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Abstract. This note discusses some issues related to stability of stationary
motion of hovering magnetized top in a homogeneous magnetic field. Stability
of synchronous motion is analyzed using the simplified model in which the
hovering motion of the center of mass is ignored. Stability boundaries are
derived using Lyapunov direct method. In particular, it is shown that, for
a given angle Δ between magnetic moment dipole and principal axis of the
top, there is an interval of stationary values of nutation angle 𝜃0 for which the
stationary synchronous motion is stable.

1. Introduction

LevitronTM is a commercial product consisted of the permanent magnetic base
and a top which is also a magnetic dipole. It is possible to produce stable levitating
motion of the top above the magnetic base, akin to stable precession of an ordinary
gyroscope. Although its inventor, Ray Harrigan, was discouraged by the academic
community, he persisted in the efforts to construct a hovering top. This remarkable
toy attracted the attention of physicists because Earnshaw’s theorem rules out
stable magnetic levitation of static magnetic dipoles [1]. Harrigan’s discovery called
for reasonable explanation of the phenomenon and stability analysis of stationary
motion.

The papers of Simon et al. [2] and Berry [3] provided persuasive explanation
of the phenomenon of hovering motion of magnetic top. Among different inter-
esting problems, the stability of stationary motion attracted much attention. Not
pretending to give an exhaustive, and still growing list of references, the ones that
inspired the present work are mentioned in the sequel. Flanders et al. [4] ana-
lyzed the stability of synchronous motion assuming that the centre of mass is fixed
in laboratory frame, i.e., motion in the space 𝑇𝑆𝑂(3). Gov et al. [5] analyzed
the stability of stationary rotation about vertical axis, which is also the symme-
try axis of the magnetic field, taking into account all six degrees of freedom, i.e.,
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in 𝑇 (R3 × 𝑆𝑂(3)). Dullin and Easton [6] studied stability in Hamiltonian frame-
work, i.e., in 𝑇 *(R3 × 𝑆𝑂(3)), proved linear stability of relative equilibrium and
improved Berry’s results [3]. Genta et al. [7] discussed lower and upper stability
limits of the spin velocity. Krechetnikov and Marsden [8] analyzed the influence
of dissipative and positional forces on the stability boundary; it turned out that
both forces appear in the case of LevitronTM due to eddy currents. Recently, Bon-
sioli and Delprete [9] analyzed stability taking into account the aerodynamic drag
torque. Common feature of all the studies mentioned above is that their results
are based upon linear stability analysis. They are reliable when determining the
boundaries of instability regions in parameter space. However, their applicability
may be limited—they do not provide a decisive answer about stability when there
are eigenvalues with zero real part, since the influence on non-linear terms could
become important.

This study presents the results of stability analysis of synchronous stationary
motion based upon simplified model, exploited also in [4], in which the hovering
motion of the mass center is ignored, i.e., the center of mass is treated as a fixed
point. The stability is analyzed using Lyapunov direct method, since in the consid-
ered model one eigenvalue of the linearized system is zero. Thus, in this case the
linear stability does not imply stability of the stationary motion (relative equilib-
rium). It is shown that appropriate Lyapunov function cannot be constructed using
energy-like first integral solely, but rather as a linear combination of two indepen-
dent first integrals–generalized energy integral and angular momentum integral. A
new result, obtained using this approach, shows that, for a given angle Δ between
magnetic moment dipole and the principal axis of the top, there is an interval of
stationary values of nutation angle 𝜃0 for which stationary synchronous motion is
stable.

The paper is organized as follows. In Section 2 the mathematical model is
derived using Lagrangian equations, along with corresponding first integrals (con-
servation laws); stationary motion of the top is analyzed and the first result about
the existence of stationary solution is obtained. Section 3 is technical and con-
tains variational equations of the problem, both exact (non-linear) and linear. In
Section 4 the results of linear stability analysis, obtained previously by Flanders
et al. [4], are recovered. Section 5 exposes the main results of this study based
upon non-linear stability analysis using Lyapunov’s direct method. These results
are compared with the results of linear stability analysis in Section 6. The paper
is closed by some concluding remarks.

2. Stationary motion of the magnetic top

Equations of motion of the magnetic top, with moment m of magnetic dipole, in
a homogeneous magnetic field H, will be given in the form of Lagrangian equations.
It will be assumed that the moment of magnetic dipole is constant, fixed in the
body and forms constant angle Δ with the symmetry axis of the top. Without
loss of generality, it will be assumed Δ > 0. It will also be assumed that the
center of mass of the top is fixed, i.e., its hovering motion will be ignored. This
assumption is physically meaningful when the gravitational force is equilibrated by
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the constant magnetic field. It could serve as a reasonable approximation of more
realistic situations, as well. This model of hovering magnetic top was studied in [4],
where Lagrangian equations of motion could be found. In the following text the
governing equations and stationary solution will be given for the completeness of
the exposition and to fix the notation.

Introducing standard Euler’s angles of precession, nutation and rotation (𝜓, 𝜃
and 𝜙), moment of magnetic dipole m could be expressed as

(2.1) m = 𝑚 cosΔe𝜁 −𝑚 sinΔe𝜂; 𝑚 = const.,

and magnetic field is assumed to be constant, having vertical direction e𝑧

(2.2) H = −𝐻e𝑧 = −𝐻(sin 𝜃 sin𝜙e𝜉 + sin 𝜃 cos𝜙e𝜂 + cos 𝜃e𝜁); 𝐻 = const.,

where {e𝜉, e𝜂, e𝜁} is the standard basis of the moving frame 𝑂𝜉𝜂𝜁 (see Fig. 1).
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Figure 1. Coordinate frames of the hovering top problem.

Corresponding potential energy of the magnetic field reads

Π = −m ·H = 𝑚𝐻(cosΔ cos 𝜃 − sinΔ sin 𝜃 cos𝜙).

It is assumed that the body is axially symmetric, with axial moments of inertia
𝐽𝜉 = 𝐽𝜂 ̸= 𝐽𝜁 , so that Lagrangian function of the magnetic top in homogeneous
magnetic field can be written in the form

𝐿 = 𝐸𝑘 −Π = 1
2𝐽𝜉(𝜃

2 + �̇�2 sin2 𝜃) + 1
2𝐽𝜁(�̇�+ �̇� cos 𝜃)2(2.3)

−𝑚𝐻(cosΔ cos 𝜃 − sinΔ sin 𝜃 cos𝜙),

where an overdot denotes the time derivative. The Lagrangian equations
(︀

𝑑
𝑑𝑡

)︀(︀
𝜕𝐿
𝜕𝑞

)︀
−

𝜕𝐿
𝜕𝑞 = 0 for coordinates 𝑞 = 𝜓, 𝜃, 𝜙 read

(2.4) 𝜓(𝐽𝜉 sin
2 𝜃 + 𝐽𝜁 cos

2 𝜃) + 𝐽𝜁𝜙 cos 𝜃 + (𝐽𝜉 − 𝐽𝜁)�̇�𝜃 sin 2𝜃 − 𝐽𝜁�̇�𝜃 sin 𝜃 = 0;

𝐽𝜉𝜃 − �̇�2(𝐽𝜉 − 𝐽𝜁) sin 𝜃 cos 𝜃 + 𝐽𝜁�̇��̇� sin 𝜃(2.5)
−𝑚𝐻(cosΔ sin 𝜃 + sinΔ cos 𝜃 cos𝜙) = 0;

(2.6) 𝐽𝜁(𝜙+ 𝜓 cos 𝜃 − �̇�𝜃 sin 𝜃) +𝑚𝐻 sinΔ sin 𝜃 sin𝜙 = 0.
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Note that governing equations have two first integrals, Jacobi’s (generalized energy)
and cyclic integral for coordinate 𝜓 since 𝜕𝐿/𝜕𝑡 = 0 and 𝜕𝐿/𝜕𝜓 = 0. They have
the following form

𝐸 = 1
2𝐽𝜉(𝜃

2 + �̇�2 sin2 𝜃) + 1
2𝐽𝜁(�̇�+ �̇� cos 𝜃)2(2.7)

+𝑚𝐻(cosΔ cos 𝜃 − sinΔ sin 𝜃 cos𝜙) = const.

(2.8) 𝐶 = (𝐽𝜉 sin
2 𝜃 + 𝐽𝜁 cos

2 𝜃)�̇� + 𝐽𝜁�̇� cos 𝜃 = const.

The results of this study will be presented in dimensionless form. To that end
the following dimensionless quantities will be introduced

𝐽 = 𝐽𝜉/𝐽𝜁 ; 𝜏 = 𝑡�̂�; �̂� =
√︁
𝑚𝐻/𝐽𝜁 ,

where �̂� is the reference quantity which has unit s−1. Using these quantities,
Lagrangian equations (2.4)–(2.6) can be given in dimensionless form

𝜓′′(𝐽 sin2 𝜃 + cos2 𝜃) + 𝜙′′ cos 𝜃 + (𝐽 − 1)𝜓′𝜃′ sin 2𝜃 − 𝜙′𝜃′ sin 𝜃 = 0;(2.9)

(𝐽 − 1) sin 𝜃 cos 𝜃 + 𝜙′𝜓′ sin 𝜃 − (cosΔ sin 𝜃 + sinΔ cos 𝜃 cos𝜙) = 0;(2.10)

𝜙′′ + 𝜓′′ cos 𝜃 − 𝜓′𝜃′ sin 𝜃 + sinΔ sin 𝜃 sin𝜙 = 0,(2.11)

where prime denotes the derivative with respect to dimensionless time variable 𝜏 .
At the same time, dimensionless form of the first integrals (2.7)–(2.8) reads

�̂� = 1
2𝐽(𝜃

′2 + 𝜓′2 sin2 𝜃) + 1
2 (𝜙

′ + 𝜓′ cos 𝜃)2(2.12)
+ (cosΔ cos 𝜃 − sinΔ sin 𝜃 cos𝜙) = const.

𝐶 = (𝐽 sin2 𝜃 + cos2 𝜃)𝜓′ + 𝜙′ cos 𝜃 = const.(2.13)

Since Lagrangian (2.3) of the system has only one cyclic coordinate, this model
of magnetic top has a peculiar stationary solution, different from the one of usual
top, which describes so-called synchronous motion [4].

Lemma 2.1. Governing equations (2.9)–(2.11) admit stationary solution

(2.14) 𝜓′(𝑡) = 𝜔0; 𝜃(𝑡) = 𝜃0; 𝜙(𝑡) = 𝜙0(= 0),

where 𝜔0, 𝜃0 and 𝜙0 are real constants, provided they satisfy the constraint

(2.15) 𝜔2
0(𝐽 − 1) sin 𝜃0 cos 𝜃0 + sin(Δ + 𝜃0) = 0.

Proof. Stationary solution (2.14) satisfies Eq. (2.9) identically, while Eq.
(2.11) yields sinΔ sin 𝜃0 sin𝜙0 = 0. We shall adopt the solution 𝜙0 = 0, since it
will be shown in the sequel that other possibilities (Δ = 0 or 𝜃0 = 0) are ruled out
by stability conditions. Finally, the non-trivial constraint (2.15) to the stationary
solution is a consequence Eq. (2.10). �

Given Δ and 𝜃0, the stationary value of precessional angular velocity 𝜔0 can
be determined from equation (2.15)

(2.16) 𝜔0 =

√︃
sin(Δ + 𝜃0)

(1− 𝐽) sin 𝜃0 cos 𝜃0
.
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In real situations angles Δ and 𝜃0 are small and (2.16) can be approximated as

(2.17) 𝜔0 ≈ 𝜔min

√︂
1 +

Δ

𝜃0
; 𝜔min =

√︂
1

1− 𝐽
.
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Figure 2. Stationary angular velocity 𝜔0/𝜔min vs. 𝜃0 for different Δ.

The last result calls for a brief explanation. The value 𝜔min was given by
Flanders et al. [4, Eq. (8)] as a minimal value of precessional angular velocity
needed for the existence of synchronous stationary motion. This statement can be
supported by the following arguments. For small values of angles Δ and 𝜃0 equation
(2.15) can be solved for 𝜃0

(2.18) 𝜃0 ≈ Δ

𝜔2
0(1− 𝐽)− 1

.

Since Δ and 𝜃0 are assumed positive, the following inequality has to be satisfied

(2.19) 𝜔0 >

√︂
1

1− 𝐽
= 𝜔min,

thus confirming the observation of [4] with constraint 𝐽 < 1 (i.e., 𝐽𝜉 < 𝐽𝜁). Ac-
tually, 𝜔0 determined by (2.16) satisfies this inequality (see Fig. 2), except for
Δ = 𝜃0 = 0, and (2.19) can be regarded as a necessary condition for the existence
of stationary solution.

3. Variational equations

Stability analysis relies on the variational equations—governing equations for
perturbations. They will be given in the form of the system of first-order of ordinary
differential equations (ODE’s).

Before embarking on derivation of variational equations, let us consider some
global aspects of the problem, i.e., the reduction of the system. Since precession
angle 𝜓 is cyclic (ignorable) coordinate, and implies existence of cyclic integral
(2.13) (or (2.8)), the order of the system can be reduced by one. In a more formal
way, the system is defined on 𝑇𝑆𝑂(3) (or 𝑇 *𝑆𝑂(3) in Hamiltonian formulation),
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and it is invariant with respect to 𝑆1-action (rotation about vertical axis). This
invariance permits reduction to (𝑇𝑆𝑂(3))/𝑆1 (which is diffeomorphic to R3×𝑆2 in
Hamiltonian formulation). The reduction in Hamiltonian formulation is straight-
forward and stationary motion (2.14) can be regarded as relative equilibrium of the
reduced system in R3×𝑆2. As a consequence, the stationary motion is a particular
solution of the governing equations (2.9)–(2.11) of the form

(3.1)

𝜓′(𝑡) = 𝜔0;

𝜃(𝑡) = 𝜃0; 𝜃′(𝑡) = 0;

𝜙(𝑡) = 0; 𝜙′(𝑡) = 0.

To derive the variational equations, the perturbations of the stationary solution
(3.1) have to be introduced

(3.2)

𝜓′(𝑡) = 𝜔0 + 𝑥1;

𝜃(𝑡) = 𝜃0 + 𝑥2; 𝜃′(𝑡) = 𝑥4 = 𝑥′2;

𝜙(𝑡) = 𝑥3; 𝜙′(𝑡) = 𝑥5 = 𝑥′3.

By inserting (3.2) into (2.9)–(2.11), the following set of non-linear variational equa-
tions is obtained

(3.3)

𝑥′1 =
1

𝐽
{sinΔ cot(𝜃0 + 𝑥2) sin𝑥3

+ (1− 2𝐽)(𝜔0 + 𝑥1) cot(𝜃0 + 𝑥2)𝑥4 + csc(𝜃0 + 𝑥2)𝑥4𝑥5};
𝑥′2 = 𝑥4;

𝑥′3 = 𝑥5;

𝑥′4 =
1

𝐽
{cos(𝜃0 + 𝑥2) cos𝑥3 sinΔ + sin(𝜃0 + 𝑥2) cosΔ

− (1− 𝐽) cos(𝜃0 + 𝑥2) sin(𝜃0 + 𝑥2)(𝜔0 + 𝑥1)
2

− sin(𝜃0 + 𝑥2)(𝜔0 + 𝑥1)𝑥5};

𝑥′5 =
csc2(𝜃0 + 𝑥2)

𝐽
{(cos2(𝜃0 + 𝑥2) + 𝐽 sin2(𝜃0 + 𝑥2))

× ((𝜔0 + 𝑥1)𝑥4 − sinΔ sin𝑥3) sin(𝜃0 + 𝑥2)

− ((1− 𝐽) sin(2(𝜃0 + 𝑥2))(𝜔0 + 𝑥1)

+ sin(𝜃0 + 𝑥2)𝑥5) cos(𝜃0 + 𝑥2)𝑥4}.

System (3.3) can be written in a compact form x′ = F(x), where x = (𝑥1, . . . , 𝑥5)
𝑇

is the vector of perturbations. Stationary solution (3.1) corresponds to a trivial
solution (stationary point) x = 0 of (3.3).

Linearized variational equations are obtained by expanding r.h.s. of Eq. (3.3)
in the neighborhood of the unperturbed state 𝑥𝑖 = 0, 𝑖 = 1, . . . , 5

𝑥′1 =
cot 𝜃0
𝐽

(𝑥3 sinΔ + (1− 2𝐽)𝜔0𝑥4);

𝑥′2 = 𝑥4;
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𝑥′3 = 𝑥5;

𝑥′4 =
1

𝐽
{−(1− 𝐽)𝜔0𝑥1 sin 2𝜃0(3.4)

+ (cos(Δ + 𝜃0)− (1− 𝐽)𝜔2
0 cos 2𝜃0)𝑥2 − 𝜔0𝑥5 sin 𝜃0};

𝑥′5 =
1

𝐽

{︁
− sinΔ

sin 𝜃0
(cos2 𝜃0 + 𝐽 sin2 𝜃0)𝑥3

+
𝜔0

sin 𝜃0
(−(1− 2𝐽) cos2 𝜃0 + 𝐽 sin2 𝜃0)𝑥4

}︁
.

The system (3.4) can be written in a compact form x′ = Ax, where A = 𝐷F(0),
i.e., the matrix of coefficients of the r.h.s. of variational equations (3.4) which will
be omitted for the sake of brevity.

By introducing variational equations, stability analysis of stationary motion
(3.1) becomes the stability analysis of trivial solution x = 0 of variational equations
(3.3), or (3.4). In the light of introductory remarks about reduction, it may be
noticed that variational equations form a reduced system with respect to governing
equations (2.9)–(2.11). To that end, the stability of stationary motion (3.1) can be
interpreted as the stability of relative equilibrium in the reduced space R3 × 𝑆2.

4. Linear stability analysis

Linear stability analysis is based upon analysis of the eigenvalues of coefficient
matrix A, see Bakša and Vesković [10], Merkin [11] or Khalil [12]. If all the
eigenvalues have negative real parts, unperturbed solution is asymptotically stable.
If there is at least one eigenvalue with positive real part, unperturbed solution
is unstable. Finally, if there are some eigenvalues with zero real part, while real
parts of the other ones are negative, unperturbed solution is said to be marginally
(neutrally) stable. Conclusion about stability in the first two cases does not depend
on higher order terms in variational equations. However, in the case of marginal
stability, linear stability analysis could not provide a conclusive answer: higher
order terms could make the unperturbed solution to retain (neutral) stability, to
become asymptotically stable or even to be unstable.

These limitations of linear stability analysis come on their own in the study of
the synchronous motion of hovering magnetic top. Namely, characteristic equation
det(A− 𝜆I) = 0 is of the fifth degree, but can be reduced to the following special
form

(4.1) 𝜆(𝑎𝜆4 + 𝑏𝜆3 + 𝑐𝜆2 + 𝑑𝜆+ 𝑒) = 0,

where

𝑎 = 2𝐽3;

𝑐 = 𝐽{𝐽(−2 cosΔ cos 𝜃0) + (2 + 𝐽 − 𝐽 cos 2𝜃0) csc 𝜃0 sinΔ

+ 2(𝐽2 + (1− 3𝐽 + 2𝐽2) cos2 𝜃0)𝜔
2
0};(4.2)

𝑒 = − 1
2𝐽 csc 𝜃0 sinΔ{2(1 + 𝐽 + (1− 𝐽) cos 2𝜃0) cos(Δ + 𝜃0)

− (1− 𝐽)(2(1 + 𝐽) cos 2𝜃0 − (1− 𝐽)(−3 + cos 4𝜃0))𝜔
2
0},(4.3)
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while 𝑏 = 𝑑 = 0. Obviously, one eigenvalue is 𝜆 = 0 and marginal stability is the
best one can expect from linear stability analysis.

In order to recover the results of Flanders et al. [4], it will be assumed that Δ
and 𝜃0 are small. Consequently, due to (2.18) they are not independent, and the
following relation holds

(4.4)
Δ

𝜃0
≈ 𝜔2

0(1− 𝐽)− 1.

Introducing this relation into (4.2), approximate values of the coefficients (indepen-
dent of Δ and 𝜃0) are obtained

𝑎 = 2𝐽3;

𝑐 = 2𝐽(−2𝐽 + (1− 2𝐽 + 2𝐽2)𝜔2
0);(4.5)

𝑒 = 2𝐽(1− (1− 𝐽)𝜔2
0)

2,

which simplify the linear stability bounds.

Theorem 4.1. Under the smallness assumption (4.4), and 0 < 𝐽 < 1, synchro-
nous motion (2.14) is linearly marginally stable if stationary precessional angular
velocity 𝜔0 satisfy the necessary condition for existence (2.19)

(4.6) 𝜔0 >

√︂
1

1− 𝐽
= 𝜔min.

Proof. Since one eigenvalue is 𝜆 = 0, we have to determine conditions for
non-positivity of the real parts of the remaining ones. Non-zero eigenvalues are
obtained as solutions of bi-quadratic equation 𝑎𝜆4 + 𝑐𝜆2 + 𝑒 = 0. Solutions 𝜆2
ought to be real and negative in order to satisfy conditions of marginal stability.
Since

𝜆2 =
1

2𝑎

(︀
− 𝑐±

√︀
𝑐2 − 4𝑎𝑒

)︀
,

and 𝑎 > 0, coefficients of the characteristic equation have to satisfy the following
conditions

(a) 𝑐 > 0;
(b) 𝑐2 − 4𝑎𝑒 > 0;
(c) −𝑐±

√
𝑐2 − 4𝑎𝑒 < 0 ⇒ 4𝑎𝑒 > 0.

Inequalities (a) and (b) impose the following lower bounds for stationary angular
velocity

(4.7) 𝜔0 > 𝜔1 =
(︁ 2𝐽

1− 2𝐽 + 2𝐽2

)︁1/2

; 𝜔0 > 𝜔2 = 2
√
𝐽,

while the inequality (c) is satisfied for any 𝜔0. Taking into account the value of 𝜔min

given by (4.6), it is a matter of simple analysis to prove the following inequalities(︁ 𝜔1

𝜔min

)︁2

=
1

1− 2𝐽 + 2𝐽2
− 1 6 1;

(︁ 𝜔2

𝜔min

)︁2

= 4𝐽(1− 𝐽) 6 1;(︁𝜔1

𝜔2

)︁2

=
1

2(1− 2𝐽 + 2𝐽2)
6 1,
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where equalities hold for 𝐽 = 1/2. In conjunction with (4.6) they imply

(4.8) 𝜔0 > 𝜔min > 𝜔2 > 𝜔1,

which proves the Theorem.
Inequalities (4.8) are graphically illustrated in Fig. 3. �
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Figure 3. Stability bounds for angular velocity by linear theory.

Theorem 4.1 states that stationary solution 𝜔0, determined by (2.16), is mar-
ginally stable in the sense of linear stability analysis if it exists, i.e., if it satisfies
the necessary condition (4.6). Unfortunately, this conclusion cannot be regarded
as a complete proof of stability of synchronous stationary motion for the reasons
stated above. However, for the purpose of comparison, inequality (4.7)2 could be
written in dimensional form

𝑚𝐻

𝜔2
0𝐽𝜉

<
1

4

(︁𝐽𝜁
𝐽𝜉

)︁2

,

which was given in [4] as condition for existence of real roots. On the other hand,
inequality (4.7)1 have the following dimensional form

𝑚𝐻

𝜔2
0𝐽𝜉

<
1

2

(︁𝐽𝜁
𝐽𝜉

)︁2

− 𝐽𝜁
𝐽𝜉

+ 1,

which is a condition for existence of negative roots in [4].

5. Non-linear stability analysis by Lyapunov method

The problem encountered in this study is typical for systems in which some
kind of energy conservation exists. As already mentioned, this model of hovering
magnetic top has quadratic first integral (2.12), which is actually the (generalized)
energy integral. It usually suffices for the construction of Lyapunov function and
application of the direct method. Nevertheless, in some situations second order
expansion of the energy integral, in the neighborhood of unperturbed solution, also
contains linear terms, and thus does not fulfill the condition of definiteness. This
is just the case in the present problem.
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To resolve the problems of this kind Chetayev proposed the procedure for the
construction of Lyapunov function using a combination of first integrals [10,11],
if there exist more then one. The main problem consists in finding suitable com-
bination of first integrals which is definite in the neighborhood of unperturbed
solution. As a consequence, non-linear stability can be proved since the derivative
of Lyapunov function, constructed in this way, is identically zero. This procedure
is especially promising when the system possesses linear first integral, apart from
quadratic one. In that sense, Chetayev’s procedure is quite similar to the energy-
momentum method (see [13, Chapter 5]).

In our problem, cyclic integral (2.13) can be adjoined to Jacobi one (2.12) to
construct the Lyapunov function in the following way

(5.1) 𝑉 = �̂� − �̂�0 + 𝜅(𝐶 − 𝐶0),

where 𝜅 ∈ R is constant to be determined, and �̂�0 and 𝐶0 denote first integrals
evaluated on unperturbed stationary solution (2.14). Introducing perturbations
(3.2) into Lyapunov function (5.1), one obtains

𝑉 (x) = 1
2𝐽(𝑥

2
4 + (𝜔0 + 𝑥1)

2 sin2(𝜃0 + 𝑥2)) +
1
2 (𝑥5 + (𝜔0 + 𝑥1) cos(𝜃0 + 𝑥2))

2

+ (cosΔ cos(𝜃0 + 𝑥2)− sinΔ sin(𝜃0 + 𝑥2) cos𝑥3)

− 1
2𝐽𝜔

2
0 sin

2 𝜃0 − 1
2𝜔

2
0 cos

2 𝜃0 − (cosΔ cos 𝜃0 − sinΔ sin 𝜃0)(5.2)

+ 𝜅{(𝐽 sin2(𝜃0 + 𝑥2) + cos2(𝜃0 + 𝑥2))(𝜔0 + 𝑥1)

+ 𝑥5 cos(𝜃0 + 𝑥2)− (𝐽 sin2 𝜃0 + cos2 𝜃0)𝜔0}.

By expanding (5.2) in Taylor series up to second order in the neighborhood of
𝑥𝑖 = 0, 𝑖 = 1, . . . , 5, it is found out that linear terms disappear, either identically,
or by means of relation (2.15), when 𝜅 = −𝜔0. Thus, the following quadratic form
is obtained

𝑉 (x) = 1
2{(𝐽 sin2 𝜃0 + cos2 𝜃0)𝑥

2
1 + 2 cos 𝜃0𝑥1𝑥5 + 𝑥25}

+ 1
2 ((1− 𝐽)𝜔2

0 cos 2𝜃0 − cos(Δ + 𝜃0))𝑥
2
2(5.3)

+ 1
2 sinΔ sin 𝜃0𝑥

2
3 +

1
2𝐽𝑥

2
4 +𝑂(‖x‖3).

where ‖x‖ is the Euclidean norm of perturbation vector. If this quadratic form is
positive definite, there will exist a neighborhood of unperturbed solution 𝑥𝑖 = 0
in which Lyapunov function (5.2) is positive definite. Consequently, according
to Lyapunov theorem, unperturbed solution will be stable with respect to small
perturbations of initial conditions, since the derivative of (5.2) with respect to
variational equations (3.3) is zero.

Theorem 5.1. Stationary synchronous motion (2.14) of the magnetic top is
non-linearly stable with respect to small perturbations of initial consditions, if the
following conditions hold

Δ > 0; 𝜃0 > 0;(5.4)

Δ > −𝜃0 + arctan
(︀
1
2 tan 2𝜃0

)︀
= Δ𝐿.(5.5)
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Proof. To prove the non-linear stability, we have to determine the conditions
of positive-definiteness of the quadratic form (5.3). This will be checked in several
steps. First, note that (5.3) is not a complete quadratic form—only the perturba-
tions 𝑥1 and 𝑥5 are coupled, whereas the definiteness of the remaining combination
of pure squares depend on the sign of their coefficients only. Hence, it is obvious
that coefficient of 𝑥24 is positive since 0 < 𝐽 < 1. Since Δ > 0 by assumption,
positivity of the coefficient of 𝑥23 leads to Δ > 0 and 𝜃0 > 0, thus proving (5.4).

Definiteness of quadratic form of 𝑥1 and 𝑥5 can be analyzed using Sylvester
criterion, which says that matrix (quadratic form) is positive definite if and only
if all the determinants associated with upper-left submatrices are positive. In our
case the matrix reads

C =

(︂
𝑐11 𝑐15
𝑐51 𝑐55

)︂
=

(︂
𝐽 sin2 𝜃0 + cos2 𝜃0 cos 𝜃0

cos 𝜃0 1

)︂
and Sylvester’s criterion is reduced to the following inequalities

(5.6) 𝐽 sin2 𝜃0 + cos2 𝜃0 > 0; 𝐽 sin2 𝜃0 > 0,

that are satisfied due to (5.4)2.
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Figure 4. Stability bounds for angular velocity by Lyapunov
method and critical curve in (Δ, 𝜃0) plane.

Finally, for the definiteness of (5.3), the coefficient of 𝑥22 also has to be positive.
This leads to the following constraint for angular velocity

(5.7) 𝜔0 >
(︁ cos(Δ + 𝜃0)

(1− 𝐽) cos 2𝜃0

)︁1/2

= 𝜔𝐿.

The value of 𝜔𝐿 has to be compared with 𝜔0 determined by Eq. (2.16). This
provides a restriction on the values of Δ and 𝜃0 for which the stationary solution
(2.14) is stable

(5.8)
sin(Δ + 𝜃0)

sin 𝜃0 cos 𝜃0
>

cos(Δ + 𝜃0)

cos 2𝜃0
,

which leads to stability condition (5.5) and concludes the proof. �



266 SIMIĆ

Remark 5.1. The inequality 𝜃0 > 0, that is the part of stability conditions,
means that the axis of the top has to be tilted with respect magnetic field H. It is
in accordance with the existence of stationary angular velocity from Eq. (2.16).

Remark 5.2. It is clear that for Δ = 0 the conclusion about stability cannot
be drawn, since the definiteness is lost (see the coefficient of 𝑥23). This justifies an
assumption that the moment m of magnetic dipole deviates from the symmetry
axis 𝑂𝜁 of the top.

The conclusions of Theorem 5.1 are illustrated in Fig. 4. Curves 𝜔𝐿/𝜔0 are
drawn for different values of Δ. It can be observed that, given Δ, inequality (5.7),
i.e., 𝜔𝐿/𝜔0 < 1, is satisfied only for certain range of values of 𝜃0. Consequently,
inequality (5.5) determines the critical curve Δ𝐿(𝜃0) in (Δ, 𝜃0) plane, which bounds
the stability region, at least for small values of Δ and 𝜃0.

The results of the non-linear stability analysis, by means of Lyapunov direct
method, are new to the best author’s knowledge. So far, the linear stability analysis
was the main tool for determination of stability bounds. The results drawn from
non-linear stability analysis shed new light on the problem and should be compared
with the known results of linear stability.

6. Linear versus non-linear stability

In the final part of the study, new stability results obtained by Lyapunov
method will be compared with the results of linear stability analysis, given in Sec-
tion 4. At first sight, it seems that they are incomparable. Stability bound (5.5),
derived from Eq. (5.7), does not depend on 𝐽—the ratio of moments of inertia. On
the other hand, inequalities (4.7) give rise to a conclusion (4.8) which is indepen-
dent of nutation angle 𝜃0 and deviation angle Δ. The origin of this contradiction
lies in the fact that linear stability results are approximate—they were derived with
assumption that 𝜃0 and Δ are small and (2.18) holds. This led to a characteristic
equation with coefficients (4.5) independent of 𝜃0 and Δ.

Refined picture can be obtained if the approximation (2.18) is dropped. Then,
complete expressions for the coefficients (4.2) have to be used, but they have to
obey the same inequalities (a), (b), and (c), derived in Section 4. They will be
carefully examined in the sequel and compared with main non-linear stability result,
Eq. (5.5).

Consider the characteristic equation (4.1), whose non-zero solutions satisfy

(6.1) 𝑎𝜆4 + 𝑐𝜆2 + 𝑒 = 0,

with coefficients determined by Eq. (4.2). They have to satisfy stability conditions,
i.e., the inequalities used in the proof of Theorem 4.1. Inequality (a), 𝑐 > 0, leads
to the following stability condition

𝜔2
0 >

2𝐽 cosΔ cos 𝜃0 − (2 + 𝐽 − 𝐽 cos 2𝜃0) csc 𝜃0 sinΔ

2(𝐽2 + (1− 3𝐽 + 2𝐽2) cos2 𝜃0)
.

By inserting (2.16) into last inequality, after some straightforward calculation one
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obtains the following stability bound for deviation angle Δ

(6.2) Δ > − arctan
(︁ 2(𝐽2 + (1− 4𝐽 + 3𝐽2) cos2 𝜃0) tan 𝜃0
3− 4𝐽 + 3𝐽2 + (1− 4𝐽 + 3𝐽2) cos 2𝜃0

)︁
.

Although this bound contains inertia factor 𝐽 , apart from nutation angle 𝜃0, it can
be shown that it is negative for its entire range of values (0 < 𝐽 < 1) and for small
values of 𝜃0. Therefore, this inequality practically does not impose any stability
bound whatsoever.

Inequality (b), 𝑐2 − 4𝑎𝑒 > 0, leads to the following stability condition

(6.3) 𝑘0𝜔
4
0 + 𝑘2𝜔

2
0 + 𝑘4 > 0.

It can be shown that discriminant 𝐷 = 𝑘22 − 4𝑘0𝑘4 < 0, with 𝑘0 > 0, for the whole
range 0 < 𝐽 < 1 and small values of angles 𝜃0 and Δ. Consequently, stability
condition (6.3) is unconditionally satisfied.

Finally, inequality (c), 4𝑎𝑒 > 0, which is reduced to 𝑒 > 0 since 𝑎 = 2𝐽3 > 0,
gives the following stability condition

𝜔2
0 >

2(1 + 𝐽 + (1− 𝐽) cos 2𝜃0) cos(Δ + 𝜃0)

(1− 𝐽)(2(1 + 𝐽) cos 2𝜃0 − (1− 𝐽)(−3 + cos 4𝜃0))
.

By inserting (2.16) into last inequality, another stability bound for deviation angle
Δ is obtained

(6.4) Δ > −𝜃0 + arctan
(︁ 2(1 + 𝐽 + (1− 𝐽) cos 2𝜃0) cos 𝜃0 sin 𝜃0
2(1 + 𝐽) cos 2𝜃0 − (1− 𝐽)(−3 + cos 4𝜃0)

)︁
= Δlin.
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Figure 5. Critical curves by linear theory (Δlin) versus critical
curve by Lyapunov method Δ𝐿.

Inequality (6.4) is the only one which imposes genuine restrictions on the values
of Δ and 𝜃0 using linear stability theory. It can be shown that inequality (6.4)
predicts larger region of stability in (Δ, 𝜃0) plane for each value of 𝐽 , 0 < 𝐽 < 1,
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than the one obtained by Lyapunov method (5.5). However, simple calculation
shows that

(6.5) Δ > Δ𝐿(𝜃0) > Δlin(𝜃0, 𝐽),

where Δ𝐿, given by (5.5), is the stability bound obtained by Lyapunov method,
and Δ𝐿(0) = Δlin(0, 𝐽). Moreover, pointwise convergence of linear stability bound
Δlin(𝜃0, 𝐽) to non-linear (Lyapunov) one can be easily proved by the straightforward
calculation

(6.6) lim
𝐽→1

|Δlin(𝜃0, 𝐽)−Δ𝐿(𝜃0)| = 0.

This result is supported by the graphs given in Fig. 5.
Conclusions which may be drawn from this comparative study of linear and

non-linear stability are the following:
(1) inequalities (a) and (b) from linear stability analysis, do not impose any

restrictions to the values of deviation angle Δ and nutation angle 𝜃0;
(2) inequality (c) from linear stability analysis leads to the stability bound

(6.4); it is less restrictive than the non-linear bound (5.5) for each 𝐽 ∈
(0, 1) (see inequality (6.5)); however, it tends to (5.5) when 𝐽 → 1

Although Lyapunov method provides more restrictive stability bound than the
linear theory, it is superior to the latter one since linear theory yields only marginal
stability in this case. Also, it is a universal one since does not depend on 𝐽 .

7. Conclusions

In this study we analyzed the stability of synchronous stationary motion of
the magnetic top. It was motivated by the fact that existing stability results were
based upon conditions of marginal stability of linear stability analysis. The problem
was treated in dimensionless form and principal results of previous studies, given
by Eq. (4.7), were recovered and generalized. Main contribution of this study is
the non-linear stability analysis of the problem by means of Lyapunov method.
The new result, inequality (5.5), came out from this analysis, determining the
admissible values of the deviation angle Δ and nutation angle 𝜃0 for which the
stationary synchronous motion is stable. This result was compared with linear
stability analysis without small angle approximation (2.18). It was shown that
Lyapunov method provides universal stability criterion, established by inequality
(6.5), independent of inertial properties of the top.

The results mentioned above provide a solid basis for further studies. First,
the lack non-linear stability results motivated the application of Lyapunov method.
However, there is possibility to apply the Lyapunov-Malkin theorem which avoids
the introduction of the Lyapunov function. Second, the motion of magnetic top
is analyzed under rather restrictive assumption that the center of mass is at rest.
Taking into account its motion and analyzing the stability problem in its com-
pleteness is the problem for possible future studies. Finally, all the present studies
were concerned with stability analysis. Mechanisms of stability loss remained out
of their scope. Apart from purely mechanical dissipation, there are other more
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subtle influences which could change magnetic properties of the top. Consequently,
stability bounds could be altered and stationary motion could become unstable in
the course of time. This may also be the fruitful field for prospective studies.
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О СТАБИЛНОСТИ ЛЕВИТРОНА - ПОНОВО

Резиме. У овом раду се разматраjу неки проблеми стабилности стаци-
онарног кретања лебдеће намагнетисане чигре у хомогеном магнетном пољу.
Стабилност синхроног кретања jе анализирана коришћењем упрошћеног мо-
дела у ком jе игнорисано лебдеће кретање центра маса. Границе стабилности
су одређене применом директног метода Љапунова. Конкретно, показано jе
да, за дати угао Δ између момента магнетног дипола и осе симетриjе чигре, по-
стоjи интервал стационарних вредности угла нутациjе 𝜃0 за коjе jе стационарно
синхроно кретање стабилно.
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