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ON A PROPERTY OF DIFFERENTIAL EQUATIONS
INTEGRABLE USING MEROMORPHIC

DOUBLE-PERIODIC FUNCTIONS

Michel Petrovitch

Given a general type of differential equations

(1) 𝐹 (𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑝)) = 0

of an arbitrary order, which does not contain 𝑥 explicitly, one can propose to
specify differential equations which belong to such type and that can be satisfied
by meromorphic double-periodic functions. Here, I indicate a property of such
equations which simplifies the given problem, without study in depth and which
translates into a very simple and practical rule.

Suppose the equation is written as

(2)
𝑖=𝑠∑︁
𝑖=1

𝑃𝑖𝑦
𝑚0𝑖𝑦′𝑚1𝑖𝑦′′𝑚2𝑖 . . . 𝑦(𝑝)𝑚𝑝𝑖 = 0,

where the 𝑚′s are nonnegative integers, the 𝑃 ′
𝑖 s are some constants and such that

one cannot have at the same time,

𝑚𝑜𝑖 = 𝑚𝑜𝑗 , 𝑚1𝑖 = 𝑚1𝑗 , . . . , 𝑚𝑝𝑖 = 𝑚𝑝𝑗

for two different indexes 𝑖 and 𝑗.
Let us consider the 2𝑠 nonnegative integers

(3)
𝑀𝑖 = 𝑚0𝑖 +𝑚1𝑖 + · · ·+𝑚𝑝𝑖,

𝑁𝑖 = 𝑚1𝑖 + 2𝑚2𝑖 + · · ·+ 𝑝𝑚𝑝𝑖.

We draw in a plane two axes, that of the 𝑀 ’s and the 𝑁 ’s, and indicate the 𝑠
points (𝑀𝑖, 𝑁𝑖) such that their indexes are carefully written next to each of them.
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If two or several of them coincide, then we will write next to such a point the
indexes of all the points that coincide there.

We construct the polygonal line Π which is concave to 𝑂𝑀 , such that all
the points (𝑀𝑖, 𝑁𝑖) lie in its interior or on its boundary and is closed by lines,
perpendicular to 𝑂𝑁 in the case that there are no vertices on that axis. Let

(4)

𝛾0𝑖 = 𝑚1𝑖 +𝑚2𝑖 + · · ·+𝑚𝑝𝑖,

𝛾1𝑖 = 𝑚2𝑖 +𝑚3𝑖 + · · ·+𝑚𝑝𝑖,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

𝛾ℎ𝑖 = 𝑚ℎ+1,𝑖 + · · ·+𝑚𝑝𝑖,

and

(5) 𝐴𝑖 = 𝜆𝛾0𝑖(𝜆− 1)𝛾1𝑖(𝜆− 2)𝛾2𝑖 . . . (𝜆− 𝑝+ 1)𝛾𝑝−1,𝑖 ,

where 𝜆 is an arbitrary number.
It can happen that the polygonal line Π has one or several vertices in which

two or several points (𝑀𝑖, 𝑁𝑖) coincide. Such vertices are called multiple vertices.
Consider such a multiple vertex and let 𝛼1, 𝛼2, . . . , 𝛼𝑛 be the indexes of the

terms of 𝐹 which coincide there.
Let

(6) 𝐴𝑎1
𝑃𝑎1

+𝐴𝑎2
𝑃𝑎2

+ · · ·+𝐴𝑎𝑛
𝑃𝑎𝑛

= 0;

which will be an equation in 𝜆, of the form

𝜆𝑚 + 𝑎1𝜆
𝑚−1 + 𝑎2𝜆

𝑚−2 + · · ·+ 𝑎𝑚−1𝜆+ 𝑎𝑚 = 0,

and will be called the equation in 𝜆 relative to the multiple vertex (𝛼1, 𝛼2, . . . , 𝛼𝑛).
Each multiple vertex corresponds to an equation in 𝜆, defined by (6).

It is possible that the differential equation (1) has meromorphic double-periodic
integrals. In such a case, it has the following properties:

I. The polygonal line Π has at least an edge with a negative integer angular
coefficient or it has at least a multiple vertex such that its equation in 𝜆 has one or
several negative integers root(s), that are between the values of the angular coeffi-
cients of the two edges that form the multiple vertex.

Since a meromorphic double-periodic function cannot be holomorphic on the
whole plane, in a neighborhood of a pole 𝑥 = 𝑎, it can be written as

(7) 𝑦 = (𝑥− 𝑎)𝜇𝑓(𝑥),

where 𝜇 is a negative integer and 𝑓(𝑥) is a holomorphic function in a neighborhood
of 𝑥 = 𝑎, which does not vanish at that point. On the other hand, I proved
previously (Ph.D thesis) the following result: If 𝜇 has a determined value so that
𝑦, defined in (7), can satisfy the differential equation (1), then 𝜇 must be either
one of the angular coefficients of the edges of the polygonal line Π, corresponding
to the polygone 𝐹 1, or 𝜇 satisfies one of the equations in 𝜆, relative to a multiple

1Translators’ note: should be “the polynomial 𝐹 ”.
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vertex of Π and 𝜇 is between the angular coefficients of the two edges that form
that multiple vertex.

The proposition I follows immediately.

II. For all rational fractions 𝑅(𝑦) in 𝑦, the transform

(8) Φ(𝑧, 𝑧′, 𝑧′′, . . . , 𝑧(𝑝)) = 0

of 𝐹 = 0 at 𝑧 = 𝑅(𝑦) has the properties, given in the proposition I.

Since 𝑦 is a meromorphic double-periodic function, so is 𝑧.
Notice at the same time that, if the conditions I are not satisfied by a transform

(8) corresponding to a rational fraction 𝑅(𝑦), having more than two distinct poles,
then the equation 𝐹 = 0 does not have any meromorphic integral. Since the equation
Φ = 0 does not satisfy the conditions I, its integral 𝑧, which is also meromorphic
if 𝑦 is, will not become infinite for any value of 𝑥. Consequently, if 𝑎, 𝑏 and 𝑐 are
three distinct poles of 𝑅(𝑦) in 𝑦, then three following conditions

𝑦 − 𝑎 = 0, 𝑦 − 𝑏 = 0, 𝑦 − 𝑐 = 0

do not have any finite roots. It follows from the Theorem of M. Picard, that the
integral 𝑦, (supposed to be meromorphic), is a constant.

III. If we form a rational combination

𝑅(𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑞))

of y and its successive derivatives, such that the transform

(9) Ψ(𝑧, 𝑧′, 𝑧′′, . . . , 𝑧(𝑞)) = 0

of 𝐹 = 0 to

(10) 𝑧 = 𝑅(𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑞))

does not satisfy the conditions of Proposition I, then the equation

(11) 𝑅(𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑞)) = constant,

plays the role of a first integral for the double-periodic meromorphic integrals of the
equation 𝐹 = 0 in the sense that any integral of such nature satisfies at the same
time the equation 𝑅 = constant.

To prove the Proposition, it is sufficient to observe that 𝑦 is meromorphic
double periodic and 𝑧 as well. Such a function does not have poles, thus reduces
to a constant.

The consideration of the polygonal line Π and the corresponding equations in 𝜆
thus provides means of creating the first integrals on meromorphic double-periodic
integrals to the given differential equation. Once these first integrals are known,
the search for integrals in question is reduced to those common solutions to the
two given differential equations, that we will do by differentiations and elimination
of the successive derivatives of 𝑦. If 𝑝 > 𝑞, we will differentiate the equation
𝑅 = constant with respect to 𝑥 (𝑝− 𝑞) times. By eliminating 𝑦(𝑝) from

(1) 𝐹 = 0,



124 PETROVITCH

(2)
𝑑𝑝−𝑞𝑅

𝑑𝑥𝑝−𝑞
= 0,

we obtain the equation (3) of order less than 𝑝, having all common solutions of (1)
and (2). By operating on (2) and (3) as on (1) and (2), we will replace one of the
equations by another of a lower order and so on. We get a sequence

(Δ) (1), (2), (3), . . . , (𝑚− 2), (𝑚− 1), (𝑚), . . .

of differential equations. If the equation 𝐹 = 0 actually admits meromorphic double
periodic integrals not reducing to constants, we can always choose the constant in
the first integral 𝑅 = constant so that the equations of the sequence (Δ) starting
from a certain rank 𝑚 reduce to identities. Any common integral to 𝐹 = 0 and
𝑅 = constant is then an integral of the equation (𝑚−1). For 𝐹 = 0 to have a double
periodic meromorphic integral, it is necessary and sufficient that the equation 𝑚−1
admits double periodic meromorphic integrals and that among these integrals there
are some that satisfy 𝐹 = 0. The search for integrals of this kind is thus reduced
to an equation of a lower order.

In particular, if the equation 𝑚−1 contains only 𝑦 and 𝑦′, this search is obtained
easily by the Briot and Bouquet method.

These propositions make it possible in a large number of cases to simplify the
search for conditions for a given type of differential equations to admit double
periodic meromorphic integrals.

Notice that the polygonal line of the equation

𝑃 (𝑦′′) = 𝑄(𝑦),

where 𝑃 and 𝑄 are polynomials of degree 𝑚 and 𝑛, respectively, can contain only
one edge with the negative angular coefficient and this coefficient is equal to

2𝑚

𝑛−𝑚
.

It is straightforward to see that the equation can only admit meromorphic double
periodic integrals if 𝑛 is of the form

𝑛 = 𝑚+
2𝑚

𝑘
,

where 𝑘 is a divisor of 2𝑚. For example, it is satisfied if 𝑚 = 1, 𝑛 = 2 or 𝑚 = 1, 𝑛 =
3, the coefficients of the polynomials 𝑃 and 𝑄 are arbitrary; or if 𝑚 = 2, 𝑛 = 4
or 𝑚 = 2, 𝑛 = 6, and the coefficients of the polynomials 𝑃 and 𝑄 being suitably
selected, etc.

In general, in order for the equation

𝑃 (𝑦(𝑝)) = 𝑄(𝑦),

to admit integrals in question, 𝑛 must be of the form

𝑛 = 𝑚+
𝑝𝑚

𝑘
,

where 𝑘 is a divisor of 𝑚𝑝.
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Notice also that the polygonal line of the equation

𝑃 (𝑦(𝑝)) = 𝑄(𝑦)𝑦′

has a single angular coefficient and it is equal to

𝑚𝑝− 1

𝑛+ 1−𝑚
.

We see that the existence of a meromorphic double periodic integral requires that

𝑛 = 𝑚− 1 +
𝑚𝑝− 1

𝑘
,

where 𝑘 is a divisor of 𝑚𝑝− 1. It will actually be integrated in such functions for
example if the coefficients of 𝑃 and 𝑄 are arbitrary and 𝑝 = 3, 𝑚 = 1, 𝑛 = 1 or
𝑛 = 2, etc.

Considering equations of Briot and Bouquet

𝐹 (𝑦, 𝑦′) = 0,

for such an equation to be integrated through a meromorphic double periodic in-
tegral, its polygonal line must have at least an edge whose angular coefficient is
a negative integer and at least one angular coefficient which is a positive integer
and there are no edges whose angular coefficients are fractions. This proposition
often greatly simplifies the question of specifying the equations, belonging to the
general type of equations that can admit integrals of the kind considered. It results
immediately on the one hand from the fact that a meromorphic double periodic
function can not remain holomorphic in the whole plane and must vanish for an un-
limited number of 𝑥 values. On the other hand it is a consequence of the following
proposition, that we demonstrated in an earlier work: let 𝑦 be defined by

𝑦 = (𝑥− 𝑎)𝜇𝑓(𝑥),

where 𝑓 is a holomorphic function in a neighborhood 𝑥 = 𝑎 that does not vanish
for this value of 𝑥; for 𝑦 to satisfy the equation

𝐹 (𝑦, 𝑦′) = 0,

it is necessary and sufficient that 𝜇 is equal to an angular coefficient of an edge of
the polygonal line corresponding to the considered differential equation.

Notice also that, from the same proposition, it follows that for a Broit and
Bouquet irreducible equation to be integrated by meromorphic functions in gen-
eral, it is necessary that the polygonal line of the equation does not have any edge
with fractional angular coefficient and it has at least one edge whose angular coef-
ficient is different from zero. For if it were not so, the equation which cannot be
integrated by other meromorphic functions except by rational or simply periodic
functions and which can neither vanish nor be infinite for any value of 𝑥, would be
reduced to a constant or one or several functions of the form:

𝐻𝑒𝑎𝑥.
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In the latter case, the first member of the equation would be decomposable into
factors of the form:

𝑦 + 𝑎𝑦′

where 𝑎 is a constant.
Moreover, if these necessary conditions for the existence of meromorphic in-

tegrals are fulfilled for the given equation, but that the polygonal line does not
admit any edge with negative angular coefficient or any edge with positive angular
coefficient, one easily ensures whether or not the equation admits meromorphic
integrals. For in this case, the integral can only be rational or simply periodic, it
can not, in the first case, have poles and in the second case zeros. Therefore, in
the first case, it would be reduced to a polynomial in 𝑥 or in 𝑒𝑎𝑥 and in the second
case, it is the transform of the equation given in 1

𝑦 which must be reduced to such
a polynomial and one easily completes the question by determining the degree and
the coefficients of such a polynomial by the method of indeterminate coefficients.
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О JЕДНОМ СВОJСТВУ ДИФЕРЕНЦИJАЛНИХ
JЕДНАЧИНА КОJЕ СЕ ИНТЕРГАЛЕ ПОМОЋУ
МЕРОМОРФНИХ ДВОJАКО-ПЕРИОДИЧНИХ

ФУНКЦИJА

Резиме. Разматраjу се диференциjалне jедначине произвољног реда оп-
штег облика коjе не зависе експлицитно од независне променљиве. Испитуjу се
услови под коjима такве jедначине имаjу решење у облику двоjако-периодичних
мероморфних функциjа.

Такве неконстантне функциjе обавезно имаjу бар jедан пол, чиjи jе ред неки
природан броj 𝜇. Диференциjалним jедначинама се додељуjе полигонална ли-
ниjа Π, чиjа jе своjства изучавао аутор раниjе у своjоj докторскоj дисертациjи.
Темена полигона могу бити проста или вишеструка. Сваком вишеструком те-
мену се додељуjе карактеристични полином. Ако диференциjална jедначина
има решење у облику двоjако-периодичне мероморфне функциjе, онда њен по-
лигон Π има следеће своjство: има ивицу чиjи jе угаони коефициjент негативни
цели броj −𝜇 или има вишеструко теме, тако да карактеристични полином тог
темена има бар jедан целоброjни корен −𝜇 коjи се налази између угаоних кое-
фициjената ивица коjе се сустичу у том темену.
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