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FRACTIONAL TELEGRAPHER’S EQUATION
AS A CONSEQUENCE OF CATTANEO’S HEAT

CONDUCTION LAW GENERALIZATION

Dušan Zorica and Stevan M. Cvetićanin

Abstract. Fractional telegrapher’s equation is reinterpreted in the setting of
heat conduction phenomena and reobtained by considering the energy balance
equation and fractional Cattaneo heat conduction law, generalized by taking
into account the history of temperature gradient as well. Using the Laplace
transform method, fractional telegrapher’s equation is solved on semi-bounded
domain for the zero initial condition and solution is obtained as a convolution
of forcing temperature on the boundary and impulse response. Some features
of such obtained solution are examined.

1. Introduction and model formulation

Fractional telegrapher’s equation, generalizing classical telegrapher’s equation

(1.1)
1

𝑐2
𝜕2

𝜕𝑡2
𝑢(𝑥, 𝑡) +

1

𝐷

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) =

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡),

where 𝑐 is speed of wave propagation, 𝐷 is diffusion coefficient and 𝑢 is some physi-
cal quantity, 𝑥 is the space coordinate and 𝑡 is time, is applied in modelling various
physical phenomena ranging from the anomalous diffusion and heat conduction to
the wave propagation in different media: viscoelastic materials and guided media
for electromagnetic signals, which has led to a broad range of generalizations of
telegrapher’s equation (1.1). Fractional telegrapher’s equation, containing the frac-
tional derivatives of orders 𝛼 ∈ (0, 2) and 𝛽 ∈ (0, 1), instead of the second and
first order partial derivatives in (1.1), is considered in [3,28]. Multi-term fractional
telegrapher’s equation, considered in [8], contain 𝑁 terms of fractional derivatives
of orders 𝑛𝛼, with 𝑛 ∈ {1, . . . , 𝑁} and 𝛼 ∈ (0, 1), while in [25] multi-term telegra-
pher’s equation, with the highest order derivative being equal to one and fractional
derivatives of order between zero and one, is used to describe the diffusion-type
processes. As a special case of more general distributed-order diffusion-wave equa-
tion, fractional multi-term telegrapher’s equation is analyzed in [4] in the setting
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of Volterra integral equations and solved in [5] using integral transform method.
In [12], the second and the first order partial derivatives in (1.1) are respectively
replaced by the fractional derivatives of orders 𝛼 ∈ (1, 2) and 𝛼 − 1, with the ad-
dition of term linear in 𝑢 and forcing term. Problems on unbounded and bounded
domains, modelled by fractional telegrapher’s equation, are considered analytically
and numerically in [7,9,20,22] without the presence of forcing term and in [15,16]
with the presence of forcing term.

The aim is to reconsider fractional telegrapher’s equation in the setting of heat
conduction phenomena, as well as to obtain its solution on semi-infinite domain
in the integral form for all values of the orders of fractional derivatives, using the
approach presented in [11] and extending the results of [3], and to examine the
features of such obtained solutions.

Fractional telegrapher’s equation

(1.2) 𝜏0D
1+𝛼
𝑡 Δ𝑇 (𝑥, 𝑡) + 0D

𝛽
𝑡 Δ𝑇 (𝑥, 𝑡) = 𝒟 𝜕2

𝜕𝑥2
Δ𝑇 (𝑥, 𝑡), 𝛼, 𝛽 ∈ (0, 1), 𝒟 =

𝜆

𝜌𝑐
,

where 𝜏 , 𝜌, 𝑐, and 𝜆 denote material constants: generalized relation time (mea-
sured in s1+𝛼−𝛽), material density, specific heat capacity, and generalized thermal
conductivity (measured in J

Km s𝛽
); Δ𝑇 = 𝑇 − 𝑇ref denotes temperature difference

between the absolute temperature 𝑇 and constant reference temperature 𝑇ref as a
function of spatial coordinate 𝑥 ∈ [0,∞) and time 𝑡 > 0; 0D

𝑛+𝜉
𝑡 is the operator

of Riemann–Liouville fractional differentiation of order 𝑛 + 𝜉, with 𝑛 ∈ N0 and
𝜉 ∈ (0, 1), defined by

0D
𝑛+𝜉
𝑡 𝑦(𝑡) =

d𝑛+1

d𝑡𝑛+1
(

𝑡−𝜉

Γ(1− 𝜉)
* 𝑦(𝑡)), 𝑡 > 0,

see [18], with * denoting the convolution in time: 𝑓(𝑡) * 𝑔(𝑡) =
∫︀ 𝑡

0
𝑓(𝑢)𝑔(𝑡− 𝑢)d𝑢,

as the model of heat conduction in one-dimensional semi-infinite rigid conductor
will be obtained in Appendix A by considering: material heating, described by the
energy balance equation

(1.3) 𝜌𝑐
𝜕

𝜕𝑡
Δ𝑇 (𝑥, 𝑡) = − 𝜕

𝜕𝑥
𝑞(𝑥, 𝑡),

where 𝑞 denotes the heat flux, and heat conduction, described by the two-parameter
generalization (parameters 𝛼, 𝛽) of fractional Cattaneo heat conduction law

(1.4) 𝜏0D
1−𝛽
𝑡 (0D

𝛼
𝑡 𝑞(𝑥, 𝑡)) + 𝑞(𝑥, 𝑡) = −𝜆0D1−𝛽

𝑡

(︁ 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡)

)︁
.

Note that system consisting of the energy balance equation (1.3) and constitutive
equation (1.4) is equivalent to fractional telegrapher’s equation (1.2) if the temper-
ature gradient ( 𝜕

𝜕𝑥Δ𝑇 ) and heat flux (𝑞) are bounded at initial moment (𝑡 = 0), as
well as if initial condition is zero (Δ𝑇 (𝑥, 0) = 0). The temperature difference with
respect to the reference temperature is introduced in order to emphasize that equa-
tions (1.3) and (1.4), and therefore (1.2) as well, are valid only for temperatures
much higher than the absolute zero, since equations (1.3) and (1.4) are invariant
under the transformation 𝑇 = Δ𝑇 + 𝑇ref . In this setting, the zero initial condition
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means that the conductor has uniformly distributed reference temperature at initial
moment, rather than zero absolute temperature.

The fractional Cattaneo constitutive equation

(1.5) 𝜏0D
𝛼
𝑡 𝑞(𝑥, 𝑡) + 𝑞(𝑥, 𝑡) = −𝜆 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡),

is obtained from (1.4) when 𝛽 = 1, since the fractional derivative of the zeroth
order of a function is a function itself. Additionally, taking 𝛼 = 1 in (1.5), the
classical Cattaneo law

(1.6) 𝜏
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) + 𝑞(𝑥, 𝑡) = −𝜆 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡),

is obtained, since the fractional derivative of the first order is the classical first
order derivative, while taking 𝛼 = 0, the Fourier law is recovered. On the other
hand, assuming 𝛼 = 0 in (1.4), the one-parameter generalization (parameter 𝛽) of
fractional Cattaneo law is obtained in the form

(1.7) 𝜏0D
1−𝛽
𝑡 𝑞(𝑥, 𝑡) + 𝑞(𝑥, 𝑡) = −𝜆0D1−𝛽

𝑡 (
𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡)),

since there is a fractional derivative acting not only on the heat flux, but also on
the temperature gradient, having both derivatives of the same order. Additionally,
taking 𝛽 = 0 in (1.7), the generalization of classical Cattaneo law is obtained,
since the left-hand-side of (1.7) is as in the classical Cattaneo law, while there is a
time-derivative of temperature gradient on the right-hand-side.

The history of heat flux change is taken into account by the fractional Cattaneo
law (1.5), since the fractional derivative of order 𝛼 ∈ (0, 1) is acting on the heat flux,
while the one-parameter generalization of fractional Cattaneo law (1.7) takes into
account the history of temperature gradient change as well, having the same orders
(1−𝛽) of fractional derivatives acting on both heat flux and temperature gradient.
In the two-parameter generalization of fractional Cattaneo heat conduction law
(1.4), both type of history effects are taken simultaneously.

Considering one-and two-parameter generalizations of the fractional Cattaneo
heat conduction law (1.7) and (1.4) in the hereditariness setting, i.e., considering
the heat flux being dependent on the memory of temperature gradient in the form

𝑞(𝑥, 𝑡) = −𝜆𝐾(𝑡) * 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡) = −𝜆

∫︁ 𝑡

0

𝐾(𝑡− 𝑢)
𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑢)d𝑢,

where 𝐾 is the memory kernel, one has (1.4) and (1.7) respectively rewritten in
terms of the one-and two-parameter Mittag-Leffler functions

𝑒𝜉,𝜆(𝑡) = 𝐸𝜉(−𝜆𝑡𝜉) = ℒ−1
[︁ 𝑠𝜉−1

𝑠𝜉 + 𝜆

]︁
, with 𝐸𝜉(𝑧) =

∞∑︁
𝑛=0

𝑧𝑛

Γ(𝜉𝑛+ 1)
,(1.8)

𝑒𝜉,𝜁,𝜆(𝑡) = 𝑡𝜁−1𝐸𝜉,𝜁(−𝜆𝑡𝜉) = ℒ−1
[︁ 𝑠𝜉−𝜁

𝑠𝜉 + 𝜆

]︁
, with 𝐸𝜉,𝜁(𝑧) =

∞∑︁
𝑛=0

𝑧𝑛

Γ(𝜉𝑛+ 𝜁)
,(1.9)
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see [14], as

𝑞(𝑥, 𝑡) = −𝜆
𝜏
𝑒1+𝛼−𝛽,𝛼, 1𝜏

(𝑡) * 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡) and(1.10)

𝑞(𝑥, 𝑡) = −𝜆
𝜏

𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡) +

𝜆

𝜏

(︁
− d

d𝑡
𝑒1−𝛽, 1𝜏

(𝑡)
)︁
* 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡).(1.11)

Unlike the memory kernels

𝐾𝑐𝐶(𝑡) =
1

𝜏
e−

𝑡
𝜏 > 0 and 𝐾𝑓𝐶(𝑡) = −𝜏 d

d𝑡
𝑒𝛼, 1𝜏 (𝑡) > 0, 𝑡 > 0,

corresponding to the classical and fractional Cattaneo heat conduction laws respec-
tively, that are completely monotonic functions (function 𝑓 is completely monotonic
if (−1)𝑛𝑓 (𝑛)(𝑡) > 0, 𝑛 ∈ N0), memory kernels

(1.12) 𝐾𝑜𝑝𝐶(𝑡) =
1

𝜏

(︁
𝛿(𝑡) +

d

d𝑡
𝑒1−𝛽, 1𝜏

(𝑡)
)︁

and 𝐾𝑡𝑝𝐶(𝑡) =
1

𝜏
𝑒1+𝛼−𝛽,𝛼, 1𝜏

(𝑡),

corresponding to one-and two-parameter generalizations of the fractional Cattaneo
heat conduction law (1.11) and (1.10) respectively, are either sum of the term with
Dirac 𝛿-distribution (Fourier type kernel) and term containing negative memory
kernel ( d

d𝑡𝑒1−𝛽, 1𝜏
(𝑡) < 0, 𝑡 > 0), or not completely monotonic (𝑒𝜉,𝜁,𝜆 is completely

monotonic if 𝜉 ∈ (0, 1] and 𝜉 6 𝜁, see [14]). Derivation of the memory kernels
(1.12), along with the necessary assumptions, is given in Appendix B.

The review of heat conduction equations obtained via classical heat conduction
laws, including Cattaneo (1.6), Jeffreys and many other, is given in [17]. Possibility
of using the fractional Cattaneo law (1.5), along with its different variations, within
the theory of anomalous transport processes is explored in [10]. By fractionalizing
the classical Cattaneo constitutive model (1.6) in different manners and by combin-
ing such obtained heat conduction laws with the energy balance equation, classical
telegrapher’s equation (1.1) is generalized in [13,23,24,27] and the corresponding
problems on bounded, semi-bounded and unbounded domains are analyzed using
analytical and numerical tools. Fractional Cattaneo law (1.5) is further general-
ized, either by considering its multi-term (or even distributed-order) version in [26],
or by considering the spatial non-locality in [1,6,21,29], or even by considering
the non-locality in Cattaneo–Christov heat conduction law in [19]. In [2], several
space- and time-fractional heat conduction problems are reviewed.

2. Analytical solution

Generalized fractional telegrapher’s equation (1.2) will be solved using the
Laplace transform method on the semi-bounded spatial domain 𝑥 ∈ [0,∞) and
for 𝑡 > 0, assuming the boundary conditions

(2.1) Δ𝑇 (0, 𝑡) = 𝑇0(𝑡) and lim
𝑥→∞

Δ𝑇 (𝑥, 𝑡) = 0, 𝑡 > 0,

as well as the zero initial condition

Δ𝑇 (𝑥, 0) = 0, i.e., 𝑇 (𝑥, 0) = 𝑇ref , 𝑥 ∈ [0,∞),
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due to the requirement of equivalence between system of equations (1.3), (1.4),
corresponding to heat conduction, and fractional telegrapher’s equation (1.2), as
described in the previous section.

Introducing the dimensionless quantities

�̄� =
𝑥

𝑥*
, 𝑡 =

𝑡

𝑡*
, 𝑡* = 𝜏

1
1+𝛼−𝛽 , 𝑥* =

√︁
𝒟(𝑡*)𝛽 , 𝑇 =

Δ𝑇

𝑇ref
, 𝑇0 =

𝑇0
𝑇ref

into generalized fractional telegrapher’s equation (1.2) and into boundary condi-
tions (2.1), having the bars omitted, one obtains

0D
1+𝛼
𝑡 𝑇 (𝑥, 𝑡) + 0D

𝛽
𝑡 𝑇 (𝑥, 𝑡) =

𝜕2

𝜕𝑥2
𝑇 (𝑥, 𝑡), subject to(2.2)

𝑇 (0, 𝑡) = 𝑇0(𝑡) and lim
𝑥→∞

𝑇 (𝑥, 𝑡) = 0, 𝑡 > 0.(2.3)

Applying the Laplace transform 𝑓(𝑠) = ℒ[𝑓(𝑡)](𝑠) =
∫︀∞
0
𝑓(𝑡)e−𝑠𝑡d𝑡, Re 𝑠 > 0,

to (2.2), for 𝑥 ∈ [0,∞), Re 𝑠 > 0, one has

𝑠1+𝛼𝑇 (𝑥, 𝑠) + 𝑠𝛽𝑇 (𝑥, 𝑠) =
𝜕2

𝜕𝑥2
𝑇 (𝑥, 𝑠), i.e.,

𝜕2

𝜕𝑥2
𝑇 (𝑥, 𝑠)− (𝑠1+𝛼 + 𝑠𝛽)𝑇 (𝑥, 𝑠) = 0.(2.4)

Solving (2.4), with the boundary conditions (2.3) taken into account, yields

(2.5) 𝑇 (𝑥, 𝑠) = 𝑇0(𝑠)e
−𝑥

√
𝑠1+𝛼+𝑠𝛽 , 𝑥 ∈ [0,∞), Re 𝑠 > 0,

since Re
√︀
𝜓(𝑠) > 0, for Re 𝑠 > 0, with

(2.6) 𝜓(𝑠) = 𝑠1+𝛼 + 𝑠𝛽 , 𝑠 ∈ C.

Namely, the imaginary part of 𝜓, after substitution 𝑠 = 𝜌ei𝜙, 𝜌 > 0, 𝜙 ∈ [0, 𝜋2 ) is
made, is

Im𝜓(𝜌, 𝜙) = 𝜌1+𝛼 sin((1 + 𝛼)𝜙) + 𝑟𝛽 sin(𝛽𝜙) > 0,

which implies arg𝜓(𝑠) ∈ (−𝜋, 𝜋), i.e., Re
√︀
𝜓(𝑠) > 0, for Re 𝑠 > 0, due to 𝛼, 𝛽 ∈

(0, 1) and Im𝜓(𝑠) = − Im𝜓(𝑠), where bar denotes the complex conjugation.
Solution to the initial-boundary value problem corresponding to generalized

fractional telegrapher’s equation (2.2) is obtained by inverting the Laplace trans-
form in (2.5) as the convolution of boundary condition 𝑇0, given by (2.3)1 and
the impulse response 𝑇𝛿 (the response temperature to the prescribed Dirac delta
temperature on the boundary) in the form

𝑇 (𝑥, 𝑡) = 𝑇0(𝑡) * 𝑇𝛿(𝑥, 𝑡), 𝑥 ∈ [0,∞), Re 𝑠 > 0,

𝑇𝛿(𝑥, 𝑠) = e−𝑥
√

𝑠1+𝛼+𝑠𝛽 .(2.7)

Definition of the inverse Laplace transform will be used to calculate the impulse
response as

(2.8) 𝑇𝛿(𝑥, 𝑡) = ℒ−1[𝑇𝛿(𝑥, 𝑠)](𝑥, 𝑡) =
1

2𝜋i

∫︁
Γ0

𝑇𝛿(𝑥, 𝑠)e
𝑠𝑡d𝑠,
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with Γ0, parametrized by 𝑠 = 𝑝0+i𝜌, 𝜌 ∈ (−∞,∞), being the Bromwich contour, by
employing the Cauchy integral theorem

∮︀
Γ
𝑓(𝑧)d𝑧 = 0, where 𝑓 is analytic function

within the contour Γ, with the Bromwich contour Γ0 as its part. Function 𝜓, given
by (2.6), as it will be proved, may have zeros in the first Riemann sheet, implying
that the Laplace transform of impulse response 𝑇𝛿 (2.7), due to the square root
of 𝜓, may have branch points. This fact will affect the choice of the integration
contour Γ. Note that 𝑠 = 0 is also a branch point of 𝑇𝛿, due to the non-integer
order power of 𝑠.

Substituting 𝑠 = 𝜌ei𝜙, 𝜌 > 0, 𝜙 ∈ (−𝜋, 𝜋], into function 𝜓 (2.6), yields real and
imaginary parts as follows

Re𝜓(𝜌, 𝜙) = 𝜌1+𝛼 cos((1 + 𝛼)𝜙) + 𝜌𝛽 cos(𝛽𝜙),

Im𝜓(𝜌, 𝜙) = 𝜌1+𝛼 sin((1 + 𝛼)𝜙) + 𝜌𝛽 sin(𝛽𝜙).

The complex zeros of 𝜓, if they exist, are complex conjugated numbers having
negative real part. The first property follows, since if 𝜙→ −𝜙, then Im𝜓(𝜌,−𝜙) =
− Im𝜓(𝜌, 𝜙). The second property follows, since if 𝜙 ∈ (0, 𝜋2 ], then Im𝜓(𝜌, 𝜙) > 0,
due to 𝛼, 𝛽 ∈ (0, 1), while if 𝜙 = 0, then Re𝜓(𝜌, 0) ̸= 0 for 𝜌 > 0.

Rewriting function 𝜓 (2.6) as

(2.9) 𝜓(𝑠) = 𝑠𝛽(𝑠1+𝛼−𝛽 + 1), 𝑠 ∈ C,

it becomes evident that:
∙ if 𝛼 < 𝛽, then function 𝜓, except for 𝑠 = 0, does not have zeros in the

complex plane;
∙ if 𝛼 = 𝛽, then function 𝜓, except for 𝑠 = 0, has a negative real zero
𝑠0 = −1;

∙ if 𝛼 > 𝛽, then function 𝜓, except for 𝑠 = 0, has a pair of complex
conjugated zeros having negative real part, given by 𝑠0 = ei

𝜋
1+𝛼−𝛽 and

𝑠0 = e−i 𝜋
1+𝛼−𝛽 .

This implies that
√︀
𝜓(𝑠), appearing in 𝑇𝛿 (2.7), except for 𝑠 = 0, in the first

case does not have a branch point, while, in the second and third case, has negative
real branch point and complex conjugated branch points with negative real part,
respectively.

If 𝛼 < 𝛽, then in (2.9) one has the equation 𝑠𝜉 + 1 = 0, 1 + 𝛼− 𝛽 = 𝜉 ∈ (0, 1),
which, as it is well-known, has no zeros if arg 𝑠 ∈ (−𝜋, 𝜋], while if 𝛼 = 𝛽, then the
solution 𝑠0 = −1 is obvious. For 𝑑 > 0 and 𝜁 ∈ (1, 2) the equation

𝑠𝜁 + 𝑑 = 𝜌𝜁 cos(𝜁𝜙) + 𝑑+ i𝜌𝜁 sin(𝜁𝜙) = 0, implies 𝑠0 =
1
𝜁
√
𝑑
e±i𝜋𝜁 .

If 𝛼 > 𝛽, then (2.9) is recovered for 𝑑 = 1 and 𝜁 = 1 + 𝛼 − 𝛽 ∈ (1, 2), so the
solutions to (2.9) are 𝑠0 = e±i 𝜋

1+𝛼−𝛽 . Note that 𝜙0 = 𝜋
𝜁 ∈ (𝜋2 , 𝜋), i.e., the complex

zero has negative real part.
In order to calculate the impulse response 𝑇𝛿, using the inverse Laplace trans-

form (2.8), the Cauchy integral theorem, stating that
∮︀
Γ
𝑓(𝑧)d𝑧 = 0 if 𝑓 is analytic

function in the region 𝐷 having contour Γ as its border, will be used.
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In the case when
√︀
𝜓(𝑠) does not have branch point other than 𝑠 = 0, i.e.,

when 𝛼 < 𝛽, the impulse response is already calculated in [3, Eqs. (3.8) and (3.9)]
and it reads

(2.10) 𝑇𝛿(𝑥, 𝑡)=
1

2𝜋i

∫︀∞
0

(︁
e−𝑥

√
𝜌1+𝛼e−i(1+𝛼)𝜋+𝜌𝛽e−i𝛽𝜋−e−𝑥

√
𝜌1+𝛼ei(1+𝛼)𝜋+𝜌𝛽ei𝛽𝜋

)︁
e−𝜌𝑡d𝜌.

In the case when
√︀
𝜓(𝑠), additionally to 𝑠 = 0, has a pair of complex conjugated

branch points 𝑠0 = 𝜌0e
i𝜙0 and 𝑠0 = 𝜌0e

−i𝜙0 , with 𝜌0 = 1 and 𝜙0 = 𝜋
1+𝛼−𝛽 ∈

(︀
𝜋
2 , 𝜋

)︀
,

i.e., when 𝛼 > 𝛽, the Cauchy integral theorem
∮︀
Γ
𝑇𝛿(𝑥, 𝑠)e

𝑠𝑡d𝑠 = 0, with the contour
Γ = Γ0 ∪Γ1 ∪Γ2 ∪Γ3𝑎 ∪Γ3𝑏 ∪Γ4 ∪Γ5𝑎 ∪Γ5𝑏 ∪Γ6 ∪Γ7 ∪Γ8 ∪Γ9 chosen as in Figure
1, yields the impulse response

Γ2 

Γ6 

Γ7 

Γ0 

Γ1 

Γ3a

Γ4 Re s

Im s

R 

r 
Γ3b

Γ5a

Γ8

Γ9Γ5b

p0

φ0 s0 

Figure 1. Contour Γ.

(2.11) 𝑇𝛿(𝑥, 𝑡) =
1

2𝜋i

∫︁ ∞

0

(︁
e−𝑥

√
𝜌1+𝛼ei(1+𝛼)𝜙0+𝜌𝛽ei𝛽𝜙0 ei(𝜙0+𝜌𝑡 sin𝜙0)

− e−𝑥
√

𝜌1+𝛼e−i(1+𝛼)𝜙0+𝜌𝛽e−i𝛽𝜙0 e−i(𝜙0+𝜌𝑡 sin𝜙0)
)︁
e𝜌𝑡 cos𝜙0d𝜌,

since the integrals along contours Γ3𝑎 ∪ Γ3𝑏 and Γ5𝑎 ∪ Γ5𝑏 read

lim
𝑅→∞,
𝑟→0

∫︁
Γ3𝑎∪Γ3𝑏

𝑇𝛿(𝑥, 𝑠)e
𝑠𝑡d =

∫︁ 0

∞
e−𝑥

√
𝜌1+𝛼ei(1+𝛼)𝜙0+𝜌𝛽ei𝛽𝜙0 e𝜌𝑡e

i𝜙0
ei𝜙0d𝜌

= −
∫︁ ∞

0

e−𝑥
√

𝜌1+𝛼ei(1+𝛼)𝜙0+𝜌𝛽ei𝛽𝜙0 ei(𝜙0+𝜌𝑡 sin𝜙0)e𝜌𝑡 cos𝜙0d𝜌,

lim
𝑅→∞,
𝑟→0

∫︁
Γ5𝑎∪Γ5𝑏

𝑇𝛿(𝑥, 𝑠)e
𝑠𝑡d𝑠 =

∫︁ ∞

0

e−𝑥
√

𝜌1+𝛼e−i(1+𝛼)𝜙0+𝜌𝛽e−i𝛽𝜙0 e𝜌𝑡e
−i𝜙0

e−i𝜙0d𝜌

=

∫︁ ∞

0

e−𝑥
√

𝜌1+𝛼e−i(1+𝛼)𝜙0+𝜌𝛽e−i𝛽𝜙0 e−i(𝜙0+𝜌𝑡 sin𝜙0)e𝜌𝑡 cos𝜙0d𝜌,

where contours Γ3𝑎∪Γ3𝑏 and Γ5𝑎∪Γ5𝑏 are parametrized by 𝑠 = 𝜌ei𝜙0 , 𝜌 ∈ (𝑟, 1−𝑟)∪
(1+ 𝑟,𝑅) and 𝑠 = 𝜌e−i𝜙0 , 𝜌 ∈ (𝑟, 1− 𝑟)∪ (1+ 𝑟,𝑅), with 𝜙0 = 𝜋

1+𝛼−𝛽 , respectively,
while the inverse Laplace transform of 𝑇𝛿 is given as in (2.8), and the integrals
along contours Γ1, Γ2, Γ4, Γ6, Γ7, Γ8, and Γ9 tend to zero as 𝑅→ ∞ and 𝑟 → 0.
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In the case when
√︀
𝜓(𝑠), apart form 𝑠 = 0, has a negative real branch point

𝑠0 = −1, i.e., when 𝛼 = 𝛽, the calculation of the inverse Laplace transform of 𝑇𝛿
will be the same as in the previous case with 𝜙0 = 𝜋

1+𝛼−𝛽 = 𝜋, yielding the impulse
response

(2.12) 𝑇𝛿(𝑥, 𝑡) =
1

2𝜋i

∫︁ ∞

0

(︀
e−𝑥

√
𝜌𝛼e−i𝛼𝜋

√
1−𝜌 − e−𝑥

√
𝜌𝛼ei𝛼𝜋

√
1−𝜌

)︀
e−𝜌𝑡d𝜌.

It is left to prove that the above mentioned integrals tend to zero. The integral
along contour Γ1, parametrized by 𝑠 = 𝑝+ i𝑅, 𝑝 ∈ (0, 𝑝0), with 𝑅→ ∞, is

𝐼Γ1
=

∫︁
Γ1

e−𝑥
√

𝑠1+𝛼+𝑠𝛽e𝑠𝑡d𝑠 =

∫︁ 𝑝0

0

e−𝑥
√

(𝑝+i𝑅)1+𝛼+(𝑝+i𝑅)𝛽e(𝑝+i𝑅)𝑡d𝑝.

Assuming 𝑠 = 𝜌ei𝜙, with 𝜌 =
√︀
𝑝2 +𝑅2 ∼ 𝑅 and 𝜙 = arctan 𝑅

𝑝 ∼ 𝜋
2 as 𝑅 → ∞,

the previous integral is estimated by

lim
𝑅→∞

‖𝐼Γ1‖ 6 lim
𝑅→∞

∫︁ 𝑝0

0

⃒⃒⃒⃒
e−𝑥

√︁
𝑅1+𝛼ei

(1+𝛼)𝜋
2 +𝑅𝛽ei

𝛽𝜋
2

⃒⃒⃒⃒
e𝑝𝑡d𝑝

6 lim
𝑅→∞

∫︁ 𝑝0

0

⃒⃒⃒⃒
e
−𝑥𝑅

1+𝛼
2 ei

(1+𝛼)𝜋
4

√︂
1+ 1

𝑅1+𝛼−𝛽 e−i
(1+𝛼−𝛽)𝜋

2

⃒⃒⃒⃒
e𝑝𝑡d𝑝

6 lim
𝑅→∞

∫︁ 𝑝0

0

e−𝑥𝑅
1+𝛼
2 cos

(1+𝛼)𝜋
4 e𝑝𝑡d𝑝 = 0,

since 1 + 𝛼 ∈ (1, 2) implying cos (1+𝛼)𝜋
4 > 0. Similarly, lim𝑅→∞ |𝐼Γ7 | = 0.

The contour Γ2 is parametrized by 𝑠 = 𝑅ei𝜙, with 𝜙 ∈
(︀
𝜋
2 , 𝜙0

)︀
and 𝑅→ ∞, so

that the integral reads

𝐼Γ2
=

∫︁
Γ2

e−𝑥
√

𝑠1+𝛼+𝑠𝛽e𝑠𝑡d𝑠 =

∫︁ 𝜙0

𝜋
2

e−𝑥
√

𝑅1+𝛼ei(1+𝛼)𝜙+𝑅𝛽ei𝛽𝜙
e𝑅𝑡ei𝜙 i𝑅ei𝜙d𝜙,

and therefore, in the limit when 𝑅→ ∞, its estimate is

lim
𝑅→∞

|𝐼Γ2
| 6 lim

𝑅→∞

∫︁ 𝜙0

𝜋
2

𝑅
⃒⃒⃒
e
−𝑥𝑅

1+𝛼
2 ei

(1+𝛼)𝜙
2

√︁
1+ 1

𝑅1+𝛼−𝛽 e−i(1+𝛼−𝛽)𝜙
⃒⃒⃒
e𝑅𝑡 cos𝜙d𝜙

6 lim
𝑅→∞

∫︁ 𝜙0

𝜋
2

𝑅e−𝑥𝑅
1+𝛼
2 cos

(1+𝛼)𝜙
2 e𝑅𝑡 cos𝜙d𝜙 = 0,

since, for 𝜙 ∈
(︀
𝜋
2 , 𝜙0

)︀
, cos𝜙 < 0 and 𝑅 tends to infinity faster than 𝑅

1+𝛼
2 , regardless

on the sign of cos (1+𝛼)𝜙
2 . Similar arguments imply lim𝑅→∞ |𝐼Γ6

| = 0.
Parametrization of the contour Γ4 is 𝑠 = 𝑟ei𝜙, with 𝜙 ∈ (−𝜙0, 𝜙0) and 𝑟 → 0,

yielding the integral

𝐼Γ4
=

∫︁
Γ4

e−𝑥
√

𝑠1+𝛼+𝑠𝛽e𝑠𝑡d𝑠 =

∫︁ −𝜙0

𝜙0

e−𝑥
√

𝑟1+𝛼ei(1+𝛼)𝜙+𝑟𝛽ei𝛽𝜙
e𝑟𝑡e

i𝜙

i𝑟ei𝜙d𝜙,

so that in the limit when 𝑟 → 0 one has

lim
𝑟→0

|𝐼Γ4
| 6 lim

𝑟→0

∫︁ 𝜙0

−𝜙0

𝑟
⃒⃒⃒
e−𝑥

√
𝑟1+𝛼ei(1+𝛼)𝜙+𝑟𝛽ei𝛽𝜙

⃒⃒⃒
e𝑟𝑡 cos𝜙d𝜙 = 0.
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The integral along contour Γ8 is

𝐼Γ8
=

∫︁
Γ8

e−𝑥
√

𝑠1+𝛼+𝑠𝛽e𝑠𝑡d𝑠=

∫︁ 𝜙0

−𝜋+𝜙0

e−𝑥
√

(𝑠0+𝑟ei𝜙)1+𝛼+(𝑠0+𝑟ei𝜙)𝛽e(𝑠0+𝑟ei𝜙)𝑡i𝑟ei𝜙d𝜙,

since contour Γ8 is parametrized by 𝑠 − 𝑠0 = 𝑟ei𝜙, with 𝜙 ∈ (𝜙0 − 𝜋, 𝜙0), with
𝑟 → 0, so that in the limit when 𝑟 → 0 it is estimated by

lim
𝑟→0

|𝐼Γ8
| 6 lim

𝑟→0

∫︁ 𝜙0

−𝜋+𝜙0

𝑟
⃒⃒⃒
e−𝑥

√
𝑠1+𝛼
0 +𝑠𝛽0

⃒⃒⃒
|e𝑠0𝑡|d𝜙 = lim

𝑟→0

∫︁ 𝜙0

−𝜋+𝜙0

𝑟 e𝑡Re 𝑠0d𝜙 = 0,

having in mind 𝜓(𝑠0) = 𝑠1+𝛼
0 + 𝑠𝛽0 = 0. Similarly lim𝑟→0 |𝐼Γ9 | = 0.

3. Graphs of impulse response

The impulse response in transient regime, as a solution to fractional telegra-
pher’s equation (2.2), is obtained analytically in integral form (2.10) if 𝛼 < 𝛽,
(2.11) if 𝛼 > 𝛽, and (2.12) if 𝛼 = 𝛽. Evolution of the impulse response will be
calculated and graphs of its time and space evolution will be presented, along with
the discussion about their physical interpretation.

3.1. Time evolution of impulse response. Figures 2 and 3 present the
evolution in time of impulse responses at discrete points of space, calculated by
(2.10) and (2.12), displaying aperiodic character, if

√︀
𝜓(𝑠), except for 𝑠 = 0, does

not have branch point, and critically aperiodic character, if
√︀
𝜓(𝑠), except for 𝑠 = 0,

has a negative real branch point.
Graphs in Figure 4 display the damped periodic impulse response, obtained in

the case when
√︀
𝜓(𝑠), except for 𝑠 = 0, has a pair of complex conjugated branch

points, thus calculated by (2.11). Recall, the (dimensionless) quantity appearing
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x = 3

x = 3.5

0 2 4 6 8
t0.00
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0.10
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Figure 2. Impulse response as a function of time at discrete po-
sitions for 𝛼 = 1/3, 𝛽 = 2/3.
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Figure 3. Impulse response as a function of time at discrete po-
sitions for 𝛼 = 2/3, 𝛽 = 2/3.
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Figure 4. Impulse response as a function of time at discrete po-
sitions for 𝛼 = 19/20, 𝛽 = 1/5.

in fractional telegrapher’s equation (2.2) and its impulse response (2.11) as well,
is the relative difference of the absolute and reference temperature (𝑇 = 𝑇

𝑇ref
− 1)

and its time evolution is depicted in Figure 4, so the temperature actually attains
values above and below the reference temperature, while the relative temperature
oscillates around zero.

3.2. Space profiles of impulse response. Figures 5–7 present graphs of
impulse response’s space profiles evolution in discrete time instances. Although
the leading order of (fractional) differentiation in fractional telegrapher’s equation
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(2.2) is greater than one, space profiles shown in Figures 5 and 6, calculated by
(2.10) and (2.12), correspond to the diffusion-type character (during time there is
no spatial propagation of the Dirac delta disturbance applied at the boundary) of
the impulse response, which is obtained as a consequence of the difference between
orders of time differentiation 1 + 𝛼− 𝛽 ∈ (0, 1), i.e., when 𝛼 6 𝛽.

The wave-type character (there is spatial propagation of the Dirac delta distur-
bance during time) of the impulse response, calculated by (2.11), is evident form
Figure 7 and it is a consequence of the difference between orders of time differen-
tiation 1 + 𝛼 − 𝛽 ∈ (1, 2), i.e., when 𝛼 > 𝛽. From Figure 7 one sees that, as time
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t = 2.5

t = 3

0 1 2 3 4 5
x0.00
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0.14

THx,tL

Figure 5. Impulse response as a function of position at discrete
time instants for 𝛼 = 1/3, 𝛽 = 2/3.
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Figure 6. Impulse response as a function of position at discrete
time instants for 𝛼 = 2/3, 𝛽 = 2/3.
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Figure 7. Impulse response as a function of position at discrete
time instants for 𝛼 = 19/20, 𝛽 = 1/5.

passes, the peaks of the impulse response propagate in space, while their height
decreases and their width increases. There also exists a negative (more precisely
the absolute temperature is less than the reference temperature) peak that travels
during time, while its height increases up to a certain moment and then seemingly
starts to decrease.

4. Conclusion

Fractional telegrapher’s equation (1.2) is reinterpreted in terms of heat con-
duction theory and obtained by considering the energy balance equation (1.3) and
the two-parameter generalization of fractional Cattaneo heat conduction law (1.4),
taking into account not only the history of heat flux change, but also the history of
temperature gradient. Rather than considering the absolute temperature, the dif-
ference with respect to the reference temperature is considered, implying that the
equivalence between fractional telegrapher’s equation (1.2) and system of equations
(1.3) and (1.4) hold for a conductor having uniformly distributed reference tem-
perature. It is also shown that if the heat flux is written in terms of temperature
gradient history as (1.10), the memory kernel, corresponding to the two-parameter
generalization of fractional Cattaneo heat conduction law (1.4), is non-completely
monotonic two-parameter Mittag-Leffler function.

Dimensionless fractional telegrapher’s equation (2.2), with the temperature dif-
ference relative to the reference temperature as the unknown function, is solved for
the zero initial condition on semi-bounded domain and the solution is obtained as a
convolution of the forcing (relative) temperature on the boundary and the impulse
response. The solution is obtained using the Laplace transform method and the
impulse response proved to have two different type of behaviour depending on the
relation between the orders of fractional differentiation in (2.2). In the case when
𝛼 6 𝛽 in (2.2), the spatial profiles of impulse response show the diffusion-type
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character and the time evolution is aperiodic, while if 𝛼 > 𝛽 in (2.2), the spatial
profiles of impulse response show the wave-type character and the time evolution
is periodic.

Appendix A. Derivation of fractional telegrapher’s equation (1.2)

Starting from the system consisting of the energy balance equation (1.3) and
heat conduction law (1.4) and applying the fractional integral of order 1−𝛽 to the
constitutive equation (1.4), one obtains

(A.1) 𝜏0D
𝛼
𝑡 𝑞(𝑥, 𝑡) + 0I

1−𝛽
𝑡 𝑞(𝑥, 𝑡) = −𝜆 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡),

where the fractional integral of order 𝜉 > 0 is defined by

0I
𝜉
𝑡𝑓(𝑡) =

𝑡𝜉−1

Γ(𝜉)
* 𝑓(𝑡), 𝑡 > 0.

The previous expression is obtained assuming that 𝜕
𝜕𝑥Δ𝑇 and 𝑞 are bounded at

initial moment, implying that 0D
𝛼
𝑡 𝑞 is bounded at 𝑡 = 0 as well as that[︁

0I
𝛽
𝑡

(︁ 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑡)

)︁]︁
𝑡=0

= [0I
𝛽
𝑡 (0D

𝛼
𝑡 𝑞(𝑥, 𝑡))]𝑡=0 = 0,

due to the composition property of fractional integral and Riemann–Liouville frac-
tional derivative of the same order 𝜉 ∈ [0, 1]:

0I
𝜉
𝑡 (0D

𝜉
𝑡𝑓(𝑡)) = 𝑓(𝑡)− d

d𝑡
0I

𝜉
𝑡 [0I

1−𝜉
𝑡 𝑓(𝑡)]𝑡=0.

Taking the partial derivative of (A.1) with respect to coordinate 𝑥, and substituting
𝜕
𝜕𝑥𝑞 from (1.3), yields

𝜏0D
𝛼
𝑡

(︁ 𝜕
𝜕𝑡

Δ𝑇 (𝑥, 𝑡)
)︁
+ 0I

1−𝛽
𝑡

(︁ 𝜕
𝜕𝑡

Δ𝑇 (𝑥, 𝑡)
)︁
= 𝒟 𝜕2

𝜕𝑥2
Δ𝑇 (𝑥, 𝑡), 𝒟 =

𝜆

𝜌𝑐
.

Assuming the zero initial condition, i.e., Δ𝑇 (𝑥, 0) = 0, one obtains fractional tele-
grapher’s equation (1.2), due to the composition property of Riemann–Liouville
fractional derivatives of orders 𝜉, 𝜁 ∈ [0, 1]:

0D
𝜉
𝑡

(︁
0D

𝜁
𝑡 𝑓(𝑡)

)︁
= 0D

𝜉+𝜁
𝑡 𝑓(𝑡)− d2

d𝑡2
0I

1−𝜉
𝑡 [0I

1−𝜁
𝑡 𝑓(𝑡)]𝑡=0, i.e.,

0D
𝜉
𝑡

(︁ d

d𝑡
𝑓(𝑡)

)︁
= 0D

𝜉+1
𝑡 𝑓(𝑡)− d2

d𝑡2
0I

1−𝜉
𝑡 [𝑓(𝑡)]𝑡=0,

since the zeroth order fractional integral of a function is a function itself (0I0𝑡𝑓(𝑡) =
𝑓(𝑡)); due to the composition property of fractional integral and Riemann–Liouville
fractional derivative of the orders 𝜉, 𝜁 ∈ [0, 1]:

0I
𝜉
𝑡 (0D

𝜁
𝑡 𝑓(𝑡)) = 0D

𝜁
𝑡 (0I

𝜉
𝑡𝑓(𝑡))−

d

d𝑡
0I

𝜉
𝑡 [0I

1−𝜁
𝑡 𝑓(𝑡)]𝑡=0, i.e.,

0I
𝜉
𝑡

(︁ d

d𝑡
𝑓(𝑡)

)︁
=

d

d𝑡
(0I

𝜉
𝑡𝑓(𝑡))−

d

d𝑡
0I

𝜉
𝑡 [𝑓(𝑡)]𝑡=0,
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and the fact that Riemann–Liouville fractional derivative of order 𝜉 ∈ [0, 1] is
defined by

0D
𝜉
𝑡𝑓(𝑡) =

d

d𝑡
(0I

𝜉
𝑡𝑓(𝑡)).

For the properties of used compositions see [18].

Appendix B. Derivation of the memory kernels (1.12)

Applying the Laplace transform to the heat conduction law (1.4), one has

(B.1) 𝜏𝑠1−𝛽ℒ[0D𝛼
𝑡 𝑞(𝑥, 𝑡)](𝑠) + 𝑞(𝑥, 𝑠) = −𝜆𝑠1−𝛽 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑠), Re 𝑠 > 0,

since the boundness of 𝑞 at initial moment implies the boundness of 0D
𝛼
𝑡 𝑞, having

[0I
𝛽
𝑡 (0D

𝛼
𝑡 𝑞(𝑥, 𝑡))]𝑡=0 = 0 as a consequence and also the boundness of 𝜕

𝜕𝑥Δ𝑇 at
𝑡 = 0 implies [0I

𝛽
𝑡 (

𝜕
𝜕𝑥Δ𝑇 (𝑥, 𝑡))]𝑡=0 = 0, due to the Laplace transform of Riemann–

Liouville fractional derivative of order 𝜉 ∈ [0, 1]:

ℒ[0D𝜉
𝑡𝑓(𝑡)](𝑠) = 𝑠𝜉𝑓(𝑠)− [0I

1−𝜉
𝑡 𝑓(𝑡)]𝑡=0.

By the same argumentation as above, (B.1) becomes

𝜏𝑠1−𝛽+𝛼𝑞(𝑥, 𝑠) + 𝑞(𝑥, 𝑠) = −𝜆𝑠1−𝛽 𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑠), Re 𝑠 > 0,

so that

(B.2) 𝑞(𝑥, 𝑠) = −𝜆
𝜏

𝑠1−𝛽

𝑠1−𝛽+𝛼 + 1
𝜏

𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑠), Re 𝑠 > 0.

Using the Laplace transform of convolution and two-parameter Mittag-Leffler func-
tion (1.9), the previous expression (B.2) transforms into (1.10), with the memory
kernel (1.12)2.

For 𝛼 = 0, (B.2) takes the form

𝑞(𝑥, 𝑠) = −𝜆
𝜏

𝑠1−𝛽

𝑠1−𝛽 + 1
𝜏

𝜕

𝜕𝑥
Δ𝑇 (𝑥, 𝑠), Re 𝑠 > 0,

yielding (1.11), with the memory kernel (1.12)1, since

𝑠1−𝛽

𝑠1−𝛽 + 1
𝜏

= 𝑠
𝑠1−𝛽−1

𝑠1−𝛽 + 1
𝜏

= 𝑠ℒ[𝑒1−𝛽,𝜆(𝑡)] = ℒ
[︁ d

d𝑡
𝑒1−𝛽, 1𝜏

(𝑡) + 𝛿(𝑡)
]︁
,

where the Laplace transform of derivative and one-parameter Mittag-Leffler func-
tion (1.8) are used.
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ФРАКЦИОНА JЕДНАЧИНА ТЕЛЕГРАФИЧАРА
КАО ПОСЛЕДИЦА УОПШТЕЊА КАТАНЕОВОГ

ЗАКОНА ПРОВОЂЕЊА ТОПЛОТЕ

Резиме. Фракциона jедначина телеграфичара jе реинтерпретирана у окви-
ру теориjе провођења топлоте и добиjена jе коришћењем jедначине енергетског
биланса и фракционог Катанеовог закона провођења топлоте, коjи jе уопштен
узимањем у обзир и историjе градиjента температуре. Користећи се методом
Лапласове трансформациjе, фракциона jедначина телеграфичара jе, уз нулте
почетне услове, решена на полубесконачном просторном домену и решење jе
добиjено као конволуциjа температуре на граници и импулсног одзива. Испи-
тана су и нека своjства добиjеног решења.
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