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Abstract. The mechanical properties of rubber-like materials have been of-
fering an outstanding challenge to the solid mechanics community for a long
time. The behaviour of such materials is quite difficult to predict because rub-
ber self-organizes into mesoscopic physical structures that play a prominent
role in determining their complex, history-dependent and strongly nonlinear
response. In this framework one of the main problems is to find a functional
form of the elastic strain-energy that best describes the experimental data in a
mathematical feasible way. The aim of this paper is to give a survey of recent
advances aimed at solving such a problem.

1. Introduction and Basic Equations

The theory of nonlinear elasticity plays a fundamental role in continuum me-
chanics: the statics of a huge class of materials (any simple material à la Noll) is
given by the statics of a nonlinear elastic material [20]. Moreover, in recent times
new important applications of such a theory have been found first of all in the
biomechanics of soft tissues, see for example [7].

Real world rubber-like materials and soft tissues are more complex than ide-
alised hyper-elastic materials. A complete model for such materials must contains
more informations than the one conveyed by isotropic elastic theory: anisotropy
effects, Mullin’s effect, viscoelastic phenomena, residual stresses, . . . .

Here, I restrict my attention only to isotropic incompressible hyper-elastic ma-
terials. This class of materials are perfect and sufficient to communicate my ideas
to a well educated but generic audience in mechanical sciences. The inclusions of
any other effect of more complexity will only give more strength to my observations.

Let us consider a motion of a body ℬ : X × [0,∞] → x = x(X, 𝑡) and let
F = Gradx be its gradient. Let B = FF𝑇 be the left Cauchy-Green deformation
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tensor because we consider only isochoric motions (detF = 1)

𝐼1 = trB, 𝐼2 = trB−1,

are its principal invariants. If a material is hyper-elastic, incompressible and
isotropic we may introduce a strain-energy density function 𝑊 = 𝑊 (𝐼1, 𝐼2). The
Cauchy stress tensore T is given by the representation formula

(1.1) T = −𝑝I+ 2𝑊1B− 2𝑊2B
−1,

where 𝑝 is a Lagrange multiplier associated with the constraint of incompressibility
and 𝑊𝑖 = 𝜕𝑊/𝜕𝐼𝑖. The representation formula for the nominal stress is obtained
from (1.1) by using the formula P = TF−𝑇 .

The theory of linear elasticity is obtained from (1.1) in two steps. We first
consider x = X + u(X, 𝑡), where the u is displacement field, approximate the left
Cauchy–Green deformation tensor as

B ≈ [Gradu+ (Gradu)𝑇 ]

2
.

Then we linearise the stress-strain relationship (1.1). (In the linear case the T ≈
P). In the incompressible case the linear stress-strain relationship contains only a
constitutive parameter: the infinitesimal shear modulus 𝜇.

Borrowing the term from Truesdell [19] the Hauptproblem for the theory of non-
linear elasticity is to find a feasible explicit functional form for the strain-energy
𝑊 able to describe experimental data. The real meaning of the verbs "to find" and
"to describe" depends on the cultural background we bring with us in affording this
problem. A material scientist is first of all interested in relating the constitutive
parameters contained in the functional form of 𝑊 with mesoscopic physical quanti-
ties. This kind of information is fundamental to manufacture rubber-like materials
with desired mechanical properties. A mathematician is interested in the qualita-
tive properties of the strain-energy function (convexity or poly-convexity, growth
conditions, coercitivity, . . . ). This is because in the mind of many mathematicians
a mechanical theory has to cope with Hadamard’s notions of well-posedness. An
engineer is interested in describing the experimental data and qualitative properties
that ensure the possibility of perform reasonable numerical computations of prob-
lems of technical interest. Clearly a simulation in computational solid mechanics,
irrespective of its degree of sophistication, is as good, or as bad, as the model it
relies upon.

Despite of these differences in the goals of their investigation, all these scientists
have to face a new complexity with respect what was going on in the linear theory:
here the problem is not to work with some constitutive parameters (only 𝜇 in the
incompressible and isotropic case, 𝜇 and 𝜆 in the compressible, or unconstrained,
isotropic case) we are obliged to work with the full set of functional forms going from
polynomials to special functions through exponentials, trigonometric, logarithmic,
rational, . . . and any possible kind of function.

For this reason in the literature a huge number of mathematical model for the
strain-energy have been proposed. This is in contrast with our search of universal
constitutive models i.e., a model able to describe the experimental data first of all
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from a qualitative point of view and then from a quantitative point with acceptable
relative errors of prediction with respect to the data.

To investigate the Hauptproblem following the recent paper by Destrade, Sac-
comandi and Sgura [3] (to which we refer for all the details) we consider two sets of
uniaxial data in simple extension: one is the classical set by Treloar about natural
rubber and one, denoted DC9, is a more recent one derived for a synthetic rubber-
like material. In the various plot Treloar’s data are red and DC9 data blue. We
consider two set of data because Treloar’s data are a classic, but sometimes people
are worried about their precision. The DC9 set is obtained using modern testing
machines and therefore in principle they must be more accurate.

The simple extension deformation is a homogeneous universal deformation

𝑥 = 𝜆𝑋, 𝑦 =
1√
𝜆
𝑌, 𝑧 =

1√
𝜆
𝑍,

where 𝜆 is the uniaxial stretch. Let us denote with 𝑡 = 𝑡(𝜆) the Cauchy stress in
the tensile direction, with 𝜎 = 𝜎(𝜆) the nominal stress and with 𝑔 = 𝑔(𝑧) where
𝑧 = 1/𝜆 the Mooney force:

(1.2) 𝑔(𝑧) =𝑊1 + 𝑧𝑊2, where 𝑔(𝑧) :=
𝜎(𝜆)

2(𝜆− 𝜆−2)
, 𝑧 := 𝜆−1.

The reason to introduce the Mooney plot is clear in the framework of the Mooney–
Rivlin material, the rescaling gives linear relation between the stress and strain
variables and fitting the data is easier. Moreover, we point out that this rescaling
boosts the data for small stretches; this is a zone where relative errors can be
quite important. The Mooney plot, i.e., just the rescaling of data as required by
(1.2) allows to stress out three important ranges of deformation (we refer to any
of of the figures containing data). First of all we point out the finite but moderate
range of deformations for approximately 𝑧 ∈ ]0.5, 1]. Second, we have the upturn
zone (approximately 𝑧 ∈ ]0.2, 0.5]) and then the last zone: the limiting-chain range
where the data seems to blow up (approximately 𝑧 ∈ ]0, 0.2[). We shall discuss in
the following pages the meaning of all these ranges of deformation.

There are many details that have to be fixed to have a rigorous discussion of
this classical and simple example and once again we refer to Destrade, Saccomandi
and Sgura [3]. The goal of my discussion is to give a general overview of all the
underpinnings of this problem summarizing the work done by my co-authors and
myself during a long period and contained mainly in the above mentioned paper
and other two papers: the 2004 paper with Ogden and Sgura [12] and the recent
review with Puglisi [16]. Moreover, in the present paper I will use a historical
approach.

All my discussion is based on the deformation of simple extension and only
in a couple of points I have to consider the universal homogeneous deformation of
simple shear

𝑥 = 𝑋 +𝐾𝑌, 𝑦 = 𝑌, 𝑧 = 𝑍,

where 𝐾 is the amount of shear, and the non-universal inhomogeneous motion

(1.3) 𝑥 = 𝑋 + 𝑢(𝑍, 𝑡), 𝑦 = 𝑌 + 𝑣(𝑍, 𝑡), 𝑧 = 𝑍,
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defining transverse waves. Here 𝑢 and 𝑣 are unknown function to be determined
by the balance equations.

Remark 1.1. The Hooke’s law is ut tensio, sic vis. The reason because in the
title you find the reverse will be clear at the end of next Section.

2. Focusing the Hauptproblem

Let us try to read the following sentence
Rdgnieg I blveiee cdnuolt aulactly taht was waht cloud uesdnatnrd.

This is not quite easy. It is possible to understand some of the words but it is hard
to recover the meaning of this strange sentence. On the other hand if we read the
following sentence build up with the same words everything seems to be directly
understandable

I cdnuolt blveiee taht I cloud aulactly uesdnatnrd waht I was rdgnieg.
The only difference between the above sentences is the ordering. In the first sentence
I have mixed the syntactic order, in the second the sentence, despite all the words
are still misspelled, I have maintained the classical syntactic order.

The syntax of a language is exactly a non quantitative model: the words are
the data and the syntactic rules are the relationships of the model. Maybe in the
first sentence we are able to recover the meaning of the single words after some
time, but the ordered sentence can be easily read, nearly as fast we read a correct
sentence.

From this simple example we learn several important facts:
∙ experience by itself is not science;
∙ to every object there corresponds an ideally closed system of truths that

are true of it and, on the other hand, an ideal system of possible cognitive
processes by virtue of which the object and the truths about it would be
given to any cognitive subject;

∙ thus, reality is not guaranteed for an isolated item, even when it seems to
be giving us a reason to take it as the unified core attracting its manifold
appearing to one hub of reference. The central location of the thing is
dependent upon its real circumstances;

∙ the reality of "one" depends on "others"; i.e., on thing-connection.
These considerations are clearly not mine but are a summary of Edmund

Husserl ideas [8]. My aim is to apply this point of view to the problem we are
considering. To understand what we are doing it is not necessary to have a deep
knowledge of Husserl’s philosophy. It is sufficient to have in mind the simple ex-
ample given by the above sentences.

First of all data by itself are not sufficient to concretise knowledge. Theory
is based on experience but comes first with respect experiments. Experiments are
dictated and shaped by the theory. For this reason a good model is able to survive to
strong perturbation of the data and constitutive parameters. This because a good
model links in a universal way the "one" with the "others". Too many models of
rubber-like materials seems to be successful. The real status of the affair is that
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they are mainly used in simulations that despite they are concretely descriptive, in
the end, they apply only to some special phenomena. Here we are searching to point
out more we are searching for a true mathematical model not a computational one.

3. A short guided history of the Hauptproblem

Let us sketch a sort of historical approach to the problem we are considering
where I stress out some of the breakthroughs, i.e., important achievements, but
also some of the criticalities.

3.1. Neo-Hookean material. The basic model of rubber-like mechanics is
the neo-Hookean model for the strain-energy 𝑊

(3.1) 𝑊 =
𝜇

2
(𝐼1 − 3).

Statistical mechanics is able to connect the only constitutive parameter 𝜇 (exactly
the infinitesimal shear modulus) to the mesoscopic quantities of the polymeric net-
work. The exact connection depends on the kind of average we consider to go from
a single chain to the network. This is a purely entropic model, i.e., in the free energy
we are discarding the internal energy, and it assumes that end-to-end distance of
any chain composing the network is described by a Gaussian distribution function.

There is a certain legend which regards the neo-Hookean model as a good
model for large but moderate stretches. This is clearly not true as is possible to
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Figure 1. Neo-Hookean and generalized neo-Hookean materials
(from [3])
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test just looking at the corresponding Mooney plot. In general for all the class
of generalized neo-Hookean materials, i.e., materials such that 𝑊 = 𝑊 (𝐼1), the
contrast with experimental data is very bad. Always in figure 1 it is possible to
appreciate as bad is the Yeoh model is

𝑊 = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼1 − 3)2 + 𝑐3(𝐼1 − 3)3,

despite the three constitutive parameters 𝑐1, 𝑐2 and 𝑐3.
Generalized neo-Hookean materials are interesting for two reasons. First they

are easily connected to statistical mechanics computations. The invariant 𝐼1 is equal
thrice the square of the stretch ratio of an infinitesimal line element averaged over
all possible orientations. Therefore, it is natural to connect this invariant to the end-
to-end distance of a chain. Second, the mathematics of generalized neo-Hookean
materials is usually much simpler than the mathematics for the full model [6].

On the other hand, such models can be not suitable to describe experimental
data. This fact can be quantitatively evaluated using a precious tools for experi-
mentalist: the universal relations [13].

For isotropic materials universal relations are generated by the coaxiality among
stress and strain TB = BT. This means that usually we have a maximum number
of three universal relations, but for generalized neo-Hookean material a fourth uni-
versal relation is always possible. This universal relation is valid for any choice of
the strain-energy 𝑊 = 𝑊 (𝐼1) and represents a mean to justify quantitatively and
in a direct experimental way the hypothesis 𝑊2 = 0. For example, if we consider
the simple shear deformation it is well known that from (1.1) we obtain

𝑇11 = −𝑝+ 2(1 +𝐾2)𝑊1 − 2𝑊2, 𝑇22 = −𝑝+ 2𝑊1 − 2(1 +𝐾2)𝑊2,

𝑇33 = −𝑝+ 2𝑊1 − 2𝑊2, 𝑇12 = 2𝐾(𝑊1 +𝑊2), 𝑇13 = 𝑇23 = 0.

From these relations we obtain three universal relations: two are trivial 𝑇13 =
𝑇23 = 0 and one is the celebrated relation

𝑇11 − 𝑇22 = 𝐾𝑇12.

Now let us pick 𝑝 such that 𝑇33 = 0. This requirement is suggested by the ex-
perimental device used to test a material in simple shear. In so doing we fix
𝑝 = 2𝑊1 − 2𝑊2 and obtain

𝑇11 = 2𝐾2𝑊1 − 2𝑊2, 𝑇22 = −2𝐾2𝑊2,

𝑇12 = 2𝐾(𝑊1 +𝑊2), 𝑇13 = 𝑇23 = 𝑇33 = 0.

Now, the new universal relation we obtain only for generalized neo-Hookean
materials is given by 𝑇22 = 0. This is a simple requirement that we can test
experimentally in a easy and direct way: to the best of my knowledge no real
material satisfies in a exact way this relation.

3.2. Mooney-Rivlin material. The Mooney-Rivlin strain-energy density

(3.2) 𝑊 = 1
2𝐶1(𝐼1 − 3) + 1

2𝐶2(𝐼2 − 3),

plays a fundamental role in the history of polymer physics and the theory of non-
linear elasticity for several reasons. First of all it is a purely phenomenological
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theory stemming from the early tremendous effort devoted to rewrite the theory
of Continuum Mechanics using the language of Tensor Algebra. For this reason
this model led to the exploration of the non-linear theory of elasticity in deep and
unexpected ways. Using (3.2) for the first time it is simple to write down the equa-
tion of nonlinear elasticity in their general format. Moreover, the balance equations
corresponding to this model admit significative classes of non-homogeneous exact
solutions and provided a new perspective to the interpretation of experimental data.

Figure 2. Mooney-Rivlin and generalised Mooney-Rivlin (from [10])

Mooney derived this model in searching for an exact linear relationship between
the Cauchy shear stress component 𝑇12 and the amount of shear 𝐾 in a simple
shear experiment (or between the torque 𝑀 and the twist 𝜓 in a simple torsion
experiment). Here we understand why the Mooney plot is so important for such a
material, being

𝑔(𝑧) = 𝐶1 + 𝑧𝐶2,

a straight line.
The Mooney-Rivlin material, introducing the 𝐶2 term, improve the description

of the experimental data: now it is true that for a moderate range of stretches we
have a good agreement with the experimental data.

On the other hand, several drawbacks are connected with this model. First,
of all it is not clear how to connect the various parameters with mesoscopic in-
formation, but the major problem is the following: Mooney has not realized that
the model (3.2) is not the most general strain-energy density corresponding to a
linear relationship 𝑇12 = 𝜇𝐾. In a recent paper by Mangan, Destrade and Sacco-
mandi [10] it has been shown that any generalized Mooney-Rivlin materials

(3.3) 𝑊 = 1
2𝐶1(𝐼1 − 3) + 1

2𝐶2(𝐼2 − 3) +𝐻(𝐼1 − 𝐼2),

where 𝐻 is an arbitrary function of its argument, gets this linearity property. As it
is possible to appreciate from the figure 2 we can use the function 𝐻 to improve the
fitting of the experimental data, but despite this fact all the generalized Mooney-
Rivlin materials are in contrast with a simple and generic experimental observation
derived from nonlinear acoustics [2].

In incompressible materials we can observe only the propagation of bulk trans-
verse waves (1.3). The determining equations in a isotropic material for transverse
waves are given by the system

(3.4) 𝜌𝑢𝑡𝑡 =
[︀
𝑄(𝑢2𝑍 + 𝑣2𝑧)𝑢𝑍

]︀
𝑍
, 𝜌𝑣𝑡𝑡 =

[︀
𝑄(𝑢2𝑍 + 𝑣2𝑧)𝑣𝑍

]︀
𝑍
,
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where 𝜌 is the constant density and 𝑄 is the generalized shear modulus.
For all the generalized Mooney-Rivlin (3.3) we have that𝑄 ≡ 𝜇 the infinitesimal

shear modulus [18]. Therefore for such a class of materials the equations (3.4) are
uncoupled and linear: this fact seems to be not confirmed by experiments.

3.3. Ogden material. It is well known that the Ogden’s strain-energy density

(3.5) 𝑊 =

∞∑︁
𝑖=1

𝜇𝑖

𝛼𝑖

(︀
𝜆𝛼𝑖
1 + 𝜆𝛼𝑖

2 + 𝜆𝛼𝑖
3

)︀
,

where 𝜆1, 𝜆2, 𝜆3 are the principal stretches of the deformation and 𝜇𝑖 and 𝛼𝑖 are
the material constants, has been a major advancement in the possible solution to
our problem.

If we consider a three or four term expansion of this formula then we have
a very good agreement with experimental data and not only in simple extension.
This is due of the particular form of the strain-energy (3.5) based on the Valanis-
Landel hypothesis (𝑊 = 𝑓(𝜆1) + 𝑓(𝜆2) + 𝑓(𝜆3)) which gives a special invariance
in the stretch space: an invariance that seems to be fundamental in catching the
experimental data in biaxial extension.

Despite this fact there is a major limitation associated with (3.5). This limi-
tation is due to the fact that to fit the parameters 𝛼𝑖 we need a nonlinear method
and therefore there are several local extrema for the associated objective function
and this gives the possibility to have non-uniqueness of the optimal parameter set.
Moreover, these optimal sets of parameters which gives the same sets of relative er-
rors on the other hand they give very different predictions. As it has been discussed
into details in [12] this is a major problem, first of all when we use this model for
simulation purposes.

3.4. Gent material. The limitations of the classical kinetic theory (i.e., the
neo-Hookean model) were clear from the beginning and Treloar provides five pos-
sible reasons to understand the molecular significance of the deviation from statis-
tical theory

∙ non-Gaussian effects both for the chains and the network;
∙ internal energy effects;
∙ chain entanglements;
∙ irreversible effects;
∙ non-random packing effects.

In the recent past the most investigated deviation that has been investigated
is surely is that due to the non-Gaussian effects. In 1993 Arruda and Boyce pro-
posed a multi-scale approach to take into account non-Gaussian effects [1]. Their
methodological procedure is based on the use of the inverse Langevin function for
the computation of the end-to-end distance for a single chain of the polymeric
network, the eight chain network structure to perform the network average and
the affine assumption imposing the coincidence of the network chain stretches and
macroscopic stretches. The result is a generalized neo-Hookean model and thus a
model that by sure is inapt to describe the data but despite this fact the model
was very successful among the polymer mechanics community.
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Alan Gent in 1996 published a short but very interesting note [4] showing that
the idea of Arruda and Boyce can be obtained by considering a simple phenomeno-
logical modification of the neo-Hookean model. The Gent model is given by a two
parameters strain-energy

(3.6) 𝑊 = −𝜇
2
𝐽𝑚 ln

(︁
1− 𝐼1 − 3

𝐽𝑚

)︁
,

with one parameter being the infinitesimal shear modulus 𝜇 and the second param-
eter 𝐽𝑚 is an average measure of the length of the polymeric chains composing the
polymeric network. Indeed, in the limit 𝐽𝑚 → ∞ from (3.6) we recover the neo-
Hookean material. Since the neo-Hookean model uses a Gaussian distribution for
the end-to-end distance of the chains, and the support of the Gaussian distribution
is not compact, the chains can be infinitely long (non-zero probability value for any
end-to-end length).

Figure 3. A cartoon of a single chain in a tube (from [16])

Following the cartoon in figure 3 it is simple to give to the Gent model a
mesoscopic justification. Let us introduce a molecular chain composed by a large
number 𝑁 of rigid rods, each of the same length 𝑙, hinged together. Let us assume
that this chain is confined to an ideal tube of diameter 𝐷 < 𝑙. The projection of
a single chain onto the axis of the tube is

√
𝑙2 −𝐷2 and because the total lenght

is 𝐿 = 𝑁𝑙 we find that in a simple one-dimensional setting thinking to a straight
tube the end-to-end distance 𝑅 of the chain is given as

𝑅2 = 𝐿2
(︁
1− 𝐷2

𝑙2

)︁
On the other hand, it is well known that a rigid rod with a fixed point and

free to have any orientation in the space can choose a number of configurations
proportional to 4𝜋𝑙2, but here we are confined in a tube, then it is possible to
choose only one set out of these orientations, proportional to 𝐷2.

Therefore, the entropy of a single rod can be computed (approximately) as
𝑘𝐵 ln(𝐷2/𝑙2) and for the whole network using the most simple average and consid-
ering purely entropic contribution to the free energy we have

𝑊 ≈ −𝑘𝐵𝑇
𝐿2

𝑙2
ln

(︁
1− 𝑅2

𝐿2

)︁
,

a model which is exactly a one-dimensional version of the Gent model.
Our derivation is more interesting than the Arruda-Boyce approach because

it allows to introduce a term related to the second invariant 𝐼2 term in a simple
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way. To this end it is important to bear in mind that the mean square change
in area is related to 𝐼2 and if the cross-sectional area of the tube changes due to
the macroscopic deformation, (for example due to the incompressibility conditions
that reduce the mobility of the chains with the increase of the stretch), then it is
possible to replicate our computations by introducing a multiplicative correction in
the logarithmic term in the above expression. A similar idea has been introduced
by Kroon [9], where the change of the microscopic tube dimensions has been shown
to be proportional to the root mean square change of macroscopic area, i.e., to
an averaged term

√
𝐼2/2. Pucci and Saccomandi [14] have indeed proposed the

three-terms strain-energy

(3.7) 𝑊 = −𝐶1𝐽𝑚 ln
(︁
1− 𝐼1 − 3

𝐽𝑚

)︁
+ 𝐶2 ln

(︁𝐼2
3

)︁
.

A model that mix the Gent idea just illustrated and another term proposed by Gent
and Thomas in the fifties to replace the 𝐶2 term in the Mooney-Rivlin material.
The model [14], up to now, gives the best fitting of data in uniaxial simple extension
we know (see the next Section).

4. Toward a possible solution of the Hauptproblem

From the history of the problem under investigation we learn a lot of things.
Using the Mooney plot it is clear that the Mooney-Rivlin material seems to be a
good model in the first range of deformations. Then we have the upturn zone where
the Mooney-Rivlin model fails: it seems that we need a strain-hardening term. In
the last zone non-Gaussian effects are prominent: here it seems that we need to
introduce a limiting chain parameter.

Summarizing our history, it is possible to hypothesize three fundamental steps
in building a reliable model:

∙ dependence on 𝐼2;
∙ introduction of at least three material parameters;
∙ the limiting chain effect.

Let us start with the assumption

𝑊 = 1
2𝐶1(𝐼1 − 3) + 1

2𝐶2𝑓(𝐼2)

where several forms of 𝑓(𝐼2) can be used:

𝑓(𝐼2) = 𝐼2 − 3, 𝑓(𝐼2) =
√
3
(︀√︀

𝐼2 −
√
3
)︀
, 𝑓(𝐼2) = 3 ln(𝐼2/3),

these three terms are named respectively Mooney-Rivlin, Carroll and Gent-Thomas.
The first finding is that to model in a reliable way the finite but moderate

range of deformation what we need is really a dependence on 𝐼2 and no more than
this. The figure 4 shows clearly that any functional form we choose for 𝑓(𝐼2) gives
similar results.

This is a very good news. In the spirit of Husserl phenomenological reduction
it seems that the essence to catch the data in this range is the 𝐼2 term we do not
need to pay particular attention to the functional form. This is a great relief if we
are worried about the robustness of the theory of nonlinear elasticity.
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Figure 4. The moderate but finite range (from [3])

If we move to the possibility to model the upturn in the Mooney plot our first
idea is to read the upturn as a clear manifestation of the nonlinearity. Then, our
goal is to reinforce the nonlinearity and this can be done by introducing a third
parameter

𝑊 = 1
2𝐶1(𝐼1 − 3) + 1

2𝐶2𝑓(𝐼2) + 𝐶3(𝐼
𝑛
1 − 3𝑛),

where 𝑛 is an exponent that must determined a priori. This requirement is necessary
to avoid the possibility of a nonlinear fitting procedure. In statistical physics there
is a result due to Pincus for a macromolecular chain in a good solvent that fixes the
values of 𝑛 at around 2.5. Here we are not in a good solvent and we discover that it
sufficient to improve the neo-Hookean just a little bit to have again the possibility
to model the upturn with any proposed functional form of 𝑓(𝐼2). In the figure 5
we can appreciate this situation with 𝑛 ≈ 1.6 for the Treloar’s data and 𝑛 ≈ 1.1 for
the DC9 data.

When we arrive to the full range now it is clear why the Pucci and Saccomandi
model [14] gives a wonderful performance. The model contains 𝐼2, we have three
parameters, it has a strain-hardening effect (hidden in the ln term with 𝐼1) and we
have the limiting chain effect. Clearly this is not the only possibility. Other good
models can built up with the same philosophy and this has been done (see [3]).
Moreover, there is the possibility of other approaches as the implicit theory of
elasticity [11] and mesoscopic modelling [17].
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5. Concluding remarks

When we deal with a nonlinear theory we face a mare magnum: any functional
form can be a priori a constitutive equation. Experimental data are not sufficient
to restrict in a definitive way the possible functional forms. Only the power of
hypothetical deductive method of mathematical modelling can truly help.

A possibility to overcome this problem is to do as it is usual in nonlinear acous-
tics [5]: to identify the nonlinear theory with the fourth-order theory of elasticity.
If one considers linear elasticity as the Taylor expansion to second order in the
strain of the elastic potential, the fourth-order elasticity is obtained pushing to
fourth order such an expansion. In so doing, nonlinearity is just some constants:
the Landau constants of third and fourth order. This kind of models maybe suffi-
cient to explain some experimental facts arising in nonlinear acoustics, but they are
quite poor to describe, for example, the simple extension data. There are situations
where a rough but honest and feasible model and can be sufficient to recover and
consider the information you need. On the other hand, there are many situations
where we need much more.

The strategy we propose can be a reasonable way to advance in the problem
we have stressed out. Our strategy is based not only in reading the data but in
trying to build a framework where the data must be read. If you read only the data
you are just trying to understand the words that are misspelled. Our strategy try
to correct the words using a syntax.

Clearly, a deeper analysis is required to cope with more complex set of data
(for example biaxial data). This is our future plan. At the moment we have solved
a little piece of the whole problem and with Albert Camus we can say

Et c’est bien là le génie: l’intelligence qui connaı̂t ses frontières.
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Резиме. Механичке особине материjала типа гуме пружаjу изузетан дуго-
годишњи изазов истраживачима у области механике чврстог тела. Понашање
таквих материjала jе прилично тешко предвидети jер се гуме самоорганизуjу
у мезоскопске физичке структуре коjе играjу истакнуту улогу у одређивању
њиховог сложеног и jаког нелинеарног одговора, коjи зависи од историjе де-
формациjе. У датом оквиру, jедан од главних проблема jе проналажење функ-
ционалног облика еластичне напонске енергиjе коjа наjбоље описуjе експери-
менталне податке на математички изводљив начин. Циљ рада jе да се да
преглед напретка у решавању датог проблема.
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