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Abstract. This paper deals with the brachistochronic motion of a thin uni-
form disk rolling on a horizontal plane without slip. The problem is formu-
lated and solved within the frame of the optimal control theory. The brachis-
tochronic motion of the disk is controlled by three torques. The possibility of
the realization of the brachistochronic motion found in presence of Coulomb
dry friction forces is inspected. Also, the influence of values of the coefficient
of dry friction on the structure of the extremal trajectory is analyzed. Two
illustrative numerical examples are provided.

1. Introduction

In Fig. 1, a thin uniform circular disk (also called coin) rolling without slip on
a fixed horizontal plane coinciding with the coordinate plane 𝑂𝑥𝑦 of the inertial
Cartesian reference frame 𝑂𝑥𝑦𝑧 is shown. The disk is of mass 𝑚 and radius 𝑟,
where 𝐺 represents the mass center of the disk and 𝐶 is the contact point of the
disk with the plane. The curve 𝐿 shown in Fig. 1 represents the contact-trajectory
curve (also called the contact loci) on the plane 𝑂𝑥𝑦.

A moving Cartesian frame 𝐺𝜉𝜂𝜁 is chosen in such way that during the motion of
the disk the 𝜂-axis lying in the plane of the disk is parallel to the plane 𝑂𝑥𝑦, the 𝜁-
axis coincides with the direction 𝐶𝐺, and the 𝜉-axis is perpendicular to the plane of
the disk. The position of the mass center𝐺 relative to the frame 𝑂𝑥𝑦𝑧 is determined
by the Cartesian coordinates 𝑥𝐺, 𝑦𝐺, and 𝑧𝐺, whereas the angular orientation ot the
disk with respect to 𝑂𝑥𝑦𝑧 is described by the three angles 𝜑, 𝜃, and 𝜓 . In many text
books [1–8] the disk considered is often taken as an illustrative example in solving
various problems of kinematics and dynamics of constrained mechanical systems
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Figure 1. Rolling of a thin uniform circular disk over a horizontal plane.

with non-holonomic constraints. Also, a large number of works deal exclusively
with solving kinematics and dynamics problems related to a thin disk rolling on a
horizontal plane without slip (see e.g., [9–15]). Paper [16] considers the motion of
a thin disk rolling without slip on an arbitrary rigid surface. On the other hand,
in the literature available, the papers discussing the problem of brachistochronic
motion of the disk consider the problem of seeking the curve lying in the vertical
plane along which the disk, rolling without slip, is descending from a specified
initial position to a specified terminal position for a minimum time (see [17–19]).
Identical problem but for a circular cylinder is studied [20, 21]. Also, in these
papers conditions of realizability of rolling without slip and separations in presence
of the Coulomb dry-friction forces are considered. Note that in the paper [22],
the brachistochronic motion of a conservative dynamical system as well as the
geometrical characteristics of the regions of the possible brachistochronic motion of
the systems are considered.

This paper considers the brachistochronic motion of a thin uniform disk rolling
without slip on a horizontal plane. Such case has not been considered in the liter-
ature available to date. Like in [17–21], the analysis was performed of the realiz-
ability condition of the brachistochronic motion of the disk in the presence of the
Coulomb dry-friction forces. Numerical examples are provided.

2. Differential equations of motion of the rolling disk

Let us consider the case of the disk shown in Fig. 1 for which one has 𝜃(𝑡) ≡ 0.
This means that the disk rolls without slip while remaining vertical on the plane
𝑂𝑥𝑦, as it is shown in Fig. 2. Note that in this section, for the completeness of the
exposition and for the need of adapting notation for the exposition in the following
sections, a lot of well-known material related to the kinematics and dynamics of
the considered disc, which can be found in the literature cited in this paper, is
presented. Let us denote by i, j, and k the unit vectors of the axes 𝑥, 𝑦, and 𝑧,
respectively. Also, 𝜆, 𝜇, and 𝜈 represent the unit vectors of the axes 𝜉, 𝜂, and 𝜁,
respectively.
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Figure 2. A vertical thin rolling disk whose motion is controlled
by three torques.

The disk is acted on by the weight 𝑚g and the couples of forces of the torques
M𝜑 =𝑀𝜑k, M𝜓 = −𝑀𝜓𝜆, and M𝜃 =𝑀𝜃𝜇 as a system of active forces as well as
the reaction forces N = 𝑁k, R𝜆 = 𝑅𝜆𝜆, and R𝜇 = 𝑅𝜇𝜇 applied to the disk from
the plane. Here, g = −𝑔k, 𝑔 is the gravity acceleration, N is the normal reaction
force, and R𝜆 and R𝜇 are components of the Coulomb dry-friction force. By the
torques M𝜑, M𝜓, and M𝜃 the disk motion control is performed and these torques
are often referred to in the literature as the directional torque, pedalling torque,
and tilting (also called side inclination) torque, respectively. The position of the
disk with respect to the inertial frame 𝑂𝑥𝑦𝑧 is determined by the four Lagrangean
coordinates 𝑥𝐺, 𝑦𝐺, 𝜑, and 𝜓.

The angular velocity of the disk can be expressed as:

(2.1) 𝜔 = −�̇�𝜆+ �̇�𝜈 = −�̇� sin𝜑𝑖+ �̇� cos𝜑𝑗 + �̇�𝑘,

where an overdot denotes the derivative with respect to time 𝑡. The condition of
non-slipping of the disk is expressed as the following velocity constraint:

(2.2) v𝐶 = 0,

where v𝐶 is the velocity of the contact point 𝐶 of the disk with the plane 𝑂𝑥𝑦.
Further, the velocity of the mass center 𝐺 of the disk can be written out in the
following two equivalent ways:

(2.3) v𝐺 = �̇�𝐺i+ �̇�𝐺j

and

(2.4) v𝐺 = v𝐶 + 𝜔 × r𝐶/𝐺 = 𝑟�̇� cos𝜑i+ 𝑟�̇� sin𝜑j

where r𝐶/𝐺 = 𝑟k is the position vector of the point 𝐺 relative to the point 𝐶.
Equating the relations (2.3) and (2.4) yields the following nonholonomic constraints:

(2.5) �̇�𝐺 = 𝑉 cos𝜑,
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(2.6) �̇�𝐺 = 𝑉 sin𝜑,

where 𝑉 is a quasi-velocity [6] introduced as:

(2.7) 𝑟�̇� = 𝑉.

The Newton-Euler equations [4,6,7,23] of the disk read:

𝑚v̇𝐺 = N+R𝜇 +R𝜆 −𝑚𝑔k,(2.8)

L̇𝐺 = −r𝐶/𝐺 ×R𝜆 − r𝐶/𝐺 ×R𝜇 +M𝜑 +M𝜓 +M𝜃,(2.9)

where L𝐺 is the angular momentum of the disk about the mass center 𝐺 [6,23]
expressed in the moving frame 𝐺𝜉𝜂𝜁 as:

(2.10) L𝐺 = −𝐼𝜉�̇�𝜆+ 𝐼𝜁 �̇�𝜈,

where 𝐼𝜉 = (1/2)𝑚𝑟2 and 𝐼𝜁 = (1/4)𝑚𝑟2 are the mass moments of inertia of the
disk about the axes 𝜉 and 𝜁, respectively. Since the velocity v𝐺 can be expressed
in the frame 𝐺𝜉𝜂𝜁 as:

(2.11) v𝐺 = 𝑉 𝜇,

then using the obvious relations �̇� = �̇�𝜇 and �̇� = −�̇�𝜆 yields:

v̇𝐺 = −𝑉 �̇�𝜆+ �̇� 𝜇,(2.12)

L̇𝐺 = −𝐼𝜉𝜓𝜆− 𝐼𝜉�̇��̇�𝜇+ 𝐼𝜁𝜑𝜈.(2.13)

Note that mass moments of inertia 𝐼𝜉 and 𝐼𝜁 represent constant scalar quantities.
Finally, based on the expressions (2.7), (2.12), and (2.13), from Eqs. (2.8) and (2.9)
it can be obtained the following differential equations of motion of the disk :

−𝑚𝑉 �̇� = 𝑅𝜆,(2.14)

𝑚�̇� = 𝑅𝜇,(2.15)
0 = 𝑁 −𝑚𝑔,(2.16)

−𝐼𝜉
�̇�

𝑟
= 𝑅𝜇𝑟 −𝑀𝜓,(2.17)

−𝐼𝜉�̇�
𝑉

𝑟
=𝑀𝜃 −𝑅𝜆𝑟,(2.18)

𝐼𝜁𝜑 =𝑀𝜑.(2.19)

Note that the differential equations (2.14)–(2.19) could have been also obtained
by using various forms of differential equations for the non-holonomic systems (see
for more details e.g., [24]). However, using general theorems of dynamics is more
convenient in this case than using different methods and procedures of analytical
mechanics with multipliers of constraints because, here, the Coulomb dry friction
force is obtained directly, expressed via coordinates and their derivatives, which is
necessary for setting up the Coulomb condition, in order that slip does not occur. In
the procedures of analytical mechanics, after determination of the multipliers, it is
also necessary to show their nature, and this can be done again only by comparison
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to the equations obtained by general theorems, as has been done in [24]. Solving
Eqs. (2.14)–(2.19) for the control torques 𝑀𝜓, 𝑀𝜃, and 𝑀𝜑 yields:

𝑀𝜓 = 3
2𝑚𝑟�̇� ,(2.20)

𝑀𝜃 = − 3
2𝑚𝑟𝑉 �̇�,(2.21)

𝑀𝜑 = 1
4𝑚𝑟

2𝜑.(2.22)

Finally, it should be pointed out that the condition of the realizability of the
condition of roll without slip in presence of the Coulomb dry-friction forces requires
the fulfillment of the following inequality:

(2.23) 𝑅2
𝜆 +𝑅2

𝜇 6 𝑘2𝑓𝑁
2

where 𝑘𝑓 is the coefficient of dry friction.

3. The brachistochronic rolling of the disk under the
sufficiently large coefficient of dry friction 𝑘𝑓

Let us assume that the disk shown in Fig. 2 is rolling without slip and that
the the coefficient of dry friction, 𝑘𝑓 , during the motion of the disk has such values
for which the condition (2.23) is satisfied. Since it is a well-known fact that the
brachistochronic motion of mechanical systems is realized by control forces whose
power is equal to zero, then the power of control torques M𝜑, M𝜓, and M𝜃 must
be equal to zero, that is:

(3.1) 𝑃𝑤 ≡𝑀𝜑�̇�+𝑀𝜓�̇� = 0.

Note that motions of mechanical systems from one to another specified configura-
tion for a minimum time, where the power of control forces does not equal zero
(see e.g., [25,26]) are referred to as the optimum time motions or minimum time
motions. Also, more details about the choice of control forces for realization of the
brachistochronic motion of mechanical systems can be found in [27]. Hence, dur-
ing the brachistochronic motion of the disk, the principle of conservation of energy
holds:

(3.2) 1
2𝑚

(︀
�̇�2𝐺 + �̇�2𝐺

)︀
+ 1

2𝐼𝜉�̇�
2 + 1

2𝐼𝜁 �̇�
2 = 𝑇0

where 𝑇0 is the kinetic energy of the disk at the initial instant 𝑡0 = 0. Introducing
one more quasi-velocity in the following way:

(3.3) 𝛺 = �̇�

and using the relations (2.5), (2.6), (2.7), and (3.3), the relation (3.2) may be
written in the following form:

(3.4) 𝑉 2 +
𝑟2𝛺2

6
= 𝑐21

where 𝑐21 = 4𝑇0/(3𝑚). Let us now introduce control variables in the following way:

(3.5) 𝑢1 = 𝑉, 𝑢2 = Ω.
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Using these control variables, the relations (2.5), (2.6), and (3.3) take the form of
state equations of the problem considered as follows:

�̇�𝐺 = 𝑢1 cos𝜑,(3.6)
�̇�𝐺 = 𝑢1 sin𝜑,(3.7)

�̇� = 𝑢2,(3.8)

whereas the relation (3.2) becomes:

(3.9) 𝑢21 +
𝑟2𝑢22
6

− 𝑐21 = 0.

The brachistochrone problem of the disk, whose state equations are determined
by Eqs. (3.6)–(3.8), consists in determining the controls 𝑢1 and 𝑢2 and the state
variables 𝑥𝐺, 𝑦𝐺, and 𝜑 corresponding to them, so that the disk starting from the
initial position in which one has:

(3.10) 𝑡0 = 0, 𝑥𝐺(𝑡0) = 0, 𝑦𝐺(𝑡0) = 0, 𝜑(𝑡0) = 0,

reaches the terminal position where:

(3.11) 𝑡 = 𝑡𝑓 , 𝑥𝐺(𝑡𝑓 ) = 𝑎, 𝑦𝐺(𝑡𝑓 ) = 𝑎, 𝜑(𝑡𝑓 ) =
𝜋

2
,

for the minimum time 𝑡𝑓 where 𝑎 is a given constant. This can be expressed as the
minimization of the objective function:

(3.12) 𝐽 =

∫︁ 𝑡𝑓

0

𝑑𝑡→ min

subject to (3.6)–(3.9) where 𝑡𝑓 is free. To solve the optimal control problem for-
mulated by Pontryagin’s maximum principle [28–32], the Hamiltonian is formed:

(3.13) 𝐻 = −1 + 𝑢1(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑) + 𝜆𝜑𝑢2 + 𝜇
(︁
𝑢21 +

𝑟2𝑢22
6

− 𝑐21

)︁
,

where 𝜆𝑥, 𝜆𝑦, and 𝜆𝜑 are the costate variables and 𝜇 is the Lagrange multiplier.
The corresponding costate equations read:

�̇�𝑥 = −𝜕𝐻
𝜕𝑥

= 0 ⇒ 𝜆𝑥 = const.,(3.14)

�̇�𝑦 = −𝜕𝐻
𝜕𝑦

= 0 ⇒ 𝜆𝑦 = const.,(3.15)

�̇�𝜑 = −𝜕𝐻
𝜕𝜑

= 𝑢1(𝜆𝑥 sin𝜑− 𝜆𝑦 cos𝜑).(3.16)

Further, in accordance with the theory of optimal control, the necessary conditions
of optimality of the Hamiltonian 𝐻 with respect to the controls 𝑢1 and 𝑢2 are:

𝜕𝐻

𝜕𝑢1
= 0 ⇒ 𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑+ 2𝜇𝑢1 = 0,(3.17)

𝜕𝐻

𝜕𝑢2
= 0 ⇒ 𝜆𝜑 +

𝜇𝑟2

3
𝑢2 = 0.(3.18)
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Since the transversality condition associated with the time 𝑡𝑓 is:

(3.19) 𝐻(𝑡𝑓 ) = 0

and that the Hamiltonian 𝐻 is not an explicit function of time 𝑡, then one has that:

(3.20) 𝐻(𝑡) ≡ 0, ∀𝑡 ∈ [0, 𝑡𝑓 ],

which, based on Eqs. (3.17), (3.18), and (3.18), yields:

(3.21) 1 + 2𝜇𝑐21 = 0.

Solving the equations system (3.17), 3.18, and (3.21) for 𝑢1, 𝑢2, and 𝜇 yields:

𝑢1 = 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑),(3.22)

𝑢2 =
6𝑐21𝜆𝜑
𝑟2

,(3.23)

𝜇 = − 1

2𝑐21
.(3.24)

Finally, the brachistochrone problem posed, in accordance with the above rela-
tions, is reduced to solving a system of four first-order differential equations of the
form:

�̇�𝐺 = 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑) cos𝜑,(3.25)

�̇�𝐺 = 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑) sin𝜑,(3.26)

�̇� = Ω,(3.27)

Ω̇ =
6𝑐41
𝑟2

(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑)(𝜆𝑥 sin𝜑− 𝜆𝑦 cos𝜑),(3.28)

Taking that 𝑟 =
√
6m, 𝑐21 = 1m2/s2, 𝑔 = 9.80665m/s2, and 𝑎 = 1m, in solving

the equations system (3.25)–(3.28) by the shooting method [33] one starts from
the values 𝑡0 = 0, 𝑥𝐺(0) = 0, 𝑦𝐺(0) = 0, 𝜑(0) = 0, Ω(0) =

√︀
1− 𝜆2𝑥 (the case

considered is �̇�(0) > 0), where shooting of the values 𝑥𝐺(𝑡𝑓 ) = 1m, 𝑦𝐺(𝑡𝑓 ) = 1m,
and 𝜑(𝑡𝑓 ) = 𝜋/2 is performed by choosing the values 𝑡𝑓 > 0, 𝜆𝑥, and 𝜆𝑦. Note that
for the initial and terminal instants of motion, from the relation (3.9) it follows
that |𝜆𝑥| 6 1 and |𝜆𝑦| 6 1. In this manner, using the built-in functions NDSolve
and First in the Mathematica program package [34], the following dependencies
can be established in a numerical form: 𝑥𝐺(𝑡𝑓 ) − 1 ≡ ℎ𝑥(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦), 𝑦𝐺(𝑡𝑓 ) − 1 ≡
ℎ𝑦(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦), and 𝜑(𝑡𝑓 )−𝜋/2 ≡ ℎ𝜑(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦). Now, based on (3.11), the following
system of nonlinear equations can be found:

ℎ𝑥(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0,(3.29)
ℎ𝑦(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0,(3.30)
ℎ𝜑(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0.(3.31)

Solving the system of equations (3.29)–(3.31) by using the built-in Mathematica
function FindRoot (see [34]) yields 𝑡𝑓 = 2.21171 s and 𝜆𝑥 = 𝜆𝑦 = 0.543895 s/m.
Based on these data, the corresponding graphs are shown in Figs. 3, 4, 5, and 6.
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Figure 3. Graphs of the functions Ω(𝑡), 𝑉 (𝑡), and �̇� (𝑡) versus time.
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Figure 4. Trajectory of the mass center 𝐺 of the disk (graph of
the contact loci 𝐿.

Also, each of the dependencies (3.29)–(3.31) can be graphically represented in a
𝑡𝑓 , 𝜆𝑥, 𝜆𝑦-space using the built-in Mathematica function ContourPlot3D (see [34])
as shown in Fig. 7. At the intersection of the surfaces there is the obtained solution
of the system of nonlinear equations (3.29)–(3.31).

By observing Fig. 7 it can be concluded that the obtained solution represents
the global minimum time for the brachistochronic motion of the disk. The problem
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Figure 5. Magnitudes of the torques M𝜓, M𝜃, and M𝜑 scaled
with 𝑚 versus time.
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Figure 6. Magnitudes of the forces R𝜆 and R𝜇 scaled with 𝑚
versus time.

of determining the global minimum time of the brachistochronic motion of mechan-
ical systems can be found in more detail in [35,36]. Further, it is noticeable from
Fig. 3 that 𝑉 > 0 and Ω > 0, which means that in the considered brachistochronic
motion the angles 𝜑 and 𝜓 represent monotonically increasing functions of the time
𝑡. Note that in this section it is assumed that during the brachistochronic motion
of the disk the value of the coefficient 𝑘𝑓 is such that the following inequality is
fulfilled:

(3.32) 𝑘𝑓 > 𝐹 (𝑡) ≡

√︃
𝑉 2�̇�2 + �̇� 2

𝑔2
≡

√︁
Ω2(𝜆2𝑥 + 𝜆2𝑦)

𝑔
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Figure 7. Crossing of surfaces ℎ𝑥(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0, ℎ𝑦(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) =
0, and ℎ𝜑(𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0.

which, by using the relations (3.3), (3.5), and (3.22), follows directly from the
inequality (2.23). The graph of the function 𝐹 (𝑡) during the time interval [0, 𝑡𝑓 ] is
shown in Fig. 8 where 𝐹max = 𝐹 (0) = 𝐹 (𝑡𝑓 ) = 0.065819.

This graph is used to evaluate the coefficient 𝑘𝑓 for which it is possible to
realize previously determined brachistochronic motion of the disk by the Coulomb
dry-friction forces. Thus, the qualitative analysis of Fig. 8 can distinguish the
following three characteristic cases: for value 𝑘𝑓1 > 𝐹max the inequality (3.32) is
satisfied over the entire interval [0, 𝑡𝑓 ] (the case considered in this section); for value
𝐹min < 𝑘𝑓2 < 𝐹max the inequality (3.32) is disturbed on the initial and terminal
sub-interval of the interval [0, 𝑡𝑓 ]; for value 𝑘𝑓3 < 𝐹min the inequality (3.32) is
disturbed over the entire interval [0, 𝑡𝑓 ]. The section below will analyze the case
when 𝑘𝑓 = 𝑘𝑓2.

0.0 0.5 1.0 1.5 2.0
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Figure 8. Graph of the function 𝐹 (𝑡) versus time.
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4. The brachistochronic rolling of the disk under
the small coefficient of dry friction 𝑘𝑓

Now, consider the situation when 𝑘𝑓 = 𝑘𝑓2 (see the discussion at the end
of Section 3). Based on the qualitative analysis of Fig. 8, the brachistochronic
motion of the disk will be determined for this case in such way as to take that
control moments change, so that on the initial and terminal part of the interval of
motion the relation (3.32) is satisfied as an equality, while in the middle part of
the interval of motion this relation is satisfied as an inequality. In this sense, let us
introduce the following two control variables 𝑢1 and 𝑢2 as follows:

(4.1) �̇� = 𝑢1, �̇� = 𝑢2.

In accordance with the introduced control variables, the following state equations
will be considered:

�̇�𝐺 = 𝑉 cos𝜑,(4.2)
�̇�𝐺 = 𝑉 sin𝜑,(4.3)

�̇� = 𝑢1,(4.4)

�̇� = 𝑢2.(4.5)

During the brachistochronic motion of the disk the following constraints are im-
posed (see (2.14), (2.15), (2.23), and (3.2)):

𝑓1 ≡ 𝑢22 + 𝑉 2𝑢21 − 𝑘2𝑓𝑔
2 6 0,(4.6)

𝑓2 ≡ 𝑉 2 +
𝑟2𝑢21
6

− 𝑐21 = 0.(4.7)

Now, the Hamiltonian corresponding to the considered brachistochronic motion
of the disk can be written as [30,32]:

(4.8) 𝐻 = −1 + 𝜆𝑥𝑉 cos𝜑+ 𝜆𝑦𝑉 sin𝜑+ 𝜆𝜑𝑢1 + 𝜆𝑉 𝑢2 + 𝜇1𝑓1 + 𝜇2𝑓2

where 𝜆𝑥, 𝜆𝑦, 𝜆𝜑, and 𝜆𝑉 are the costate variables and 𝜇1 and 𝜇2 are the Lagrange
multipliers. In addition, for the Lagrange multiplier 𝜇1 one has [30,32]:

(4.9) 𝜇1

{︃
> 0, 𝑓1 = 0,

= 0, 𝑓1 < 0.
.

Thus, the costate equations read:

�̇�𝑥 = −𝜕𝐻
𝜕𝑥

= 0 ⇒ 𝜆𝑥 = const.,(4.10)

�̇�𝑦 = −𝜕𝐻
𝜕𝑦

= 0 ⇒ 𝜆𝑦 = const.,(4.11)

�̇�𝜑 = −𝜕𝐻
𝜕𝜑

= 𝑉 (𝜆𝑥 sin𝜑− 𝜆𝑦 cos𝜑),(4.12)

�̇�𝑉 = −𝜕𝐻
𝜕𝑉

= −𝜆𝑥 cos𝜑− 𝜆𝑦 sin𝜑− 2𝜇1𝑉 𝑢
2
1 − 2𝜇2𝑉,(4.13)
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whereas the necessary conditions of optimality of the Hamiltonian 𝐻 with respect
to the controls 𝑢1 and 𝑢2 read:

𝜕𝐻

𝜕𝑢1
= 0 ⇒ 𝜆𝜑 +

𝜇2𝑟
2𝑢1
3

+ 2𝜇1𝑉
2𝑢1 = 0,(4.14)

𝜕𝐻

𝜕𝑢2
= 0 ⇒ 𝜆𝑉 + 2𝜇1𝑢2 = 0,(4.15)

where the corresponding transversality conditions are:

𝜆𝑉 (0) = 0, 𝜆𝑉 (𝑡𝑓 ) = 0,(4.16)
𝐻(𝑡𝑓 ) = 0.(4.17)

As in Section 3, the transversality condition (4.17) and the fact that the Hamil-
tonian 𝐻 is not an explicit function of time 𝑡 implicate the relation (3.20). Based
on the previous considerations and the qualitative analysis of the graph of func-
tion 𝐹 (𝑡) shown in Fig. 8, the structure of the extremal trajectory defined in a
parametric form as 𝑥𝐺(𝑡), 𝑦𝐺(𝑡), 𝜑(𝑡), 𝜓(𝑡) is:

(4.18) extremal trajectory

⎧⎪⎨⎪⎩
subarc 1[0, 𝑡1] 𝑓1 = 0, 𝑓2 = 0,

subarc 2[𝑡1, 𝑡2] 𝑓1 < 0, 𝑓2 = 0,

subarc 3[𝑡2, 𝑡𝑓 ] 𝑓1 = 0, 𝑓2 = 0,

where the instants 𝑡1 and 𝑡2 are the switching points of the extremal trajectory
structure (4.18). In the intervals [0, 𝑡1] and [𝑡2, 𝑡𝑓 ] from Eqs. (4.6) and (4.7) it
follows that:

𝑢1 =

√︀
6(𝑐21 − 𝑉 2)

𝑟
,(4.19)

𝑢2 = ±

√︁
𝑘2𝑓𝑔

2𝑟2 − 6𝑉 2(𝑐21 − 𝑉 2)

𝑟
,(4.20)

where in the interval [0, 𝑡1] the “+” sign should be taken in front of the square
root in the expression (4.20) and the “−” sign in the interval [𝑡2, 𝑡𝑓 ] (see Fig. 3).
According to this, solving Eqs. (4.14) and (4.15) for 𝜇1 and 𝜇2 yields:

𝜇1 =
−𝜆𝑉 𝑟

±2
√︁
𝑘2𝑓𝑔

2𝑟2 − 6𝑉 2(𝑐21 − 𝑉 2)
,(4.21)

𝜇2 = − 3𝜆𝜑

𝑟
√︀
6(𝑐21 − 𝑉 2)

+
3𝜆𝑉 𝑉

2

±𝑟
√︁
𝑘2𝑓𝑔

2𝑟2 − 6𝑉 2(𝑐21 − 𝑉 2)
.(4.22)

On the other hand, in the interval [𝑡1, 𝑡2] one has 𝜇1 = 0 and, hence, from Eqs.
(4.13), (4.14), and (4.15) it follows that:

𝜆𝑉 (𝑡) ≡ 0 ⇒ �̇�𝑉 (𝑡) ≡ 0,(4.23)

𝜆𝜑 = −𝜇2𝑟
2𝑢1
3

,(4.24)

2𝜇2𝑉 = −(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑).(4.25)
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Taking into account (4.8) and (4.18) and introducing the relations (4.23)–(4.25)
into (3.20) yields:

(4.26) 𝜇2 = − 1

2𝑐21
.

Now, incorporating (4.26) into (4.24) and (4.25) gives:

𝑉 = 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑),(4.27)

𝜆𝜑 =

√︀
6(𝑐21 − 𝑉 2)

𝑐21𝑟
,(4.28)

where the expression (4.19) is used. Further, taking into account Eqs. (4.4) and
(4.5) and taking time derivative of the expression (4.27) yields the expression for
the control variable 𝑢2 as:

(4.29) 𝑢2 = 𝑐21

√︀
6(𝑐21 − 𝑉 2)

𝑟
(−𝜆𝑥 sin𝜑+ 𝜆𝑦 cos𝜑).

Finally, puting the expressions (4.19) and (4.27) into Eqs. (4.2)–(4.4) gives:

�̇�𝐺 = 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑) cos𝜑,(4.30)

�̇�𝐺 = 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑) sin𝜑,(4.31)

�̇� =

√︀
6𝑐21[1− 𝑐21(𝜆𝑥 cos𝜑+ 𝜆𝑦 sin𝜑)2]

𝑟
.(4.32)

Based on above considerations, the numerical procedure for determining the
switching instants 𝑡1 and 𝑡2 as well as the time 𝑡𝑓 of the brachistochronic motion
of the disk consists of the following steps:

∙ In the interval [0, 𝑡1], by using the built-in Mathematica functions NDSolve
and First with the initial conditions 𝑥𝐺(0) = 0, 𝑦𝐺(0) = 0, 𝜑(0) = 0,
and 𝑉 (0) = 𝑉0, Cauchy’s problem of the system of differential equations
(4.2)—(4.5) is solved where Eqs. (4.19) and (4.20) are taken into account.
Based on the expression (4.27), the following functional dependence in a
numerical form, 𝑉 (𝑡1)−𝑐21(𝜆𝑥 cos𝜑(𝑡1)+𝜆𝑦 sin𝜑(𝑡1)) ≡ Φ1(𝑉0, 𝑡1, 𝜆𝑥, 𝜆𝑦),
is established.

∙ In the same interval, the backward integration of the differential equations
(4.2)–(4.5) and (4.12)–(4.13) is performed, where 𝑥𝐺(𝑡1), 𝑦𝐺(𝑡1), 𝜑(𝑡1),
and 𝑉 (𝑡1) obtained in the first step are taken for the initial values as well
as 𝜆𝑉 (𝑡1) = 0 and 𝜆𝜑(𝑡1) =

√︀
6(𝑐21 − 𝑉 2(𝑡1))/(𝑐

2
1𝑟) (see Eqs. (4.23) and

(4.28)). Thus, based on the transversality condition (4.16), the functional
dependence in a numerical form, 𝜆𝑉 (0) ≡ Φ2(𝑉0, 𝑡1, 𝜆𝑥, 𝜆𝑦), is established.

∙ The integration of the differential equations (4.30)–(4.32) in the interval
[𝑡1, 𝑡2], where the values 𝑥𝐺(𝑡1), 𝑦𝐺(𝑡1), and 𝜑(𝑡1) obtained in the first
step are taken for the initial values, is performed.

∙ The integration of the differential equations (4.2)–(4.5) and (4.12)–4.13 in
the interval [𝑡2, 𝑡𝑓 ], where the values 𝑥𝐺(𝑡2), 𝑦𝐺(𝑡2), and 𝜑(𝑡2) obtained
in the third step are taken for the initial values as well as 𝜆𝑉 (𝑡2) = 0

and 𝜆𝜑(𝑡2) =
√︀
6(𝑐21 − 𝑉 2(𝑡2))/(𝑐

2
1𝑟) (see Eqs. (4.23) and (4.24)). Thus,
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using the conditions (3.11) and the transversality condition (4.16) yields
the following four functional dependencies in a numerical form: 𝑥𝐺(𝑡𝑓 )−
𝑎 ≡ Φ3(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦), 𝑦𝐺(𝑡𝑓 )− 𝑎 ≡ Φ4(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦), 𝜑(𝑡𝑓 )−
𝜋/2 ≡ Φ5(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦), and 𝜆𝑉 (𝑡𝑓 ) ≡ Φ6(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦).

∙ The final step is solving the following system of nonlinear equations

Φ1(𝑉0, 𝑡1, 𝜆𝑥, 𝜆𝑦) = 0,(4.33)
Φ2(𝑉0, 𝑡1, 𝜆𝑥, 𝜆𝑦) = 0,(4.34)

Φ3(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0,(4.35)
Φ4(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0,(4.36)
Φ5(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0,(4.37)
Φ6(𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, 𝜆𝑦) = 0(4.38)

for unknowns 𝑉0, 𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑥, and 𝜆𝑦.
Thus, choosing 𝑟 =

√
6m, 𝑐21 = 1m2/s2, 𝑔 = 9.80665m/s2, 𝑎 = 1m, and

𝑘𝑓 = 0.0525 and solving the system of equations (4.33)–(4.38) by using the built-in
Mathematica function FindRoot (see [34]) yields 𝑉0 = 0.626499m/s, 𝑡1 = 1.08556 s,
𝑡2 = 1.12776 s, 𝑡𝑓 = 2.21333 s, and 𝜆𝑥 = 𝜆𝑦 = 0.546801 s/m. The corresponding
graphs are shown in Figs. 9, 10, and 11.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

xG @mD

y G
@m
D

Figure 9. Trajectory of the mass center 𝐺 of the disk for 𝑘𝑓 = 𝑘𝑓2.

5. Conclusions

The analysis of the available literature leads to the conclusion that this paper
presents new results related to the brachistochronic motion of the thin disk on a
horizontal plane. It has been shown that the brachistochronic motion of the disk
obtained in Section 3 cannot be realized for arbitrary values of the coefficient of
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Figure 10. Magnitudes of the torques M𝜓, M𝜃, and M𝜑 for 𝑘𝑓 =
𝑘𝑓2 scaled with 𝑚 versus time.
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Figure 11. Magnitudes of the forces R𝜆 and R𝜇 for 𝑘𝑓 = 𝑘𝑓2
scaled with 𝑚 versus time.

dry friction 𝑘𝑓 . A specific range of values of the coefficient 𝑘𝑓 requires the main-
tenance of the Coulomb friction force magnitude on a boundary value 𝑘𝑓𝑚𝑔 in the
initial and terminal phase of the brachistochronic motion, using the correspond-
ing laws of change in control torques 𝑀𝜓, 𝑀𝜃, and 𝑀𝜑. The approach proposed
makes it possible to apply in analyzing the motion for some other combinations
of boundary conditions (for example, 𝑥𝐺(𝑡𝑓 ) ̸= 𝑦𝐺(𝑡𝑓 ) and 𝜑(𝑡𝑓 ) ̸= 𝜋/2). Further
considerations of the brachistochronic motion of the thin disk can be directed to
the brachistochrone problem of the disk on an inclined plane surface as well as on
curved surfaces.
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БРАХИСТОХРОНО КРЕТАЊЕ ВЕРТИКАЛНОГ
ДИСКА КОJИ СЕ КОТРЉА БЕЗ КЛИЗАЊА

ПО ХОРИЗОНТАЛНОJ РАВНИ

Резиме. У раду се разматра брахистохроно кретање вертикалног танког
хомогеног диска коjи се котрља без клизања по хоризонталноj равни. Брахи-
стохрони проблем jе формулисан и решен у оквиру теориjе оптималног упра-
вљања. Брахистохроним кретањем диска управља се са три спрега сила. За
тако одређено брахистохроно кретање диска анализирана jе могућност његове
реализациjе у присуству Кулонове силе сувог трења. Такође, анализиран jе
утицаj вредности коефициjента сувог трења на структуру екстремалне траjек-
ториjе. Дата су два илустративна нумеричка примера.

Department of Mechanics (Received 02.10.2017.)
Faculty of Mechanical Engineering (Revised 24.11.2017.)
University of Belgrade (Available online 30.11.2017.)
Belgrade
Serbia
aobradovic@mas.bg.ac.rs

Department of Applied Mechanics, Mathematics and Physics
Faculty of Mechanical and Civil Engineering in Kraljevo
University of Kragujevac
Kraljevo
Serbia
salinic.slavisa@gmail.com

Department of Mechanics
Faculty of Mechanical Engineering
University of Belgrade
Belgrade
Serbia
rradulovic@mas.bg.ac.rs


	1. Introduction
	2. Differential equations of motion of the rolling disk
	3. The brachistochronic rolling of the disk under the sufficiently large coefficient of dry friction kf
	4. The brachistochronic rolling of the disk under the small coefficient of dry friction kf
	5. Conclusions
	References

