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Abstract. Scoliosis, being one of the most widespread spinal diseases among
children, has been studied extensively throughout the history of medicine, yet
there is no clear understanding of its initiating factors and the mechanogenesis
of the monomorphic three-dimensional deformation due to its polyetiological
nature. We present a novel mathematical model of the process of emergence
of the three-dimensional deformation of the human spine based on variational
principles. Typical scoliosis geometry is assumed to be described as minimal
curves of a particular energy functional, which are shown to closely resemble
actual scoliosis. We investigate the numerical properties of the first stage of
scoliosis, which is shown to have the highest influence on the development of
the disease.

1. Introduction

A successful treatment of any disease is always preceded by obtaining a clear un-
derstanding of the cause of the onset of that condition (pathogenesis), the features
of its course and development, and what reaction the organism will demonstrate to
arrest that process (sanogenesis) [13,14]. There do exist a variety of methods of
studying the human body that are used for this purpose. The study of idiopathic
scoliosis is not an exception, but despite the whole array of results obtained, there
is still no clear understanding of its initiating factors and the mechanogenesis of
the monomorphic three-dimensional deformation due to its polyetiological nature.
However, its direct connection with the process of growth is evident, as is the fact
that it is always monomorphic (3D deformation) [1, 2, 4]. This treatment of the
disease enables one to use mathematical methods in understanding its initiation
and evolution, which is essential for the development of successful pathogenetic
treatment strategies.

There do exist a number of mathematical models of biomechanical processes in
the human spine, which can be classified into static and dynamic [5,11,15]. Static
models are able to predict internal tension, deformations and other biomechanical
properties of the spine under strain. In [3] a static model was used to reveal

2010 Mathematics Subject Classification: 92C10; 74L15.
Key words and phrases: spine, model, variational method.

167

https://doi.org/10.2298/TAM170818012P


168 POPOV, LISITSA, BALOSHIN, DUDIN, AND BOBER

the stages of the evolution of a scoliosis-like deformation in a two-column model
imitating a real spine. In this model, the spine is represented as two columns: the
dorsal (back) column, consisting mainly of the spinal cord, and the ventral (front)
column, that contains spine bones and muscles. The positions of these columns are
shown in fig. 1 where one vertebra is schematically drawn. The spinal cord, forming
the dorsal column, is in the centre. It is protected from mechanical damage by a
vertebra which, in its turn, is a part of the second, ventral, column. The growth
rates of these two columns are predetermined by different factors. Correspondingly,
an imbalance in their lengths can appear. Taking into account that both columns
are fixed jointly from the top and the bottom, one can understand that the columns
should become deformed. More precisely, a 3D deformation should appear. The
form of the spine in this initial stage of scoliosis is very important from the medical
point of view, because it predetermines the following stages. The present paper is
focused on the creation of a mathematical model for this stage of scoliosis.

Figure 1. One segment of the human spine

Unfortunately, it turned out that the representation of the vertebral complex
in the form of a set of two parts (columns) is not enough for a clearer and more
detailed understanding of the development of the process of 3D deformation of
the spinal column, since it does not reflect all the features of the structure and
homeostasis of the vertebral complex. But it allows one to predict some dangers.

Models of another type, dynamic models, usually consider sequences of verte-
brae, connected with spring bonds [10,12]. These models, being fairly computa-
tionally simple [5], make it possible to investigate the dynamics of some parts of the
spine. However, they are unable to display the dynamics of the spine as a whole [9].
To sum up, it can be concluded that currently all the known models cannot provide
an adequate description of all the mechanical processes in the human spine.

In this work we present a new variational mathematical model of the three-
dimensional deformation of the human spine.

2. The model

Having the whole physiological background in mind, we base the model on the
following assumptions:

∙ The human body stays in a vertical state to ensure its normal functioning.
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∙ Spine vertebrae have a limited relative movement ability, due to mechan-
ical obstructions and muscles. This ability is different at different parts
of the spine.

∙ Scoliosis occurs only after the spine becomes straight, and its first phase
can be described as the ventral column turning around the dorsal column.
The distance between the columns can be approximated by a linear or even
a constant function.

∙ The main cause of scoliosis is a lack of balance in the growth of the columns
in the two-column model.

Translating this into mathematical form, we obtain the following:

∙ Spine in the early stages of scoliosis is modelled as a curve on the surface of
a cylinder, the cylinder’s axis being the static dorsal column and the curve
itself being the mobile ventral column. The cylinder’s radius 𝑅 represents
the distance between the two columns. The curve is approximated as a
function 𝜙(ℎ), indicating the angle of the spine’s deviation from a straight
line. This function’s argument ℎ is the height of the corresponding point
of the spine over its bottom, and belongs to the interval [0, 𝐻], where 𝐻
is the spine’s height. ℎ = 0 corresponds to the bottom of the spine, while
ℎ = 𝐻 is the top. The equation of the curve in cartesian coordinates is

𝛾(ℎ) =

⎛⎝𝑅 cos𝜙(ℎ)
𝑅 sin𝜙(ℎ)

ℎ

⎞⎠
∙ The length of the curve (the ventral column) is bigger than the cylinder’s

height 𝐻 (the dorsal column), thus forcing the curve to appear bent. The
length is calculated as (the dot marks the derivative with respect to ℎ):

𝐿 =

∫︁ 𝐻

0

‖�̇�‖𝑑ℎ =

∫︁ 𝐻

0

√︀
𝑅2(�̇�(ℎ))2 + 1 𝑑ℎ.

∙ The vertical appearance of the human body leads to the following bound-
ary conditions for the curve:

𝜙(0) = 0, 𝜙(𝐻) = 0,

�̇�(ℎ), �̇�(𝐻) = 0.

∙ Assuming that the spine tries to minimise the local curvature, the follow-
ing functional is considered, inspired by works on solid mechanics [7]:

𝐾 =

∫︁ 𝐻

0

𝛼(ℎ)(𝜅(ℎ))2𝑑ℎ,

where 𝛼(ℎ) is some empirical spine mobility coefficient and 𝜅(ℎ) is the
curvature of 𝛾:

𝜅(ℎ) =
‖�̇� × 𝛾‖
‖�̇�‖3

.
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After substitution for 𝛾 this becomes

𝐾 =

∫︁ 𝐻

0

𝛼(ℎ)
𝑅2(�̇�(ℎ))4 +𝑅4(�̇�(ℎ))6 +𝑅2(𝜙(ℎ))2

(𝑅2(�̇�(ℎ))2 + 1)3
.

It is known [8] that the curvature of a thin beam is proportional to the beam’s
bending moment, and the total elastic energy is proportional to the integral of the
squared curvature. Assuming that roughly the same mechanical processes happen
in a bent human spine, the proposed functional 𝐾 is conjectured to represent the
energy of the system. This in turn suggests studying the model in the framework
of classical mechanics using this energy functional.

3. Least-energy curves

Any classical mechanical system attempts to minimise its overall energy. This
is impossible to achieve in pure closed systems due to the energy conservation law,
which forces the system to oscillate near the local minimum or to follow some more
complicated trajectories. However, real systems rarely appear closed, and energy
loss due to interactions with the external environment typically forces them to move
towards the local minimum. The human spine is definitely involved in mechanical
interactions with almost any part of the body, prohibiting its treatment as a closed
system. This suggests that the spine in scoliosis should stay at the local minimum of
energy. Hence, curves of minimal energy are of special interest, as their comparison
with real scoliosis data could provide evidence for the adequacy of the proposed
model.

The problem now is: given 𝐻, 𝑅, 𝐿 and 𝛼 determine the curves 𝜙 that have the
specified length, match the boundary conditions and locally minimise the functional
𝐾. A numeric approach was taken in order to compute these curves. The values of
ℎ were discretised, using finite differences to approximate the derivatives of 𝜙, and
finite sums to approximate the integrals. Then, gradient descent was used to find
the constrained minima. Some of the found minima are presented in the figures
below. The values used were 𝐻 = 30 cm and 𝑅 = 4 cm, and 𝛼 equal to inverse
squared vertebrae maximal mobility angles, known from medical practice.

Figures 2 to 6 show some typically found minima for different values of 𝐿.
The minima in figs. 2 to 4 and 6 correspond to C-shaped scoliosis, while the one
in fig. 5 is S-shaped. C-shaped and S-shaped are the two most common forms
of scoliosis, and any sufficiently adequate model should predict these forms. For
𝐿 = 30.003 cm two curves (i.e. two local minima of the functional) of different
forms are found (figs. 4 and 5), with the S-shaped one having about a two times
smaller twisting angle. A bigger value of 𝐿 can lead to a greater variety of different
minimising curves (i.e., a larger number of local minima of the functional) with the
same length due to having more possibilities of angular distribution.

Figures 7 and 8 show two minimising curves together with the X-ray images
of real scoliosis for comparison. The minima show a tiny deviation in terms of
angle (about 1∘ − 4∘), while the X-ray images show developed forms of scoliosis.
Therefore, the X-ray images should be treated as the result of the evolution of the
initial states represented by the found minima.
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Summarising the above, it is clear that the found minima closely resemble a
variety of forms of real scoliosis. Thus, one can hope that the model does indeed
describe the system under study.

Figure 2. Minimising
curve, 𝐿 = 30.001 cm

Figure 3. Minimising
curve, 𝐿 = 30.002 cm

Figure 4. Minimising
curve, 𝐿 = 30.003 cm

Figure 5. Minimising
curve, 𝐿 = 30.003 cm

Figure 6. Minimising curve, 𝐿 = 30.004 cm
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Figure 7. Comparison
of a minimising curve
with a real scoliosis X-
ray, 𝐿 = 30.001 cm

Figure 8. Comparison
of a minimising curve
with a real scoliosis X-
ray, 𝐿 = 30.002 cm

4. Asymptotic behaviour in the first phases

It is evident from figs. 2 to 6 above that even a very small (about 0.01%)
difference in column lengths can lead to significant spine twisting. Of course, such
strong sensitivity is related to the ideal boundary condition in the model. In a real
system the conditions are softer. But the property of the model reflects the high
sensitivity of the corresponding real system. It shows the first stage of scoliosis,
i.e., a small imbalance in the lengths. It is well-known that scoliosis is preceded
by the state in which the spine is straight (𝐿 = 𝐻). It is the most unstable state.
It determines the future evolution of the disease. Correspondingly, an asymptotic
behaviour of the curve at 𝐿 ≈ 𝐻 is of special importance.

We remove the boundary conditions at ℎ = 𝐻, since when the angle between
the first and the last vertebra is less than 4∘ the spine doesn’t attempt to turn back
to compensate for the angle difference. Furthermore, in order to be able to study
the system analytically, we approximate 𝜙 by a piecewise-linear function, which
corresponds to a helix-shaped spine and is assumed to have a small curvature. We
include a height range [𝐻begin, 𝐻end] where scoliosis takes place, so that at heights
[0, 𝐻begin] the spine is vertically straight, then in the range [𝐻begin, 𝐻end] the spine
assumes a helix-shaped form, and on the last interval [𝐻end, 𝐻] the spine is again
vertically straight. The formula for 𝜙(ℎ) becomes

𝜙(ℎ) =

⎧⎪⎨⎪⎩
0, ℎ < 𝐻begin,

Φ
ℎ−𝐻begin

𝐻end−𝐻begin
, 𝐻begin 6 ℎ 6 𝐻end,

Φ, ℎ > 𝐻end,
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where Φ is the maximum bending angle. Denote the size of the scoliosis height
range as 𝐷 = 𝐻end − 𝐻begin. To compute the length of this curve, break the
domain of integration into three intervals and sum the results:

𝐿 =

∫︁ 𝐻begin

0

𝑑ℎ+

∫︁ 𝐻end

𝐻begin

√︂
𝑅2Φ2

𝐷2
+ 1𝑑ℎ+

∫︁ 𝐻

𝐻end

𝑑ℎ

= 𝐻begin + (𝐻end −𝐻begin)

√︂
𝑅2Φ2

𝐷2
+ 1 + (𝐻 −𝐻end)

= 𝐻 − (𝐻end −𝐻begin) + (𝐻end −𝐻begin)

√︂
𝑅2Φ2

𝐷2
+ 1

= (𝐻 −𝐷) +𝐷

√︂
𝑅2Φ2

𝐷2
+ 1

= (𝐻 −𝐷) +
√︀
𝑅2Φ2 +𝐷2.

Denoting Δ𝐿 = 𝐿−𝐻, assuming that Δ𝐿 is small, and solving for Φ, we get

𝐿 = (𝐻 −𝐷) +
√︀
𝑅2Φ2 +𝐷2

𝐿−𝐻 +𝐷 =
√︀
𝑅2Φ2 +𝐷2

Δ𝐿+𝐷 =
√︀
𝑅2Φ2 +𝐷2

(Δ𝐿)2 + 2𝐷Δ𝐿+𝐷2 = 𝑅2Φ2 +𝐷2

(Δ𝐿)2 + 2𝐷Δ𝐿 = 𝑅2Φ2

Φ = 𝑅−1
√︀
2𝐷Δ𝐿+ (Δ𝐿)2 ≈ 𝑅−1

√
2𝐷Δ𝐿.

The obtained formula and the square root behaviour near Δ𝐿 = 0 (correspondingly,
the singularity of the derivative) clearly show that, indeed, at the beginning of
scoliosis even a small Δ𝐿 can cause significant twisting. This effect is more of a
geometric nature, and is an expected feature of any model of this system. It should
be further noted that Δ𝐿 is a quantity extremely difficult to measure, while Φ,
𝐷 and 𝑅 can be approximately measured for a concrete spine. Thus, the formula
can be used to determine Δ𝐿, opening new ways to predicting the evolution of the
disease.
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ВАРИJАЦИОНИ МЕТОДИ СКОЛИОЗЕ

Резиме. Сколиоза, као jедна од наjраспрострањениjих болести кичме
код деце, интензивно jе проучавана током читаве историjе медицине. Ипак,
jош не постоjи jасно разумевање њених узрочних фактора и механогенезе мо-
номорфне тродимензионалне деформациjе због њене полиетиличке природе.
У раду приказуjемо нови математички модел процеса настанка тродимензи-
оналне деформациjе човечиjе кичме заснован на вариjационим принципима.
Претпоставља се да jе типична геометриjа кичменог стуба описана као мини-
мална крива одређена енергетским функционалом, за коjу се показуjе да jе
блиска геометриjи праве сколиозе. Испитана су нумеричка своjства прве фазе
сколиозе, за коjу се претпоставља да има наjвећи утицаj на развоj болести.
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