthotropic
framework. Rigid body deformations are described in F*, the de-
formation gradient of the framework. The base vectors 𝑎𝑖 are de-
fined on the laminate itself and thus rotate and deform with the
laminate. For this illustration thermal deformation is not included.
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our expressions for the kinematics of laminate deformation. In fact, it is possible
to take the slip system vectors to be coincident with the laminate base vectors,
a𝑖 and insure that they are convected so that the above stated orthogonality is
preserved; there is no need to do this however. Even though both slip systems have
the same slip plane normal, i.e., m, it will be convenient for symmetry of expression
to refer to m1 and m2 in the expressions below. This makes it easier to establish
correlations with the body of theory for crystal plasticity.

We next introduce two additional slipping systems, labeled 3 and 4 as shown
at the lower right corner of Fig. 5. The slip planes are oriented perpendicular
to the laminate plane and along the fiber directions; this is illustrated by the
planes whose normals are m3 and m4. The slip directions, that lie along the fiber
directions, are s3 and s4, respectively. These systems are what we refer to as the
warp-weave shearing systems. Note that m3 ·m1 = m3 ·m2 = 0, and likewise
m4 ·m1 = m4 ·m2 = 0. Calibration of the properties of the warp-weave systems
relies on measurements of creep response and is generally done as a function of
temperature as described below.

3.3. The laminate theory. The thermo-elastic-viscoplastic response of the
laminate is described using the kinematical scheme as shown in Fig. 6. The unde-
formed, stress free, laminate represents the reference configuration. Each material
particle is described by its reference position vector, X. The 𝛼th slip system of the
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Figure 6. Kinematics of deformation. Note, the total deforma-
tion as prescribed by F is decomposed into a process of interlami-
nar shear followed thermal and then an elastic deformation of the
orthotropic framework. Rigid body deformations are described in
F*, the deformation gradient of the framework. The base vectors
𝑎𝑖 are defined on the laminate itself and thus rotate and deform
with the laminate.
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laminate is described by the orthogonal pair of unit vectors s𝛼,m𝛼; s𝛼 is aligned
with the 𝛼th shear direction and m𝛼 is the unit normal to the 𝛼th slip plane in
the reference configuration. The plastically, thermally, and elastically deformed
laminate represents the current configuration. In the current configuration each
material particle is described by its current position vector, x. The current config-
uration is described by the deformation gradient F = 𝜕x/𝜕X. In order to reach
the current configuration from the reference configuration, we imagine first that
material flows through the undeformed laminate via shears along the various slip
systems-as described just above-to reach the first intermediate configuration which
is described by the plastic deformation gradient, F𝑝. The spatial velocity gradient
of these shears is written as

(3.1) Ḟ𝑝 · F𝑝−1 = �̇�𝛼s𝛼m(𝛼),

where �̇�𝛼 is the shearing rate on the 𝛼 system. From this plastically deformed
state the second intermediate configuration is reached by imagining the laminate
undergoing deformation due to temperature change, described by the thermal defor-
mation gradient, F𝜃, where 𝜃 represents temperature. The spatial velocity gradient
for this is written as

(3.2) Ḟ𝜃 · F𝜃−1 = 𝜃𝛼; 𝛼 = 𝛼𝑖𝑗a𝑖a𝑗 .

𝛼 is a tensor whose components, 𝛼𝑖𝑗 , with respect to time-independent Cartesian
laminate base vectors, a𝑖, are thermal expansion coefficients. These base vectors
are aligned with the laminate planes and slip directions in those planes in the ref-
erence configuration, e.g., the slip directions are aligned in a physically meaningful
way with the fiber directions. This would of course render the matrix of thermal
expansion coefficients in the simplest of forms.

The current, i.e., the deformed, configuration is reached by elastically distorting
the laminate and rigidly rotating it, along with the embedded material, which
is described by the elastic deformation gradient, F*. Hence one has the total
deformation gradient

(3.3) F = F* · F𝜃 · F𝑝.

In reality, the elastic distortion of the laminate, thermal deformation, and inelastic-
i.e., interlamellar and/or warp-weave shearing-occur simultaneously, but it is nonethe-
less clear that the current configuration of this model can be reached by the above
described sequence of events. For a concise presentation of the remaining develop-
ment, we combine deformation gradient parts as follows: we define

(3.4) F̂ = F𝜃 · F𝑝, F̄ = F* · F𝜃.

The driving force for slipping on the 𝛼 slip system is defined as

(3.5) 𝜏𝛼 = m*
𝛼 · 𝜏 · s*𝛼; s*𝛼 = F̄ · s𝛼; m*

𝛼 = m𝛼 · F̄−1; 𝜏 = 𝐽𝜎,

where 𝐽 = det{F} is the Jacobian determinant of the deformation gradient, 𝜏 is
the Kirchhoff stress, and 𝜎 is the Cauchy stress. In eq. (3.5), s*𝛼 is along the 𝛼th

slip direction in the current configuration and m*
𝛼 is normal to the 𝛼 slip plane in

the current configuration. As discussed by Hill and Rice [13], Asaro and Rice [3],
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or more recently by Asaro [12], 𝜏𝛼 is defined as above to make it conjugate to �̇�𝛼,
i.e., so that in fact 𝜏𝛼�̇�𝛼 is the inelastic dissipation rate per unit reference volume.

The constitutive description of the inelasticity on each “slip system” is cast in
terms of the resolved shear stress and slip rate on that system as

(3.6) �̇�𝛼 = �̇� sgn{𝜏𝛼}
{︂⃒⃒⃒ 𝜏(𝛼)

𝑔(𝛼)

⃒⃒⃒}︂1/𝑚

,

where 𝜏𝛼 and 𝑔𝛼 are the current values of the resolved shear stress and slip system
“hardness” (i.e., strength), respectively. In eq. (3.6), 𝑚 is the rate sensitivity
exponent and �̇� > 0 is a reference shear rate, both of which are the same for each
slip system; sgn(··) means the “sign” of {··}. Usually it is sufficient to take the
material parameters 𝑚 and �̇� to be constants in fitting experimental data. Note
that as 𝑚 → 0, rate independent behavior is achieved so that, in this limit, 𝑔𝛼
may be identified with the current slip system strength, 𝜏𝛼. In the general case, for
𝑚 ̸= 0, 𝑔𝛼 is the current slip system strength when shear occurs on the slip system
at its reference rate, �̇�.

The slip system hardness, 𝑔𝛼, is treated as an integral variable whose current
value is obtained by the path dependent integration of the evolution equation

(3.7) �̇�𝛼 = ℎ𝛼𝛽(𝛾𝛼, 𝜃)|�̇�𝛽 |+ 𝑔𝜃𝛼(𝛾𝛼, 𝜃)𝜃; 𝛾𝛼 =

∫︁ 𝑡

0

∑︁
𝛼

|�̇�𝛼|d𝑡,

where ℎ𝛼𝛽 is a matrix of (non-negative) hardening moduli, 𝑔𝜃𝛼 is the rate of change
of slip system hardness with respect to temperature alone, and 𝛾𝛼 is the accumu-
lated sum of slips (aka the accumulated slip). 𝛾𝛼 increases monotonically for any,
even non-monotonic, inelastic loading history and it is similar to the accumulated
effective plastic strain used in flow theories. The initial conditions for this evolution
are specified as 𝑔𝛼(𝛾𝛼 = 0, 𝜃 = 𝜃0) = 𝑔0(𝜃0), where 𝜃0 is an initial temperature.

As regards the thermal deformation, the 𝛼𝑖𝑗 are regarded as being constant,
i.e., are unaffected by either deformation or temperature change. It is important
to point out that in this formulation the material temperature distribution and the
thermal history are considered to be externally prescribed and are not affected by
the deformation; for example, the effects of inelastic dissipation on temperature are
not incorporated. Still another way of saying this is: the thermal and mechanical
processes are taken as decoupled.

The description of the laminate’s response is completed by specifying its elas-
ticity. The stress, S* in the laminate depends solely on the laminate distortion of
its plys, which is expressed in terms of its Green strain, E*. These quantities are
written as

(3.8) E* = 1
2 (F

*𝑇 · F* − 𝐼); S* = 𝐹 *−1 · 𝜏 · 𝐹 *−𝑇 ,

where 𝑆* is the laminate based second Piola-Kirchhoff stress-conjugate to E*, so
that 𝑆* : Ė* is the rate of laminate distortional energy per unit reference volume-
and I is the second order identity tensor. The elastic response is written as

(3.9) 𝑆*
𝑖𝑗 =

𝜕Φ

𝜕𝐸*
𝑖𝑗

; S* = 𝑆*
𝑖𝑗𝑎𝑖𝑎𝑗 ; E* = 𝐸*

𝑖𝑗𝑎𝑖𝑎𝑗 ,
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where Φ = Φ(𝐸*
𝑖𝑗) is the Hemholtz free energy of the laminate per unit reference

volume.2 In rate form we have

(3.10) Ṡ* = K : Ė*; K = 𝐾𝑖𝑗𝑘𝑙𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙; 𝐾𝑖𝑗𝑘𝑙 =
𝜕2Φ

𝜕𝐸*
𝑖𝑗 𝜕𝐸

*
𝑘𝑙

.

This allows the material’s anisotropy to be fully accounted for. Note that the
kinematics of the model follow quite naturally the planes of the plys and thus allow
for a ready description of interlamellar events such as delamination.

The entire constitutive theory can be described by a governing rate form. The
Lagrangian description is chosen, which involves the second Piola-Kirchhoff stress,
S and the Green strain, E defined as

(3.11) S = F−1 · 𝜏 · F−𝑇 ; E = 1
2 (F

𝑇 · F− I),

where both are proper conjugate variables. To derive the governing rate form one
begins by differentiating the first of eq. (3.8) with respect to time to obtain an
expression for Ė*. Next one substitutes eq. (3.3) into the second of eqs. (3.11)
and differentiates the result with respect to time to obtain an expression for Ė.
Combining the expressions for Ė* and Ė and using eqs. (3.1) and (3.2) yields

Ė* = F̂−𝑇 · Ė · F̂−1 − �̇�𝛼A𝛼 − 𝜃B(3.12a)

A𝛼 = sym{F*𝑇 · F* · F𝜃 · (s𝛼m(𝛼)) · 𝐹 𝜃−1}(3.12b)

B = sym{F*𝑇 · F* ·𝛼},(3.12c)

which expresses the additive decomposition of the strain rate on the second inter-
mediate configuration, i.e., the total strain rate is equal to the elastic strain rate
plus the plastic strain rate plus the thermal strain rate. Next combining eq. (3.3),
the second of eqs. (3.8) and the first of eqs. (3.11) it becomes clear that

(3.13) S* = F̂ · S · F̂𝑇 .

After differentiating this with respect to time and combining with eqs. (3.1) and
(3.2) we find that

Ṡ* = F̂ · Ṡ · F̂𝑇 + 2�̇�𝛼H𝛼 + 2𝜃Q(3.14a)

H𝛼 = sym{F𝜃 · (s𝛼m(𝛼)) · F𝜃−1 · S*}(3.14b)
Q = sym{𝛼 · S*}(3.14c)

which expresses the connection between the two stress rates on the second inter-
mediate configuration, i.e., the stress rate is equal to the elastic stress rate minus
a softening due to inelastic deformation and thermal strains. Note that 𝑔(𝛾𝛼, 𝜃)
is also the slip system hardness in the case of isotropic latent hardening. Finally,
the governing constitutive rate form is obtained by substitution of eq. (3.12a) and

2We note that alternatively the laminate’s elasticity may be specified via a standard “laminate
theory” that would then result in the elastic constant tensor as noted in the text.
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(3.14a) into eq. (3.10), yielding

Ṡ = L : Ė− �̇�𝛼X𝛼 − 𝜃Y(3.15a)

𝐿𝑖𝑗𝑟𝑛 = 𝐹−1
𝑖𝑘 𝐹−1

𝑗𝑙 𝐾𝑘𝑙𝑝𝑞𝐹
−1
𝑟𝑝 𝐹−1

𝑛𝑞(3.15b)

L = 𝐿𝑖𝑗𝑘𝑙a𝑖a𝑗a𝑘a𝑙; F̂−1 = 𝐹−1
𝑖𝑗 a𝑖a𝑗(3.15c)

X𝛼 = F̂−1 ·R𝛼 · F̂−𝑇 ; R𝛼 = K : A𝛼 + 2H𝛼(3.15d)

Y = F̂−1 · Z · F̂−𝑇 ; Z = K : B+ 2Q.(3.15e)

Given the current state, 𝒮 = {S*,E*;F𝑝,F𝜃, 𝑔𝛼}, which is described by both
state variables and internal variables, one obtains the slipping rates, �̇�𝛼, unambigu-
ously from eq. (3.6). The state 𝒮 also unambiguously specifies the tensors L, �̇�𝛼X𝛼,
and Y so that eq. (3.15a) provides an incrementally linear relation between Ṡ and
Ė. Use of linear elasticity means that the 𝐾𝑖𝑗𝑘𝑙 are invertible, since inelasticity is
incompressible we have det(F𝑝) = 1 and for finite thermal expansion coefficients
it can be shown that det(F𝜃) > 0 so that the tensor L is invertible. Hence, the
relation between Ṡ and Ė is always invertible ensuring uniqueness of solutions to
mixed boundary value problems within the context of this theory.

3.4. Fiber degradation & failure. Fiber, or fabric, response and primarily
in tension is taken to be linear elastic up to a critical strain, 𝜖𝑐, as indicated in
Fig. 7. At 𝜖𝑐 and at larger strains the fiber, or fabric, stiffness degrades according
to the curve labeled (2) in the figure. Eventually the fibers, or fabric, lose all
stiffness (i.e., break). Residual degradation is also modeled as indicated by the
dashed line, that is upon unloading and reloading the stiffness is reduced by the
damage envisioned to have occurred.

Figure 7. Fibers, or fabric, are modeled as linear elastic up to a
point of a critical strain as indicated by point (1). Thereafter their
stiffness is degraded as indicated by curve (2). Note that residual
stiffness is also modeled as indicated by the dashed line so labeled.
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As noted in the Introduction, Section 1, fiber fracture is to be fully implemented
in Part II of this series and thus will be detailed there. This brief description is for
perspective only.

3.5. Decohesion of composite laminates and interfaces. There are sev-
eral forms of composite decohesion (aka delamination) that are vital in the process
of structural failure. One, illustrated in Figs. 1 and 2, involves the separation of
laminate skins from structural cores; interestingly in both cases the delamination
was triggered by structural core shear failure. A second is the delamination of
individual plys as illustrated in Fig. 4c.

3.6. Numerical implementation. The numerical implementation uses back-
ward Euler to integrate the second Piola-Kirchhoff stress rate form in Eq. (3.15a),

(3.16) S𝑛+1 = S𝑛 +△𝑡(L : Ė− �̇�𝛼(S
𝑛+1)X𝛼)

where Eq.s (3.5) through (3.7) are used to express the inelasticity and the hardness
evolution through the updated stress on the right hand side. The thermal contri-
bution in Eq. (3.15a) is handled through operator splitting in a separate thermal
step, and the temperature is treated as constant during the mechanical time step.
The resulting system of six nonlinear algebraic equations with residuals R(S𝑛+1)

(3.17) R(S𝑛+1) = S𝑛+1 − Strial +△𝑡�̇�𝛼(S
𝑛+1)X𝛼 = 0

are solved using full Newton iteration. The “trial” terminology is borrowed from the
radial return approach to integrating 𝐽2 plasticity equations with backward Euler,

(3.18) Strial = S𝑛 +△𝑡L : Ė.

3.7. Calibration of the constitutive model. To account for the loss in
material stiffness at elevated temperatures we will take the degradation in proper-
ties to be described by a master degradation function for all components of moduli,
namely one that is monotonically decreasing with increasing temperature. This
means that in eq. (3.20) 𝐾𝑖𝑗𝑘𝑙 ← 𝑓(𝑇 )𝐾𝑖𝑗𝑘𝑙, where 𝑓(𝑇 ) is the monotonically
decreasing function shown in the figure. It should be possible to improve on this
simple representation of stiffness degradation with further experimental study of
the effect of temperature on anisotropic stiffness. Losses in shear strength are han-
dled, again as a first step in our modelling, by replacing 𝑔(𝛾𝑎) in eq. (3.6) with
𝜂(𝛾𝑎), where 𝜂 = 𝑟(𝑇 )𝑔(𝛾𝑎). The function 𝑟(𝑇 ) is to be determined by experimental
documentation of the effect of temperature on the resistance to interlaminar shear.
Thus, the shearing rates are calculated from,

(3.19) �̇�𝛼 = �̇�0𝑠𝑔𝑛{𝜏𝛼}
{︂⃦⃦⃦ 𝜏𝛼

𝜂𝛼

⃦⃦⃦}︂1/𝑚

,

In the examples shown in the next section 𝑟(𝑇 ) is taken to be of the same general
monotonically decreasing form as 𝑓(𝑇 ).

In general, orthotropic elastic symmetry is presumed although the materials will
often possess transverse isotropy. Thus the elastic constants will have components,
when phrased on the orthotropic axes of the form,

(3.20) K = 𝐾𝑖𝑗𝑘𝑙a𝑖a𝑗a𝑘a𝑙.
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If the common convention of index contraction is used, i.e., 11� 1, 22� 2, 33� 3,
23, 32� 4, 13, 31� 5, and 12, 21� 6, the matrix of components becomes,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐾11 𝐾12 𝐾13 0 0 0
𝐾12 𝐾22 𝐾23 0 0 0
𝐾13 𝐾23 𝐾33 0 0 0
0 0 0 𝐾44 0 0
0 0 0 0 𝐾55 0
0 0 0 0 0 𝐾66

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
the elements of this stiffness matrix may be formed directly from experimental
measurement of the elastic moduli, or from standard laminate theory.

To determine values for the reference shear strain rate 𝛾0, the initial and fi-
nal flow stresses (𝑔0 and 𝑔∞, respectively), the initial hardness modulus ℎ0 and
the strain rate sensitivity exponent 𝑚𝑠𝑟𝑠; a multiparameter optimization was per-
formed using a computational implementation of this material model to match
experimental creep data obtained via Professor J. Lesko at Virginia Tech. The
experimental values were for a biaxial e-glass vinylester composite, subject to creep
when loaded in in-plane tension at a 45∘ from both initial fiber directions, and
took the form of normalized warp-weave shear strain vs. time curves measured at
a variety of temperatures; the temperature of 90 ∘C only was used for the current
purpose. The optimization was performed over all five variables simultaneously
using an implementation of the Nelder–Meade Simplex Algorithm, together with
penalty functions to keep parameters within what were deemed reasonable bounds.
The algorithm was run over a grid of ninety-seven initial value combinations. The
values thus determined were 𝛾0 = 1.81 × 10−6, 𝑔0 = 0.0386MPa, 𝑔∞ = 6.63MPa,
ℎ0 = 6950, and 𝑚srs = 0.0727. The optimum fit is shown in Fig. 8. In fact, the fit is
not ideal; this is due to the fact that the general hardening function used is unable
to accurately represent this phenomena-a better analytic form for the hardening
function should be determined. Further note that the interlaminar response has not
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Figure 8. Creep data curve-fitting. Data taken from Boyd et al. [9].
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been measured directly-however the warp-weave properties are used for these slip
directions as well because they represent the best available data. To estimate the
shear degradation function 𝑟(𝑇 ), a simplified optimization was repeated for tem-
peratures 30 ∘C, 60 ∘C, 90 ∘C, and 110 ∘C. The degradation of these parameters was
found to closely follow the line 𝑟(𝑇 ) = −0.00787𝑇 + 1.157, insofar as 0 < 𝑟(𝑡) 6 1.

4. Examples: dynamic panel response
We consider two examples of compressive deformation of sandwich panels, one

with superimposed bending, as example applications of the constitutive model. The
examples are specifically chosen to illustrate the ability of the model to predict
failure modes such as kinking and the interaction of local modes such as kinking
on global response. We note, as discussed above, that with degradation due to
elevated temperatures, interlaminar shear, i.e., slip, is induced and this will lead to
an early onset of failure modes such as kinking. Of course, other failure modes such
as skin wrinkling are also likely to be triggered and these will compete with failure
modes such as structural buckling and kinking. Our constitutive and numerical
framework is capable of describing all these modes, as they compete, en toto. In
the present examples, however, we will focus on kinking as described in the first
example below. The examples illustrate, however, the occurrence of faceskin/core
debonding as triggered by kinking. In our second example we augment the failure
scenario with the occurrence of core shear failure triggered by superposed bending,
the bending caused by transverse pressure as would occur via shock and/or impact,
or via blast overpressure.

4.1. Kinking/debonding of sandwich composite skin. Our first example
is designed to illustrate the phenomena of kinking and thus is based on a particular
geometry that isolates the phenomena. Specifically, we analyze a short i.e., “stubby”
laminate loaded compressively. The stubbiness makes global buckling occur at loads
much higher that those required for kinking. As kinking is primarily influenced by
interlaminar shear, we do not anticipate an important influence of creep, i.e., warp-
weave shear, in this first example. This, as it happens, was observed.

4.1.1. Problem description. The sandwich is taken to be symmetric and con-
sists of a relatively compliant core (balsa wood) and skins of symmetric lay-up with
respect to the mid-plane of the sandwich, held together by an adhesive layer. In
the particular case examined, the core is 50mm thick, and the skins are of 1.75mm
thickness. Figure 9 shows a schematic view and the finite element mesh and helps
to explain the model. The specimen is further taken to be 100mm tall, and is
modeled with plane-strain constraint in the 𝑦 direction (into the plane of the draw-
ing) with one layer of solid hexahedral 8-noded finite elements. Only one half is
discretized as symmetry is assumed. It is noted here, and below, that the specimen
is purposely taken to be “stubby” so as to effectively preclude the appearance of
structural buckling. This is done so that the appearance of kinking modes, that are
inherent in the theory, would be highlighted. As discussed below, when more slen-
der specimens are analyzed, kinking modes would compete with structural buckling
modes and indeed a typical specimen, or structure, would display combinations of
such modes; such is the case in Example # 2.
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Figure 9. View of the overall geometry and the zoom-in of the
imperfection area. The balsa core and the carbon/vinylester skins
are 25 mm and 1.75 mm thick, respectively. Note the imperfection
in laminate orientation, 𝛼. This stubby specimen has an aspect
ratio of 2.

The core is modeled as an isotropic elastic material although full anisotropic
laminate geometry is included. The constitutive model outlined above is used for
the skin of the composite with slip plane normal parallel in the reference configura-
tion, viz. the 𝑥-direction, to the surface of the skin. There is, however, a geometrical
imperfection in the slip plane normal at about the midpoint of the panel. In par-
ticular, between 𝑧 = 35mm and 𝑧 = 45mm, the orientation of the laminate, and
thus the slip plane normal, is assumed to deviate from the 𝑥 direction by an angle
𝛼. The imperfection, characterized by the angle 𝛼, is shown in the insert to Fig. 9.3

When the specimen is subjected to compression in the 𝑧 direction, we therefore
expect to see kink(s) formed in the skin(s) of the sandwich composite. The core and
skins are held together by a single layer of thin elements, designed to replicate the
adhesive layer. These elements have properties designed to simulate the debonding
of the skin once the maximum strength of the adhesive (or tensile strength of the
core) is reached. In particular, when the positive principal stress value exceeds a
given limit, the element’s internal stress is assigned a zero value, thus effectively
deactivating the quadrature point. This limiting decohesive stress is 𝜎max = 1MPa.

4.1.2. Material Parameters. For computational economy, in this example, only
the center part (35mm < 𝑧 < 65mm) of the specimen skin is elasto-viscoplastic;
other parts of the skin are assumed to remain (hyper-) elastic. The constitutive pa-
rameters of the skin material are as follows: elastic constants are 𝑐11 = 204 000MPa,

3The imperfection is a section of laminate that is misaligned with the 𝑧-direction by angle 𝛼.
Most typically such imperfections involve wavy laminate; the angle 𝛼 is taken as constant here.
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𝑐12 = 68 000MPa, 𝑐44 = 68 000MPa, (implying isotropy), isotropic or Taylor hard-
ening parameter 𝑞 = 1, initial hardening rate ℎ0 = 1, reference shear strain rate
𝛾0 = 300, initial flow stress 𝑔0 = 27MPa, saturation strength 𝑔inf = 30MPa, strain-
rate sensitivity exponent 𝑚srs = 0.05, material density 𝜌 = 1.6× 10−9 tonm−3.
Note that it has been assumed that the skins are elastically isotropic for the exam-
ple shown.

The core is elastic, and the material parameters are as follows: Young’s modulus
𝐸 = 17 000MPa, Poisson’s ratio 𝜈 = 0, material density 𝜌 = 0.6× 10−9 tonm−3.
The adhesive layer elements are assigned a tensile cut-off strength of 1MPa.

4.1.3. Initial and Displacement Boundary Condition. The top surface is made
to move downwards at various rates, 𝑣, with velocities in the range 25mms−1 6
𝑣 6 400mms−1 with the bottom surface of the specimen fixed in the 𝑧 direction.
Therefore, the initial condition is a linearly interpolated velocity distribution in the
𝑧 direction. This corresponded to imposing a nominal compressive strain rate, �̇�,
in the range 0.25 s−1 6 �̇� 6 4.0 s−1.

A plane-strain constraint is applied in the 𝑦 direction, and the skins at the top
and bottom portions of the model are prevented from moving in the 𝑥 direction
to prevent global buckling mode of failure. We note that, in general, global buck-
ling is a failure mode that competes with kinking. We preclude it here, by our
choice of geometry, because we are more interested at this point at examining the
phenomenology of materials, rather than structural, failure modes. The latter are
examined in our second example.

We note at this point that the formation of a kink within the faceskin involves
the development of large tensile normal stresses across the faceskin/core interface;
this is anticipated to lead to debonding of that interface. Moreover, as the kink
develops the fibers within it are subject to large tensile strains that eventually lead
to fiber fracture and thereby to fragmentation. Although not covered in this Part I,
as noted above, this will lead to complete failure beyond the stages described herein.

4.1.4. Results. The results are reported in several ways. First we show the
essential phenomenology of kink formation leading to delamination and then show
the effects of imposed rate and imperfection details on this behavior.

In Fig. 10a the deformed mesh is shown at a time of 0.004 s, that corresponds
to a peak load of approximately 930N. The imposed top edge velocity in this
simulation was 𝑣 = 100mms−1 which corresponded to a nominal deformation rate
�̇� = 1.0 s−1. In Fig. 10a the plot is of the bottom half of the specimen; complete
views of the specimen are shown in Fig. 11. It is clear that a kink has formed that,
in turn, leads to large tensile stress at the skin/core interface; this then leads to
debonding as is evident in the figure.

The process of kinking and structural degradation is affected by imposed defor-
mation rate as shown in Fig. 10b. As the deformation rate increases the peak load
also increases as well as the time to acquire peak loading. This a direct result of
the rate dependence of inelastic interlamellar shearing due to the strain rate depen-
dence of interlamellar inelastic deformation described via flow laws such as given by
eq. (3.6). The observation that the peak load increases with compressive deforma-
tion rate reflects the rate dependence of interlamellar shear strength as embodied



CONSTITUTIVE MODELING FOR FRP COMPOSITE MATERIALS... 223

Figure 10. (a) Deformed mesh for the case where the upper
boundary velocity was 𝑣 = 100mm/s and the imperfection angle
𝛼 = 7∘. The peak load at this point was about 930N and occurred
at a time of 0.004 s. The effect of the imperfection is to cause fiber
kinking that then led to debonding of the faceskin/core interface.
(b) Peak force vs. displacement for various upper boundary veloc-
ities of 25, 50, 100, 200, and 400mm/s for curves A through E,
respectively. Note the relationship of peak force vs. deformation
rate reflecting the strain rate dependence of interlamellar inelastic
shear vs. strain rate.

in the rate rule of eq. (3.6). Indeed, kinking essentially occurs coincidentally with
interlamellar inelastic shear. This is also reflected in the dependence of peak load
on imperfection angle, 𝛼, as discussed next.

The effect of imperfection angle, 𝛼, on “kink band faceskin/core debond phe-
nomenology” is shown in Fig. 11; the simulations involved here are for a compressive
deformation rate of �̇� = 1.0 s−1. Figure 11 contains full specimen contours of ef-
fective plastic strain for 5 values of 𝛼, viz., 𝛼 = 1.25∘, 2.5∘, 5∘, 7.5∘, 10∘ as viewed
from left to right; the fringe scales are shown in the lower left corner of the figure.
It is noteworthy that as the imperfection angle becomes larger the kink becomes
more localized in the sense that the zone of intense inelastic shear becomes more
spatially confined. Moreover, as 𝛼 increases, the resultant faceskin/core debonding
is shifted more to one side of the imperfection, viz., atop it.

The resulting force vs. displacement, at fixed rate, is also affected by imper-
fection angle as shown in Fig. 12; from this we extract the effect of imperfection
angle, 𝛼, on peak force. The peak forces follow a relationship that may be fitted to
the relation

(4.1) 𝐿max ≈ 4.75× 103
{︁ sin(2𝛼0)

sin(2𝛼)

}︁0.8

,

where 𝛼0=1.25∘. This fit is approximate, nearly linear in the ratio sin(2𝛼0)/sin(2𝛼),
but is consistent with the observation that kinking, and peak load, occur coinci-
dentally with achieving a critical resolved shear stress on the laminates within the
“imperfect” region. This is so since the resolved shear stress, call it 𝜏 , on a plane,
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Figure 11. Effect of imperfection angle, 𝛼, on kink formation.
The imposed deformation rate for all cases shown here was �̇� =
1.0 s−1. Figures from left to right show contours of effective plastic
strain for case where 𝛼 = 1.25∘, 2.5∘, 5.0∘, 7.5∘, 10.0∘. Scale bar
at lower right is of effective plastic strain.

(i.e., the laminate slip plane) inclined at angle 𝛼 to the direction of uniaxial com-
pression is given by

(4.2) 𝜏 = 1
2 sin(2𝛼)𝜎,

with 𝜎 being the compressive stress. Thus, if the onset of kinking in such cases as
described in this simulation is coincident with the onset of inelastic shearing within
the laminates, then we expect such a nearly linear inverse relation between peak
load (i.e., stress) and sin(2𝛼).

Finally, we note that the peak displacement at peak force is also affected by
imperfection angle as shown in Fig. 13. This shows what should at this point be an

Figure 12. (a) Force vs. displacement as affected by imperfection
angle, 𝛼.
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expected trend of decreasing maximum compressive displacement with imperfection
angle; given eq. (4.2) it seems plausible that it would take a lower overall com-
pressive strain to reach a critical value of load and hence 𝜏 to trigger interlamellar
shear and thus kinking.

Figure 13. Peak displacement vs. 𝛼 for the cases shown in
Figs. 11 and 12.

An important perspective to gain, however, is that although the onset of such
phenomena such as fiber crushing and kinking may set limits to maximum load bear-
ing capacity, the ultimate response, and progression of failure, of a FRP composite
structure is determined by a complex sequence of subsequent deformation/failure
events. It is thus necessary to simulate a more complete sequence of events as our
next example demonstrates.

4.2. Structural failure as influenced by core shear induced kinking
and debonding. In this second example, a model of a sandwich panel is developed
and analyzed both with and without elastic-viscoplastic behavior, to demonstrate
the critical role viscoplastic microbuckling (shear kinking) plays in the development
of global structural failure. As noted in the first example, interlaminar shear in-
duced kinking is caused by critically high interlaminar shear stresses due to initial
fiber misalignments present within the composite. These initial imperfections are
known to be present, and indeed have been measured and statistically characterized
for carbon fiber composites (see e.g., Yurgartis, 1987 [10]). Thus a model without
such imperfections does not completely represent a realistic material description
that must include inevitable manufacturing defects. This example will show that
in cases where kinking is a contributing failure mode (as is common in compres-
sively loaded composites), a failure to fully represent the material physics that lead
to kinking will, in turn, lead to significantly incorrect results. The case to be pre-
sented is, in fact, one in which a local mode such as kinking directly interacts with
a global mode, viz. structural buckling. In addition, we include the possibility of
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core shear failure, a mode that is common in sandwich panels subjected to bend-
ing. Bending is induced via imposed transverse pressure, simulating either impact
or shock wave (e.g., blast) loading.

As noted in Fig. 1 and also in Fig. 3, as examples, structural failure often
initiates as a material failure such as core shear that then leads to debonding
and loss of all structural integrity. In this example we demonstrate how multiple
material failure modes such as core shear couples to laminate kinking that, in
concert, lead to interface seperation and complete global structural failure. This,
therein, demonstrates the utility of our constitutive model and our overall approach.

4.2.1. Problem description. A full sandwich panel is modeled, see Fig. 14a, im-
plementing our material model with an initial fiber misalignment in one skin. The
span (i.e., height) is now larger than used in Example #1 and is set at 200mm; the
core 12.69mm, and the skins 3.56mm in thickness. This more slender geometry
allows for a bending mode of deformation essentially precluded in our first example.
In the finite element mesh, eight-node hexahedral finite elements are used. The so-
lution is achieved via a dynamic relaxation method for convenience of implementa-
tion. For computational economy, again only the center portion (92 < 𝑧 < 108mm)
of the specimen skin is elastic-viscoplastic; other parts of the skin are assumed to
remain elastic. The constitutive parameters of the skin material are as follows:
elastic constants are 𝑐11 = 204 000MPa, 𝑐12 = 68 000MPa, 𝑐44 = 68 000MPa,
(implying isotropy), isotropic or Taylor hardening parameter 𝑞 = 1, initial hard-
ening rate ℎ0 = 3130, reference shear strain rate 𝛾0 = 5.36 × 10−8, initial flow
stress 𝑔0 = 0.296MPa, saturation strength 𝑔∞ = 6.03MPa, strain-rate sensitivity
exponent 𝑚𝑠𝑟𝑠 = 0.0454, material density 𝜌 = 1.6× 10−9 tonm−3.

The imperfection in laminate orientation, placed in the first skin of the panel, is
of the same type as in our first example. The imperfection is a section in which the
laminates are misaligned with the vertical, i.e., the 𝑧-direction, by an angle 𝛼. As
compression is applied in the z-direction, the imperfection is essentially removed
by setting 𝛼 = 0, at least under pure uniaxial compression; the loading here is,
however, a combined compression+ bending. The core is elastic, and its material
parameters are as follows: Young’s modulus 𝐸 = 1700MPa, Poisson’s ratio 𝜈 = 0,
material density 𝜌 = 0.6× 10−9 tonm−3. An adhesive layer is present between the
core and the first skin, and its elements are assigned a tensile cut-off strength of
1MPa. In addition, we allow for core shear failure along a line triggered when the
shear stress attains a critical value, 𝜏crit = 1.0MPa. The general region most likely
to undergo core shear failure is indicated in Fig. 14a.

4.2.2. Initial and Displacement Boundary Conditions. The model is subject to
plane-strain boundary conditions in the 𝑦 direction (i.e., it is one element layer in
depth). As in example # 1, a downward velocity, 𝑣, is imposed on the top edge (see
Fig. 14c). A bending moment is induced via the imposition of a ramp of transverse
pressure, 𝑝(𝑡), also indicated in Fig. 14c. This moment is initially zero, then is
ramped up to a maximum level and held constant; it has the general form

(4.3) 𝑝(𝑡) =

{︃
𝛽𝑡, 𝑡 6 𝑡𝑓

𝛽𝑡𝑓 = 𝑝max, 𝑡 > 𝑡𝑓 .
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In this example 𝑝max is set at xxxN. Two cases are discussed in detail here,
one where 𝛼 = 0∘ (i.e., no imperfection) and where 𝛼 = 5∘.

4.2.3. Results. Figures 14b,c show specimen snapshots at specific times, viz.
𝑡 = 0.001 s and 𝑡 = 0.0002 s for the cases where 𝛼 = 0∘ and 𝛼 = 5∘, respectively.
The overall, i.e., global, specimen response is clearly, and remarkably, different
without and with an imperfection. In both cases, core shear failure occurs essen-
tially injecting a shear/opening mode crack onto the core/skin interface. However,
the defining effect of the imperfection is to induce kinking and a dramatic loss
in bending stiffness. The specimen then undergoes collapse followed by extensive
core/skin debonding. In contrast, without the imperfection the specimen retains
bending stiffness and structural integrity despite the presence of the obvious core
shear/opening mode crack (which is, of course, transverse to the specimen’s span).

Additional perspective is gained vis-à-vis the specimen’s global response by
following the specimen’s transverse displacement, i.e., 𝑑 as defined in Fig. 14c; this
is shown in Fig. 15. With an imperfection, and as suggested by Fig. 14c, the
specimen is driven to collapse. Without an imperfection, the specimen undergoes
a vibratory transverse motion while continuing downward compression. At least
under the boundary conditions used here, the specimen is far from collapse during
the times considered. With 𝛼 = 5∘, the structural failure of the panel is thus
essentially catastrophic. With values of 𝛼 in the range 0 < 𝛼 6 5∘, collapse still
occurs albeit at longer times and larger net compressive deflections.

200mm

}v

p(t)

d

likely region

of core shear

failure

(a) (b) (c)

Figure 14. Example 2: (a) A full panel is modeled with one skin
containing a geometrical imperfection as described for example #
1; the imperfection, i.e., defect, described by angle 𝛼 is located in
one skin as indicated. (b), with 𝛼 = 0∘ and at time 𝑡 = 0.001 s,
and (c), with 𝛼 = 5∘ and 𝑡 = 0.0002 s, show the specimen after
being subjected to a compressive velocity of 𝑣 = 100mms−1 and a
transverse pressure of 𝑝(𝑡) described in the text. Note that a shear
crack formes across the core in all cases; the likely region of such
cracks is indicated in (a).
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To explore the effect of imperfection severity, simulations were carried out with
imperfections in the range 0 6 𝛼 6 5∘; the results for transverse deflection are
also shown in Fig. 15. As noted in that figure, with 𝛼 = 1.25∘ the specimen
is seen to collapse albeit at longer times. Between 𝛼 = 1.25∘ and 𝛼 = 0∘, the
specimen’s transverse response becomes vibratory and for the durations considered
avoids catastrophic collapse. Thus the structural response is quite sensitive to
imperfection severity. It may indeed be the case that the structural response is
sensitive to imperfection type as well.

Figure 15. Example 2: Lateral displacement vs. time for cases
with various imperfections, 0 6 𝛼 6 5∘.

5. Discussion and conclusions

The examples shown above were chosen to illustrate the versatility of our phys-
ically based theory/model and, in particular, the important interplay between local
“material-like” failure modes such as skin crushing or kinking and global response.
For these purposes the boundary conditions were chosen to highlight critical phe-
nomenology that are driven by such localized material failure modes. Clearly, the
inclusion of realistic descriptions of material structure, such as laminate perfection,
is vital as demonstrated via Example #2. This, in fact, highlights a significant
benefit of our physically based kinematics. Calibration of ad-hoc FRP composite
failure models as reviewed in [1, 2] would be not merely prohibitively expensive in
terms of financial burden and time for experimental calibration, but unreliable as
such calibration would be on a “case-by-case” basis for every different material en-
countered and each particular scenario. Our approach, on the other hand requires
a relatively simple set of experimental calibrations that are then used to simulate
a quite wide range of scenario’s.

Example #2 requires a bit more discussion. In actual loading scenario’s (i.e.,
loading events), that may occur for example during blast, shock, or impact, imposed
motions and/or forces are typically transient. Considering this, we might well
reassess the results shown in Fig. 14 as follows. Without an imperfection, and for
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event durations of say less than 1 − 3ms, the specimen may have been judged to
have survived. The presence of a material defect, however, alters this assessment
considerably; in fact, the specimen and hence the structure would be judged to have
failed, globally. This is not a mere difference of degree, but a difference in deciding
failure or no failure! The salient point here is that anticipating failure modes-as
complex as they are in FRP composites-and “rigging” ad-hoc constitutive models in
attempts to reproduce them is destined to be neither reliable nor viable given the
variability of failures modes and patterns. Fiber rupture leading to fragmentation
is an interesting and hence intriguing next step.

Carrying this discussion further, as we intend in Part II of this report, we would
then ask about the subsequent events triggered by fiber rupture. Fiber rupture
would, indeed, be expected at points where the local tensile stresses are extreme
and this, in turn, would be expected at sites of extreme laminate bending at kinks
and regions of sever bending. Even a cursory examination of Figs. 14b,c would be
sufficient to expect that with defects accounted for, as in Fig. 14c, there is far more
likelihood of fiber rupture, and hence more accurate prediction of it by accounting
for material defects. Fiber rupture is to be initially modeled using a simple critical
tensile stress criterion as depicted in Fig. 7. Although ad-hoc, such a criterion is
credible for such fibers that are essentially linear elastic until undergoing brittle-like
fracture.
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КОНСТИТУТИВНО МОДЕЛОВАЊЕ FRP
КОМПОЗИТНИХ МАТЕРИJАЛА КОJИ

ПОДЛЕЖУ ЕКСТРЕМНОМ ОПТЕРЕЋЕЊУ

Резиме. Развиjен jе физички заснован модел коначних деформациjа коjи
зависи од брзине и температуре ради симулациjе оштећења FRP композитних
материjала и структура. Врсте оштећења укључуjу између осталог: дробљење
влакана и увиjање коjе се jавља приликом екстремног оптерећења; прелом вла-
кана коjа се jавља, на пример, при фрагментациjи; интерламинарно смицање
на повишеним температурама и коjе доводи до увиjања; одваjање и раслоjа-
вање укључуjући везу са ламинатним увиjањем; растакање као у шупљим FRP
панелима. Теориjа/модел jе у могућности да опише квази-статичку деформа-
циjу (укључуjући и пузање) на повишеним температурама, као и динамичку
деформациjу и оштећење коjи се jављаjу током ударца, експлозиjе или удара.

Модел се имплементира у LS DYNA и описани су конкретни примери симу-
лациjа коjи илуструjу валисност теориjе/модела. У првом делу фрагментациjа
ниjе детаљно обухваћена. Прелом влакана и фрагментациjа са специфичним
примерима разматра се детањниjе у другом делу.
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