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Abstract. Phase field (diffuse interface) models accommodate diffusive triple
line motion with variable contact angle, thus allowing for the no-slip boundary
condition without the stress singularities. We consider two commonly used
classes of phase field models: the compositionally compressible (CC) model
with compressibility limited to the fluid mix within the diffuse interface, and
the incompressible (IC) model. First, we show that the CC model applied
to fluids with dissimilar mass densities exhibits the computational instability
leading to the breakup of the triple line. We provide a qualitative physical
explanation of this instability and argue that the compositional compressibil-
ity within the diffuse interface is inconsistent with the global incompressible
flow. Second, we derive the IC model as a systematic approximation to the
CC model, based on a suitable choice of continuum velocity field. Third, we
benchmark the IC model against sharp interface theory and experimental ki-
netics. The triple line kinetics is well represented by the triple line mobility
parameter. Finally, we investigate the effects of the bulk phase field diffusional
mobility parameter on the kinetics of the wetting process and find that within
a wide range of magnitudes the bulk mobility does not affect the flow.

1. Introduction

Flows controlled by capillary forces have long been a subject of interest [10,19,
20], as a fundamental physical problem, as well as related to industrial and natural
processes, including: materials joining [25,41,42], painting [47] and coating [44],
biological phenomena such as super-hydrophilic leafs in plant biology [37], and
geology such as molten lava flows [39].
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Sharp interface models applied to capillary flows face two key problems. The
first is the singularity of the solutions to fluid dynamics equations with no-slip
boundary condition in the vicinity of the triple line [23,24]. The remedies for this
problem have been attempted by allowing a slip over a characteristic length within
a sharp interface model [9,15], and even within the phase field models [49], but suf-
fered from physical ambiguities and parameter uncertainties. The second problem
is computational treatment of topological discontinuities (breakup and coalescence
of domains) which often arise in capillary flows. Two solutions have emerged over
the years: smoothed particle hydrodynamics [46] and the phase field (or diffuse
interface) models. The latter treats the multiple materials in multiple domains as
one material with phases distinguished by the value of the phase field variable. The
interface energies are represented as penalties imposed on the phase field gradient.
The interfaces are moved with the flow but locally adjust by diffusive mechanism.

The earliest recorded suggestion that an interface between two fluids is diffuse
is probably the one by Poisson [48]. Gibbs [29] considered a similar idea, and van
der Waals [57] proposed the first mathematical model. Following the formulations
of Cahn and Hilliard [12] and Cahn [11], and the advances in computing power,
the diffuse interface or phase field formulation has been widely used for modeling
moving interfaces in both solids and fluids. Both types of applications have been
recently reviewed; see Chen [16] for solids, and Anderson et al [4] and Kim [36]
for fluids. In most applications, the phase field does not model the actual interface
dimensions. Instead, the phase field model is viewed as a mathematical tool for
computational treatment of changing topology. Its validity is based on its adher-
ence to the corresponding sharp interface model and mapping of the phase field
parameters to physical parameters [53,59].

The phase field model allows for distinction between convective (slip) and dif-
fusive motion of the triple line. While the convective motion is still subject to the
no-slip boundary condition, the contact line moves by surface diffusion mechanism,
driven by hydrodynamics and energy minimization. The mechanism is supported
by molecular dynamics studies [38,56] and molecular kinetic theory [8,52]. Build-
ing on the Seppecher’s analysis [51], the mathematical formulation of the problem
has been developed by Jacqmin [34] and applied, using finite difference method, to
analyze contact line dynamics in capillary flows. The Jacqmin’s boundary condition
was implemented into the finite element framework for incompressible (IC) flow by
Yue and Feng [60,61] and Fu et al [27]. The current paper is to our knowledge the
first finite element implementation of the Jacqmin’s diffusive boundary condition
for the compositionally compressible1 (CC) model.

We consider the diffuse interface between two immiscible fluids, where the ques-
tion of compositional compressibility of the thin interface layer becomes critical.
While the thermodynamic consistency of the CC model [43] weights in its favor,
the computational instabilities that arise when fluids have very different mass den-
sities present an obstacle for its application. On the other hand, the IC model is

1We believe that this name is more descriptive than quasi-incompressible used by Lowengrub
and Truskinovsky [43].
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much simpler, computationally stable and efficient. The assumptions and physical
arguments given for the IC model can be less [22] or more rigorous [3]. Neverthe-
less, intuition dictates that the effect of compressibility in the thin interface layer
(which is the main difference between the two models) is probably negligible. In
this paper, we establish the mathematical connection between the two models and
show that the IC model is the approximation to the thermodynamically rigorous
CC model.

The interface between immiscible fluids is represented by a conserved phase field
leading to the 4th order partial differential equation, known as the Cahn–Hilliard
(CH) equation [12]. The problems in this class have been addressed in the past, with
a variety of numerical methods, including the finite difference method [13,14,34],
spectral, pseudo-spectral, and related methods [15, 40]. The drawbacks of such
methods are seen in the difficulties in modeling irregular domains, nonlinear and
history-dependent problems. The finite element (FE) formulations have been de-
veloped within the last decade. The mixed, discontinuous (C0) Galerkin formu-
lation has been first applied to a single, uncoupled Cahn–Hilliard equation by
Kay and Welford [35]. The Galerkin continuous FE formulation (C1) for cou-
pled Cahn–Hilliard/solid mechanics problem has been developed by Asle Zaeem
and Mesarovic [6,7]. The coupling with the Navier-Stokes equations (C0) for the
bulk multiphase flow with no solid boundaries has been implemented by Feng [26],
Hua et al [33] and Guo et al [30]. The triple line motion with equilibrium contact
angle (instantaneous relaxation) has often been considered [21,28,58,63]. The dy-
namically variable contact angle with Jacqmin’s diffusive boundary condition has
been implemented by Yue and Feng [60,61] for the IC model.

The paper is organized as follows. In Section 2, we review the main features
of the CC model enhanced with the Jaqmin’s [34] diffusive boundary condition
(mathematical details are relegated to Appendices A and B). In Section 3, we de-
scribe the computational instability of the CC model that arises when the two
fluids have widely dissimilar mass densities. The instability is then explained by
the simple mechanism whereby small change of volume of the interface requires
massive displacement of the surrounding incompressible fluid. The problem can be
resolved either by introduction of fluid elasticity, or by abandoning the composi-
tional compressibility altogether. We pursue the latter option in Section 4, where
we derive the IC model as a systematic approximation of the CC model. Param-
eter identification and dimensional analysis are discussed in Section 5. In Section
6, numerical results are compared to theory and experiments, and the effect of the
purely computational parameter - the phase field mobility in the bulk, is discussed.
The results are summarized in Section 7.

2. Compositionally compressible (CC) flow

We consider the isothermal flow of two immiscible fluids. The only mixing
occurs in the thin interface layer, where a smooth transition in concentration of the
components occurs. The key elements of the compositionally compressible (CC)
model are:

(1) Adoption of the barycentric velocity as the continuum velocity field,
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(2) Mass density as a function of the phase field variable, and,
(3) The thermodynamic requirement for the dependence of chemical potential

on pressure, which implies that the specific2 free energy of a homogeneous
fluid can only depend of 𝜑, so that the homogeneous free energy density
is proportional to the mass density.

Consider an elementary volume 𝑉 , containing two species3, with partial mass den-
sities 𝜌𝐴 and 𝜌𝐵 , such that their sum is the total mass density 𝜌:

𝜌𝐴 =
𝑀𝐴

𝑉
; 𝜌𝐵 =

𝑀𝐵

𝑉
; 𝜌 =

𝑀

𝑉
=
𝑀𝐴 +𝑀𝐵

𝑉
= 𝜌𝐴 + 𝜌𝐵 .

The components velocities are u𝐴 and u𝐵 . Definition of the continuum velocity
field u(x) as the barycentric velocity:

(2.1) 𝜌u = 𝜌𝐴u𝐴 + 𝜌𝐵u𝐵 ,

preserves the total momentum of the mix and implies the standard mass balance:

(2.2)
�̄�𝜌

𝐷𝑡
= −𝜌∇ · u,

where �̄�/𝐷𝑡 represents the material derivative. The phase variable is the mass
fraction of 𝐴:

(2.3) 𝜑 =
𝜌𝐴

𝜌
,

so that the mass density is a function only of the phase variable (and not of pres-
sure):

(2.4) 𝜌 = 𝜌(𝜑).

The definitions (2.1) and (2.3) imply4 the diffusion law for the phase variable,
with the diffusional flux proportional to the relative velocity of the component 𝐴:

(2.5) 𝜌
�̄�𝜑

𝐷𝑡
= −∇ · q; q = 𝜌𝐴(u𝐴 − u).

Further, the functional dependence (2.4) forbids full incompressibility; if any
diffusion is to occur, the mass density of a material element must change:

(2.6)
�̄�𝜌

𝐷𝑡
= −𝜌∇ · u =

𝑑𝜌

𝑑𝜑

�̄�𝜑

𝐷𝑡
= −1

𝜌

𝑑𝜌

𝑑𝜑
∇ · q ̸= 0.

While the choice of the barycentric velocity preserves the momentum of the
mix, it fails to preserve the kinetic energy. Specifically, if the kinetic energy is

2Specific energy = energy per unit mass; energy density = energy per unit volume.
3Since we consider immiscible fluids, the distinction between species and phase is immaterial.
4The fact that the diffusion law (2.5) is the necessary consequence of the choice of the

barycentric velocity as the material velocity, does not appear to be acknowledged in the literature.
For example, Lowengrub and Truskinovsky [43] introduce (2.5) as an assumption, rather than a
proven fact, while Abels [1] introduces a different assumption to prove (2.5). We give the proof
of (2.5) in Appendix A.
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written as

(2.7) �̄� =

∫︁
𝑉

1

2
𝜌u · u𝑑𝑉,

then the kinetic energy associated with the diffusional flux is neglected. From (2.1)
and (2.5), this error is ∫︁

𝑉

𝑞2

2𝜌𝜑(1− 𝜑)
𝑑𝑉.

However, this kinetic energy plays a role only in the thin interface layer between
the two fluids. Elsewhere, the kinetic energy density in (2.7) is exact. Similarly,
compositional compressibility is only relevant in the thin interface region. Else-
where:

q = ∇ · q = 0 ⇒ �̄�𝜌

𝐷𝑡
= −𝜌∇ · u = 0.

We consider the following class of two-phase capillary flow problems. The vol-
ume of the computational cell 𝑉 has the boundary 𝜕𝑉 with the unit outward normal
n. A part of the boundary, 𝑆, is the interface with a rigid solid. The remainder,
𝐴, is the computational cell boundary within the fluid, chosen for convenience, and
often with the computational efficiency constraint. We take:

𝜕𝑉 = 𝑆 ∪𝐴.
At the solid boundary, we expect no normal diffusional flux. If the boundary

𝐴 passes through a single phase, the normal diffusional flux vanishes. Finally, if
it is necessary to cut the computational domain through the phase field interface,
this is typically done so that the boundary is orthogonal to the interface. Since
the diffusional flux is also orthogonal to the interface, the normal boundary flux
is zero. Thus, we will assume that the normal flux vanishes everywhere along the
boundary:

n · q = 0 on 𝜕𝑉.
In Appendix B, we give derivation of the governing equations based on the

principle of virtual power (PVP). Moreover, we show how the diffusive boundary
condition [34] arises naturally from the linear dissipation assumption.

Let 𝑓(𝜑) be the composition dependent specific free energy of a homogeneous
fluid. It is a double-well potential with minima corresponding to the two phases
(Figure 1). Then, the specific free energy for a non-homogeneous fluid, thermo-
dynamically consistent with compositional compressibility, is written in the Cahn–
Hilliard form:

𝜔(𝜑,∇𝜑) = 𝑓(𝜑) + 1
2𝜅(∇𝜑)

2.

The parameter 𝜅 and the parameters of the function 𝑓(𝜑) (Figure 1) are re-
lated to the interface energy - a physical parameter, and to the width of the diffuse
interface - a computational parameter, chosen with some latitude. More detailed
discussion of model parameters will be given later in connection with the incom-
pressible model.

For shorter writing, we introduce the symmetric-deviatoric gradient operator:

♦u = u∇+∇u− 2
3 (∇ · u)I,
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Figure 1. Free energy density of a homogeneous fluid as function
of the phase variable. The relevant parameter is Δ𝑓 , see discussion
in Section 5.

where the dyads: (u∇)𝑖𝑗 = 𝜕𝑢𝑖/𝜕𝑥𝑗 ; (∇u)𝑖𝑗 = 𝜕𝑢𝑗/𝜕𝑥𝑖. The viscous deviatoric
stress is then written as

𝜏 = (𝜑,∇u) = 𝜇(𝜑)♦u.

Like mass density in (2.4), the viscosity 𝜇(𝜑) and the solid-fluid interface energy
𝛾(𝜑) are interpolated between the values corresponding to the two fluids.

The governing equations, derived in Appendix B, consist of the Navier-Stokes
equations (NS) modified to include the capillary stresses5, the compositional com-
pressibility condition (CC), and the Cahn–Hilliard 4th order diffusion equation,
which we write here as two 2nd order differential equations (CH1 and CH2) for the
phase variable and the chemical potential M:

(2.8)

NS: 𝜌
�̄�u

𝐷𝑡
= 𝜌g +∇ · (𝜇♦u− 𝜅𝜌∇𝜑∇𝜑− 𝜋I);

CC: ∇ · u = − 1

𝜌2
𝑑𝜌

𝑑𝜑
∇ · (𝐵∇𝑀);

CH1: 𝜌
�̄�𝜑

𝐷𝑡
= ∇ · (𝐵∇𝑀);

CH2: 𝑀 =
𝑑𝑓

𝑑𝜑
− 1

𝜌
∇ · (𝜅𝜌∇𝜑)− 𝜋

𝜌2
𝑑𝜌

𝑑𝜑
.

The field 𝜋(x) is identified with the non-capillary pressure. It arises as the
Lagrange multiplier associated with the enforcement of the CC condition. The

5The NS equation differs from the original Lowengrub and Truskinovsky [43] result in the
treatment of volumetric dissipation. Note that compositional compressibility is not the standard
(pressure) compressibility: there is no volume change in response to pressure, only in response
to composition change. Moreover, the CC condition (2.6) implies that flux divergence ∇ · q and
the velocity divergence ∇ · u are not independent rates. The equations (2.8) and (2.9) have been
derived using the principle of virtual power (Appendix B), which requires careful definition of work
(power) conjugate fields, so that the viscous dissipation is strictly deviatoric, while the diffusional
dissipation is strictly volumetric. It is, of course, possible to consider volumetric dissipation
(viscosity) as a result of some other mechanisms independent of diffusion [53].
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diffusive boundary condition on the solid surface, derived in the Appendix B, is

(2.9)
�̄�𝜑

𝐷𝑡
= −𝑏

(︁
𝜅𝜌n · ∇𝜑+

𝑑𝛾

𝑑𝜑

)︁
on 𝑆.

Such boundary condition has been proposed by Jacqmin [34] motivated by
the equilibrium contact angle condition. In the limit of sharp interface model, the
vanishing of the term in parentheses is equivalent to the Young’s equation. During
the capillary flow, the boundary condition (2.9) allows for a variable dynamic con-
tact angle [54]. The driving force for surface diffusion enabled triple line motion
is local and is proportional to the deviation of the dynamic contact angle from the
equilibrium contact angle. In Appendix B, we show that this boundary condition
arises as a direct consequence of the linear non-negative dissipation on the solid
boundary (i.e., dissipation accompanying the motion of the triple line). In our pre-
vious communication [27], we have shown that this assumption is consistent with
experimental measurements of dynamic contact angle.

3. Effect of interface layer compressibility on the large scale flow

When applied to the combination of fluids with vastly different mass densities
(i.e., a liquid and a gas), the above equations exhibit computational instabilities at
the triple line. The diffuse interface spreads in an unstable manner, as illustrated
in Figure 2. The initial acceleration of the triple line is quickly followed by an
unstable spreading of the interface in the triple line region, which eventually leads
to computational failure. The instability is not limited to the triple line region.
Prior to the triple line spreading, the shadow band of velocity divergence tracing the
interface band at the distance comparable to the interface thickness (Figure 2(b))
appears. Similar shadow bands have been observed in multiphase flows without

Figure 2. Instability of the computational CC model with ratio
of mass densities of liquid and gas of 811. Capillary rise between
parallel walls. (a) Initial contours of the phase field. (b) Con-
tours of the velocity divergence prior to computational failure. (c)
Magnified instability region circled in (b). (d) Line contours cor-
responding to (c).
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capillary walls [30]. We have performed calculations for a range of mesh densities
and time steps, always leading to essentially identical results shown in Figure 2.

In investigating this instability our first suspicion was that the presence of 𝜌 in
(2.9) which varies by few orders of magnitude across the interface is the cause of
instability. An alternative to the above formulation where the diffusive boundary
condition is independent of mass density can be readily obtained by assuming a
different specific energy6:

𝜔(𝜑,∇𝜑) = 𝑓(𝜑) +
1

2𝜌
𝜅(∇𝜑)2.

The alternative CC model has somewhat different governing equations. The
CC and CH1 equations remain the same, while in the NS equation the capillary
stresses are now independent of mass density. The CH2 equation is substantially
different:

NS: 𝜌(𝜑)
�̄�u

𝐷𝑡
= 𝜌g +∇ · (𝜇(𝜑)♦u− 𝜅∇𝜑∇𝜑− 𝜋I);

CH2: 𝑀 =
𝑑𝑓

𝑑𝜑
− 𝜅

2𝜌2
𝑑𝜌

𝑑𝜑
(∇𝜑)2 − 𝜅

𝜌
∇2𝜑− 𝜋

𝜌2
𝑑𝜌

𝑑𝜑
,

and the diffusive boundary condition is now independent of mass density:
�̄�𝜑

𝐷𝑡
= −𝑏

(︁
𝜅n · ∇𝜑+

𝑑𝛾

𝑑𝜑

)︁
on 𝑆.

The alternative formulation exhibits the same computational instability as the
original one (Figure 2). The causes of this instability are not well understood at
present. It bears emphasis that the existence theorems are only available for the
IC model [2]. Here, we propose a physical explanation for this instability based on
the analysis of the motion of the surrounding incompressible fluid caused by the
compositional compressibility of the interface layer.

Consider a problem similar to the one studied by Guo et al [30] and illus-
trated in Figure 3, where an initially ellipsoidal drop of a dense incompressible
fluid changes shape and becomes spherical. The computational domain includes
the large volume of low density incompressible fluid and the volume of the CC
interface with some average mass density. If the interface retains its original thick-
ness, its total volume has decreased, so that a large volume of the surrounding
incompressible fluid must be moved inwards7.

This is clearly not the physical reality. The local change of mass density will
not be compensated by global motion of a large volume but rather by some local
changes. On the level of the computational model, the solution will be prevented
from evolving in this way, either by huge inertia of the surrounding fluid, or by the

6Lowengrub and Truskinovsky [43] thermodynamic analysis is strictly applicable to the ho-
mogeneous fluid where the free energy density must have the form 𝜌𝑓(𝜑). Nothing specific can be
said about the Cahn–Hilliard non-homogeneous free energy density. It may equally be described
with terms (∇𝜑)2 or 𝜌(∇𝜑)2. The physical meaning and dimensions of the coefficient 𝜅 are, of
course, different in the two cases.

7This shrinking is characteristic of the CC model and is not related to the drop shrinking in
the IC model analyzed by Yue et al [62].
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Figure 3. Ellipsoidal interface evolves into a spherical one and
consequently changes its volume. If the rest of the fluid is incom-
pressible, such volume change requires large-scale motion of the
surrounding fluid (indicated by arrows) and shrinking/expansion
of the computational cell boundary.

boundary conditions (consider rigid boundaries or periodic boundary conditions).
How can a local accommodation be accomplished?

First, the thickness of the interface may increase, so that the total volume of
the interface remains constant. The large diffusional mobility 𝐵 (see Section 5)
ensures that the shape of the interface is determined by the equilibrium Cahn–
Hilliard equation: ∇2𝑀 ≈ 0. This does not allow for significant thickening of the
interface, so that this option may not be available. Second, the interface fluid may
exhibit elasticity so that the elastic volume change counteracts the compositional
volume change. This option is not available simply because fluid elasticity is not
included in the model. Finally, the numerical model may locally compensate for
the local volume change of the interface by changing the mass density in the close
neighborhood, hence the ghost (shadow) velocity divergence. It is not clear whether
such solution is a valid solution to the mathematical problem, or it emerges only
as a numerical solution that minimizes the error norm.

While the CC formulation is locally thermodynamically consistent, there ap-
pears to be a global inconsistency between the compositional compressibility of the
interface layer and incompressibility of the rest of the fluid. This can probably be
resolved by introducing elasticity into the interface layer, but with a high mathe-
matical and computational cost [55]. On the other hand, the IC model, previously
considered as an ad hoc simple model, is derived below as a systematic approx-
imation to the CC model. Such derivation allows (in principle) error estimates,
although the discussion in this paper is limited to qualitative arguments about the
size of the error.

4. Incompressible flow as an approximation to CC flow

The functional dependence 𝜌(𝜑) is a necessary component of a phase field model
for materials with different mass densities. This alone disallows the exact incom-
pressibility (�̄�𝜑/�̄�𝑡 ̸= 0 ⇒ �̄�𝜌/�̄�𝑡 ̸= 0). Thus, an incompressible model can
only be devised as an approximation to the compositionally compressible model.
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Consider 𝜌(𝜑) such that
1

𝜌
=

𝜑

𝜌0𝐴
+

1− 𝜑

𝜌0𝐵
𝜑 ∈ [0, 1],

where 𝜌0𝐴/𝐵 are the densities of pure components. Then,

(4.1)
1

𝜌2
𝑑𝜌

𝑑𝜑
=
𝜌0𝐴 − 𝜌0𝐵
𝜌0𝐴𝜌0𝐵

= 𝛼 = const.

Now we consider alternative continuum velocity field

v(x) = u(x)− 𝛼q(x),

which, from (2.6) and (4.1), is divergence-free:

(4.2) ∇ · v = 0.

Note that, outside the thin interface region, the new velocity is identical to the
old one:

v(x) = u(x) for x ∈ 𝑉 ∖𝐼,
where 𝑉 is the domain with size 𝐿3, and 𝐼 is the interface domain with size 𝐿2ℎ.
The interface thickness ℎ must be small compared to the smallest radius of interface
expected curvature 𝑅min, which is typically small compared to the domain size:

(4.3) ℎ≪ 𝑅min ≪ 𝐿.

If instead of the barycentric velocity u, we take v to be the material velocity
of the continuum, the error is only in the momentum and kinetic energy of the
thin interface layer. In other words, only the inertia of the thin interface layer is
affected. This appears to be a good approximation.

The new material velocity implies the new material derivative. For a scalar
field 𝑌 (x) advected with the velocity field v(x):

(4.4)
𝐷𝑌

𝐷𝑡
=
𝜕𝑌

𝜕𝑡
+ v · ∇𝑌 =

�̄�𝑌

𝐷𝑡
+ (v − u) · ∇𝑌.

We introduce the new phase field variable 𝑐, based on the linear interpolation
of mass density:

(4.5) 𝜌 = 𝑐𝜌0𝐴 + (1− 𝑐)𝜌0𝐵 𝑐 ∈ [0, 1].

Then, it is easily shown (Appendix C) that the diffusion equation (2.5) can be
replaced by

𝐷𝑐

𝐷𝑡
= −∇ · J,

where the new flux vector is related to the old one as

J =
𝜌

𝜌0𝐴𝜌0𝐵
q.

To complete the structure of the new (approximate) continuum, the mass den-
sity 𝜌 should be convected with the new velocity v:

(4.6)
𝐷𝜌

𝐷𝑡
= −𝜌∇ · v = 0.
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Clearly, this new continuum has an intrinsic inconsistency. The dependence
(4.5) is in direct contradiction to (4.6):

𝐷𝜌

𝐷𝑡
=
𝑑𝜌

𝑑𝑐

𝐷𝑐

𝐷𝑡
̸= 0.

One way to formulate a mathematically consistent model is to:
(a) Enforce the incompressibility condition (4.2) instead of the mass balance

(4.6), and,
(b) Assume that the power expanded on mass density change𝐷𝜌/𝐷𝑡 vanishes.

Then, the function 𝜌(𝑐) appears in the governing equations as a parameter
function. Such procedure produces the IC model in the form of the original model
H [31, 32]. The derivation is given in Appendix D. It proceeds along the same
steps as the one for the CC model (Appendix B) including: linear dissipation,
energy balance and the principle of virtual power (PVP). An interesting technical
point is the split of the rate of change of potential energy into the “chemical” and
“densification” rates (D.4), where the latter is neglected following the discussion
above.

For an IC fluid, the potential energy density need not depend on the mass
density as in the CC case. The phase field form of the energy density is

𝜔(𝑐,∇𝑐) = 𝑓(𝑐) + 1
2𝜅(∇𝑐)

2.

The remainder of the procedure is shown in Appendix D. The final governing
equations take the following form

(4.7)

NS: 𝜌
𝐷v

𝐷𝑡
= 𝜌g +∇ · [𝜇(v∇+∇v)− 𝜅∇𝑐∇𝑐]−∇𝜋,

IC: ∇ · v = 0,

CH1:
𝐷𝑐

𝐷𝑡
= ∇ · (𝐵∇ℳ),

CH2: ℳ =
𝑑𝑓

𝑑𝑐
− 𝜅∇2𝑐.

As before, 𝜋(x) is the non-capillary pressure, which arises as the Lagrange
multiplier associated with the enforcement of the IC condition, so that the total
pressure is given as

𝑝 = 𝜋 + 1
3𝜅(∇𝜑)

2.

The diffusive boundary conditions ensuring a non-negative dissipation on the
solid boundary is

(4.8)
𝐷𝑐

𝐷𝑡
= −𝑏

(︁
𝜅n · ∇𝑐+ 𝑑𝛾

𝑑𝑐

)︁
𝑏 > 0, on 𝑆.

This completes the derivation of the IC model as a systematic approximation
to the CC model. The two key steps are:

(1) Definition of the divergence-free velocity field which is equal to the
barycentric velocity outside the thin interface region, and,
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(2) The assumption of incompressibility allowing: adoption of the divergence-
free velocity as the continuum velocity, and, energy density independent
of mass density.

An alternative incompressible model based on volume averaged velocity field
is given by Abels et al [3]. The present IC model has several versions, which are
mathematically equivalent, but produce numerical differences. The main differences
are in the order of derivatives of the main variables. This has an effect on the
finite element computations, particularly if low order interpolation is used. One
alternative is obtained by noting that

(4.9) ∇ · (−𝜅∇𝑐∇𝑐) = ℳ∇𝑐−∇𝜔.
Next, we note that division of pressure into capillary and non-capillary parts

is arbitrary and replace the variable 𝜋 with

(4.10) �̃� = 𝜋 + 𝜔.

This yields the alternative NS equation in the form:

(4.11) NS-alt: 𝜌
𝐷v

𝐷𝑡
= 𝜌g +∇ · [𝜇(v∇+∇v)] +ℳ∇𝑐−∇�̃�,

where the total pressure is now given as

𝑝 = �̃� − 𝑓(𝑐)− 1
6𝜅(∇𝑐)

2.

5. Physical and computational parameter

By physical parameters, we mean the parameters in the standard fluid dynamics
with sharp interfaces characterized by Gibbs [29] excess quantities. In addition
to mass densities and viscosities of two fluids, 𝜌𝐴/𝐵

0 and 𝜇
𝐴/𝐵
0 , these include the

interface energies between the two fluids Γ, and between the solid and the two
fluids: 𝛾𝐵sol and 𝛾𝐴sol.

The interface width ℎ is a computational parameter, chosen so that it is sig-
nificantly smaller that the smallest expected radius of curvature. The equilibrium
solution to the problem of flat infinite interface between fluids 𝐴 and 𝐵 gives the
one-to-one relationship between (Γ, ℎ) and the phase field parameters (𝜅,Δ𝑓):

𝜅 = 3
2Γℎ, Δ𝑓 = 3

4Γ/ℎ.

The interface width is expected to remain at all times very close to the equi-
librium value [5,6]. It is usually assumed that the exact shape of the free energy
function has no measurable effect on either equilibrium or kinetics of the flow. The
only relevant parameters are the relative values of minima and maxima. In this
case (Figure 1), the only relevant parameter is Δ𝑓 .

For the process driven by the capillary forces, the three characteristic times
associated with the governing equations (4.7) and (4.8) are determined by dimen-
sional analysis: the triple line mobility time 𝑡𝑏, the bulk mobility time 𝑡𝐵 , and the
viscosity time 𝑡𝜇:

(5.1) 𝑡𝑏 =
2

3𝑏Γ
, 𝑡𝐵 =

2ℎ3

3𝐵Γ
, 𝑡𝜇 =

2𝜇0
𝐴ℎ

3Γ
.
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For immiscible fluids, the bulk mobility 𝐵 has no physical significance; it is a
computational parameter that enables diffusional rearrangements within the phase
field interface layer. It should be large enough not to obstruct the motion, that is,
the characteristic time for bulk mobility should be shorter than other two charac-
teristic times:

𝑡𝐵 6 𝑡𝑏, 𝑡𝐵 6 𝑡𝜇.

The triple line moves by surface diffusion (uncorrelated motion of atoms) as
opposed to slipping (correlated motion of atoms). The triple line mobility 𝑏 de-
termines the dissipation in the surface diffusion process. It could be, in principle,
determined from molecular dynamics (MD) simulations, or from the combination
of molecular statics (energy landscape) simulations and activation rate theory. The
most practical solution appears to be matching of experimental kinetics in the
regime where the capillary forces dominate [27].

6. Computational results

6.1. Numerical method, boundary and initial conditions. The compu-
tations are performed with quadratic Lagrange interpolation for the velocity v, the
phase field variable 𝑐 and the chemical potential ℳ. Linear Lagrange interpolation
is used for the non-capillary pressure �̃�. The alternative model (4.9) is used, with
the Navier–Stokes equation (4.11) and the remaining governing equations given in
(4.7). The commercial FE software COMSOL Multiphysics [17] with the parallel
sparse direct solver is used. The time stepping is based on the backward differen-
tiation formula. The initial conditions are common to all runs. The initial velocity
and the diffusion potential are identically zero:

v(x, 0) = 0, ℳ(x, 0) = 0.

The initial configuration is always such that the denser fluid is on the bottom,
so that the equilibrium solution (obtained from ℳ = 0 and (4.7) CH2) is

𝑐(𝑥, 𝑦, 0) =
1

2

(︁
1− tanh

2𝑦

ℎ

)︁
.

The initial non-capillary pressure must be consistent with (4.10) and equilib-
rium under gravity:

(6.1) �̃�(𝑥, 𝑦, 0) = �̃�0(𝑥, 𝑦) = −𝑔
∫︁ 𝑦

𝑦0

𝜌(𝑐(𝑦))𝑑𝑦, �̃�0(𝑥, 0) = 0.

The types of boundary conditions used for different problems are:
∙ Wetting wall boundary condition: On the fluid-solid interface, no

slip/penetration boundary condition for velocity (v = 0) and the diffusive
boundary condition (4.8).

∙ Inlet and outlet boundary conditions apply at the ends of the computa-
tional cell in fluids. Both are characterized by the equilibrium pressure
distribution (6.1) and the condition that the phase field interface is or-
thogonal to the boundary:

(6.2) n · ∇𝑐 = 0.



202 DEHSARA, FU, MESAROVIĆ, SEKULIĆ, AND KRIVILYOV

The inlet boundary condition requires the vanishing viscous stresses [64],
while the outlet boundary condition [50] disallows normal gradient of
velocity. Moreover, we assume the equilibrium pressure distribution at
both fluid boundaries:

Inlet: n · [𝜇(∇v + v∇)] = 0, �̃� = �̃�0(𝑦),

Outlet: n · ∇v = 0, �̃� = �̃�0(𝑦)

The fluid (inlet/outlet) boundaries are assumed to be sufficiently removed
from the main region of interest. We have verified that the liquid coming
through the inlet boundary acquires the expected laminar flow character-
istics at short distance from the boundary.

∙ On all boundaries, we require vanishing normal diffusional flux:

(6.3) n · ∇ℳ = 0

The justification is obvious for the solid boundary. On the fluid boundary, (6.3)
is consistent with normality of the phase field interface (6.2) (diffusive flux is away
orthogonal to the phase field level lines). In other words, we require that all matter
is transported into the computational cell by flow (v), and none by diffusion (q).

For various runs, the macroscopic length scale 𝐿 is estimated from equilibrium
solutions. This also represents the order of magnitude of the interface radius of
curvature. Then, the interface width ℎ is selected to be ℎ ≪ 𝐿. In the runs
presented below, the interface width varies between 0.09𝐿 for the meniscus between
parallel plates, and 0.07𝐿 for the T-joint case. The adaptive mesh consisting of 2nd

order triangular elements was finest at the interface. The element size is about
0.1ℎ in all runs. The adaptive mesh density is determined based on the norm of
the gradient of the phase field variable (COMSOL 2015). An example of mesh
evolution is shown in the Figure 7 below.

6.2. Equilibrium. To benchmark our capillary flow computational formula-
tion with IC flow, we consider the simple 2D geometry of the capillary rise between
parallel plates. The physical parameters are shown in Table 1. The computational
results are compared to the analytic solution for the sharp interface model. The
computational interface shape matches perfectly the analytical shape (Figure 4(b)).
Moreover, the pressure jump at the interface with curvature 1/𝑅,

Δ𝑝 = Γ/𝑅,

is accurately represented by the computational phase field model (Figure 4(c)).
The negative pressure represents interface tension [18].

6.3. Effect of the phase field bulk diffusion mobility. We investigate the
effect of the bulk mobility parameter 𝐵 on the diffuse interface kinetics. The triple
line mobility 𝑏 is obtained from experiments. Details of the extraction procedure are
discussed in the next subsection, as well as in Fu et al [27]. The physical parameters
(Table 1) and the selected interface width determine the physical characteristic
times in (5.1), such that

𝑡𝑏
𝑡𝜇

≈ 2

3
× 103.
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Table 1. Physical parameters (Liquid: Silicone oil, Gas: Air)

Parameter Description Value

𝜌Liquid Liquid density 960 [kg/m3]
𝜌Gas Gas density 1.184 [kg/m3]
𝜇Liquid Liquid viscosity 0.0096 [Pa.s]
𝜇Gas Gas viscosity 1.849× 10−5 [Pa.s]
Γ Gas-liquid interface energy 0.02089 [J/m2]
𝜃Eq Equilibrium angle 30 [degree]
𝐿Parallel plates Equilibrium meniscus height for parallel plates 1.084851× 10−3 [m]
𝐿T-joint Equilibrium meniscus height for T-joint 1.489358× 10−3 [m]

Figure 4. Numerical and analytical solutions of the capillary rise
between parallel plates in equilibrium condition. The distance be-
tween the plates is 5 mm. (a) Phase field contours. (b) Meniscus
shape defined as the line 𝑐 = 1/2. (c) Pressure variation across the
interface in the centerline 𝑥 = 0.

Thus, the triple line mobility is the dominant physical process. Therefore, we
investigate the effect of the relative magnitude of the bulk mobility 𝐵, characterized
by 𝑡𝐵 (5.1). The results are shown in Figure 5. In the early stages the kinetics are
practically indistinguishable for 4 orders of magnitude change in 𝐵. The differences
appear at later stages, closer to the equilibrium solution.

6.4. Computational and experimental kinetics. To benchmark the com-
putational kinetics against the experimental one, we consider the T-joint experi-
mental configuration shown in Figure 6 [27]. The fluid (Silicone oil) rests on the
horizontal glass plate. The vertical glass plate is brought gradually into contact
and the capillary rise follows. Computational results for one-half of the symmetric
configuration are shown in Figure 7, together with the adaptive mesh.

In the early stages of this experiment, the triple line surges rapidly. Only a
small quantity of liquid is moved initially, so that capillary forces dominate over
viscous and inertial forces. We fit the triple line mobility to the initial tangent to
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Figure 5. The effect of the bulk mobility on the kinetics of the
interface in capillary rise between two parallel plates. 𝑡𝜇 = 3.1 ×
10−5 𝑠; 𝑡𝑏 = 2.0× 10−2 𝑠.

Figure 6. Schematic of the T-joint configuration in experiment
setup. Before (a) and after (b) the formation of capillary meniscus.

the triple line position history, and benchmark the results against the remainder of
the experiments. The results are illustrated in Figure 8. The computational results
match the experimental measurements very closely except in the final stages where
the computational model underestimates the triple line velocity. Interestingly, the
experimental and computational kinetics for water-air-glass system, which we re-
ported earlier [27, Figure 16b], exhibit much better match in the later stages of the
wetting process, including the final equilibrium. The nearly perfect match extends
to the predicted and measured dynamic contact angle [27, Figure 17]. We speculate
that the discrepancy between experimental and computational kinetics in the final
stages of the wetting process observed in Figure 8 is the result of the polymeric
nature of Silicone oil. Polymeric fluids often exhibit slip at the solid wall under
various flow condition (e.g., Migler et al [45]), which may accelerate the triple line.
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Figure 7. The evolution of the Silicone oil meniscus for the T-
joint formation at times 𝑡 = 0 s, 1 s, and 30 s. Contour plots of the
phase field (left) and the corresponding adaptive meshes (right).

Figure 8. Triple line motion history: computational prediction
and experimental data. T-joint, Silicone oil and glass. Only the
initial slope is fitted to get the triple line mobility parameter, 𝑏.
(a) Linear scale. (b) Log-log scale. (Fu et al [27])

7. Summary

To develop a reliable computational model for capillary flows, we consider two
types of phase field models, the compositionally compressible (CC) and the incom-
pressible (IC) model. The motion of the triple line is assumed to take place by
diffusion of fluid atoms on the solid surface. The diffusive boundary condition [34]
is implemented into the finite element framework for both models.

The thermodynamically consistent CC model exhibits computational instabil-
ity, initiated by appearance of ghost velocity divergence at some distance from the
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phase field interface, and further exacerbated by spreading of the triple line. The
mathematical nature of this instability is not well understood at present and inves-
tigation of existence and uniqueness of solutions for the CC model is suggested for
future research. Nevertheless, the physical explanation can be constructed based on
the observation that a change of mass density in a small part of the computational
domain requires movement of a large mass of surrounding incompressible (pure)
phase. This problem does not appear when compositional compressibility of the flu-
id mix is abandoned and the fluids everywhere are considered fully incompressible.

The IC model was derived as approximation to the CC model. The key to
the approximation is the alternative definition of the continuum velocity field, such
that the new velocity field has vanishing divergence and matches the old velocity
outside the interface layer.

A detailed benchmarking of the IC model is performed against the analytical
solutions to the sharp interface problem and against experimental kinetics. The
choice of physical and computational parameters is discussed. It is shown that the
choice of the bulk diffusional mobility has little effect on the results. We find that
the IC model very accurately represents both the capillary equilibrium and the
capillary flow kinetics.

Appendix A. Phase field diffusion as a consequence of the
barycentric continuum velocity

The material rate of change of 𝜌𝐴 can be written in two ways. From (2.3)
and (2.4):

(A.1)
�̄�𝜌𝐴

𝐷𝑡
= 𝜌

�̄�𝜑

𝐷𝑡
+ 𝜑

�̄�𝜌

𝐷𝑡

On the other hand, using the balance for 𝜌𝐴 and the total mass balance (2.2):

�̄�𝜌𝐴

𝐷𝑡
=
𝜕𝜌𝐴

𝜕𝑡
+ u · ∇𝜌𝐴 = −∇ · (𝜌𝐴u𝐴) + u · ∇𝜌𝐴(A.2)

= −∇ · (𝜌𝐴(u𝐴 − u))− 𝜌𝐴∇ · u = −∇ · (𝜌𝐴(u𝐴 − u)) +
𝜌𝐴

𝜌

�̄�𝜌

𝐷𝑡
.

Equating (A.1) and (A.2) yields:

(A.3) 𝜌
�̄�𝜑

𝐷𝑡
= −∇ · q, q = 𝜌𝐴(u𝐴 − u).

Thus, the diffusion law (A.3) is the direct consequence of:
(i) the choice of the barycentric velocity as the material velocity, and,
(ii) the functional dependence 𝜌(𝜑).

Appendix B. Energy balance and PVP for the CC model

The total potential energy is

𝒫 =

∫︁
𝑉

𝜌[𝜔(𝜑,∇𝜑)− 𝜓(x)]𝑑𝑉 +

∫︁
𝜕𝑉

𝛾(𝜑)𝑑𝜕𝑉,
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where 𝜌𝜓(x) is the gravitational potential. The material rate of potential energy is:

(B.1)
�̄�𝒫
𝐷𝑡

=

∫︁
𝑉

𝜌
{︁𝜕𝜔
𝜕𝜑

�̄�𝜑

𝐷𝑡
+

𝜕𝜔

𝜕∇𝜑
· �̄�∇𝜑
𝐷𝑡

−∇𝜓 · u
}︁
𝑑𝑉 +

∫︁
𝑆

𝑑𝛾

𝑑𝜑

�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉.

The phase field variable is advected with the flow, so that

(B.2)
�̄�∇𝜑
𝐷𝑡

=
𝜕∇𝜑
𝜕𝑡

+u·∇∇𝜑 = ∇𝜕𝜑

𝜕𝑡
+∇(u·∇𝜑)−∇𝜑·(u∇) = ∇�̄�𝜑

𝐷𝑡
−∇𝜑·(u∇).

Upon substituting (B.2) into (B.1), and after standard manipulation, we obtain

�̄�𝒫
𝐷𝑡

=

∫︁
𝑉

{︁
− 𝜅𝜌(∇𝜑∇𝜑) : (u∇)− 𝜌∇𝜓 · u+ 𝜌𝑀0

�̄�𝜑

𝐷𝑡

}︁
𝑑𝑉 +

∫︁
𝑆

𝜒0
�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉,

where

(B.3) 𝑀0 =
𝑑𝑓

𝑑𝜑
− 1

𝜌
∇ · (𝜅𝜌∇𝜑), 𝜒0 = 𝜅𝜌n · ∇𝜑+

𝑑𝛾

𝑑𝜑
.

Dissipation in the phase field fluid arises from viscosity and diffusional flux. Vis-
cous dissipation density is the work rate of viscous stresses, with phase-dependent
viscosity 𝜇(𝜑). The viscous stress tensor 𝜏 is symmetric and deviatoric (traceless)
and will therefore expand no power on volumetric and skew-symmetric portions of
the velocity gradient:

𝜏 = 2𝜇(𝜑)
[︀
1
2 (u∇+∇u)− 1

3 (∇ · u)I
]︀
= 𝜇(𝜑)♦u.

Diffusional dissipation in the bulk is expressed as the power expanded the rate
of change of the phase. With the vanishing normal flux on the boundary:

(B.4) −
∫︁
𝑉

𝜌𝑀
�̄�𝜑

𝐷𝑡
𝑑𝑉 =

∫︁
𝑉

𝑀∇ · q𝑑𝑉 = −
∫︁
𝑉

(∇𝑀) · q𝑑𝑉.

The motion of the triple line along the solid boundary is also dissipative. We
assume the form analogous to (B.4):∫︁

𝜕𝑉

𝜒
�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉, 𝜒 = 0 on 𝐴.

For isothermal processes, the 2nd law of thermodynamics requires a non-nega-
tive total dissipation rate:

𝒟 =

∫︁
𝑉

[︁
𝜏 : (u∇)− 𝜌𝑀

�̄�𝜑

𝐷𝑡

]︁
𝑑𝑉 +

∫︁
𝜕𝑉

𝜒
�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉 > 0,

which is satisfied if

(B.5) q = −𝐵∇𝑀, (𝐵 > 0) in 𝑉,
�̄�𝜑

𝐷𝑡
= 𝑏𝜒, (𝑏 > 0) on 𝑆.

The energy balance is then written as∫︁
𝜕𝑉

t · u𝑑𝜕𝑉 =
�̄�𝒫
𝐷𝑡

+
�̄�𝒦
𝐷𝑡

+𝒟,

�̄�𝒦
𝐷𝑡

=

∫︁
𝑉

𝜌
�̄�u

𝐷𝑡
· u𝑑𝑉.
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Upon substitution of all the components:∫︁
𝑉

(︁
𝜌∇𝜓 − 𝜌

�̄�u

𝐷𝑡

)︁
· u𝑑𝑉 +

∫︁
𝜕𝑉

t · u𝑑𝜕𝑉(B.6)

=

∫︁
𝑉

{︁
[𝜏 − 𝜅𝜌(∇𝜑∇𝜑] : (u∇)− 𝜌(𝑀 −𝑀0)

�̄�𝜑

𝐷𝑡

}︁
𝑑𝑉

+

∫︁
𝑆

(𝜒+ 𝜒0)
�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉.

Upon interpreting the inertial forces as external body forces, the left-hand side
of (B.6) represents power expenditure of external forces on u, while the right-
hand side represents power expenditure of generalized internal forces on u∇ and
�̄�𝜑/𝐷𝑡. Consider small variations 𝛿u and 𝛿(�̄�𝜑/𝐷𝑡). The statement of PVP
can be formulated as follows: The power of external forces expanded on virtual
velocities and fluxes equals the power of internal generalized forces (stresses) on the
virtual internal kinematic gradients (deformation rates). Formally, the limit when
variations approach zero is taken to preserve only the first order infinitesimals.
Otherwise, the variations are arbitrary except for the requirement that they be
kinematically allowable, i.e., vanish wherever an essential boundary condition is
prescribed. The compositional compressibility constraint is introduced with the
Lagrange multiplier 𝜋: ∫︁

𝑉

𝜋
(︁
∇ · 𝛿u+

𝜌′

𝜌
𝛿
�̄�𝜑

𝐷𝑡

)︁
𝑑𝑉 = 0,

The statement of the PVP is:∫︁
𝑉

(︁
𝜌g − 𝜌

�̄�u

𝐷𝑡

)︁
𝛿u𝑑𝑉 +

∫︁
𝜕𝑉

t · 𝛿u𝑑𝜕𝑉

=

∫︁
𝑉

{︁
Σ : (𝛿u∇)− 𝜌

(︁
𝑀 −𝑀0 +

𝜋

𝜌2
𝑑𝜌

𝑑𝜑

)︁
𝛿
�̄�𝜑

𝐷𝑡

}︁
𝑑𝑉

+

∫︁
𝑆

(𝜒+ 𝜒0)𝛿
�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉.

where Σ = 𝜏−𝜅𝜌∇𝜑∇𝜑−𝜋I, and g = ∇𝜓. This yields two independent variational
statements:

(B.7)

∫︁
𝑉

(︁
𝜌
�̄�u

𝐷𝑡
− 𝜌g −∇ ·Σ

)︁
· 𝛿u𝑑𝑉 =

∫︁
𝜕𝑉

(t− n ·Σ) · 𝛿u𝑑𝜕𝑉,∫︁
𝑉

𝜌
(︁
𝑀 −𝑀0 +

𝜋

𝜌2
𝑑𝜌

𝑑𝜑

)︁
𝛿
�̄�𝜑

𝐷𝑡
𝑑𝑉 =

∫︁
𝑆

(𝜒+ 𝜒0)𝛿
�̄�𝜑

𝐷𝑡
𝑑𝜕𝑉.

The 1st variational statement yields the Cauchy equation of motion with stan-
dard boundary conditions:

𝜌
�̄�u

𝐷𝑡
= 𝜌g +∇ ·Σ in 𝑉, u = u0 Y n ·Σ = t0 on 𝜕𝑉.
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The 2nd variational statement in (B.7) implies

(B.8) 𝑀 =𝑀0 −
𝜋

𝜌2
𝑑𝜌

𝑑𝜑
, 𝜒 = −𝜒0.

After substituting (B.3) into (B.8), and with (B.5) and (2.5) describing the
diffusion, this completes the derivation of governing equations (2.8)–(2.9).

Appendix C. Relationship between the two definitions of
diffusional flux

From (4.4):

(C.1)
𝐷𝜌

𝐷𝑡
=
�̄�𝜌

𝐷𝑡
− 𝛼q · ∇𝜌 = −𝜌∇ · (v + 𝛼q)− 𝛼q · ∇𝜌 = −𝛼∇ · (𝜌q).

On the other hand, using the linear interpolation (4.3):

(C.2)
𝐷𝜌

𝐷𝑡
=
𝑑𝜌

𝑑𝑐

𝐷𝑐

𝐷𝑡
= (𝜌0𝐴 − 𝜌0𝐵)

𝐷𝑐

𝐷𝑡
= −𝜌0𝐴 − 𝜌0𝐵

𝜌0𝐴𝜌0𝐵
∇ · (𝜌q).

Upon equating (C.1) and (C.2):

𝐷𝑐

𝐷𝑡
= −∇ ·

(︁ 𝜌

𝜌0𝐴𝜌0𝐵
q
)︁
= −∇ · J.

Appendix D. Energy balance and PVP for the IC model

We write the total potential energy as

𝒫 =

∫︁
𝑉

𝜌
[︁𝜔(𝑐,∇𝑐)

𝜌
− 𝜓(x)

]︁
𝑑𝑉 +

∫︁
𝜕𝑉

𝛾(𝑐)𝑑𝜕𝑉.

The material rate of change of the potential energy is

(D.1)
𝐷𝒫
𝐷𝑡

=

∫︁
𝑉

{︁
𝜌
[︁ 𝐷
𝐷𝑡

(︁𝜔
𝜌

)︁
−∇𝜓 · v

]︁}︁
𝑑𝑉 +

∫︁
𝜕𝑉

𝑑𝛾

𝑑𝑐

𝐷𝑐

𝐷𝑡
𝑑𝜕𝑉.

Noting that 𝑐 is advected with v, the first term in (D.1) is:∫︁
𝑉

𝜌
𝐷(𝜔/𝜌)

𝐷𝑡
𝑑𝑉 =

∫︁
𝑉

{︁[︁
𝜌
𝜕(𝜔/𝜌)

𝜕𝑐
−∇ ·

(︁
𝜌
𝜕(𝜔/𝜌)

𝜕∇𝑐

)︁]︁𝐷𝑐
𝐷𝑡

(D.2)

− 𝜌
[︁𝜕(𝜔/𝜌)
𝜕∇𝑐

∇𝑐
]︁
: (v∇)

}︁
𝑑𝑉

+

∫︁
𝜕𝑉

𝜌n · 𝜕(𝜔/𝜌)
𝜕∇𝑐

𝐷𝑐

𝐷𝑡
𝑑𝜕𝑉.

Then, consider the first two terms on the right hand side of (D.2):∫︁
𝑉

[︁
𝜌
𝜕(𝜔/𝜌)

𝜕𝑐
−∇ ·

(︁
𝜌
𝜕(𝜔/𝜌)

𝜕∇𝑐

)︁]︁𝐷𝑐
𝐷𝑡

𝑑𝑉 =

∫︁
𝑉

(︁𝑑𝑓
𝑑𝑐

− 𝜅∇2𝑐
)︁𝐷𝑐
𝐷𝑡

𝑑𝑉 −
∫︁
𝑉

𝜔

𝜌

𝐷𝜌

𝐷𝑡
𝑑𝑉.
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The 2nd term is the change in potential energy arising from the change in
density, which is neglected, consistent with the assumption of incompressibility.
The change in total potential energy is obtained as:

𝐷𝒫
𝐷𝑡

=

∫︁
𝑉

{︁
ℳ0

𝐷𝑐

𝐷𝑡
− 𝜅(∇𝑐∇𝑐) : (v∇)− 𝜌g · v

}︁
𝑑𝑉 +

∫︁
𝜕𝑉

𝜒0
𝐷𝑐

𝐷𝑡
𝑑𝜕𝑉,

ℳ0 =
𝑑𝑓

𝑑𝑐
− 𝜅∇2𝑐,

𝜒0 =
𝑑𝛾

𝑑𝑐
+ 𝜅n · ∇𝑐.

For incompressible fluids, the viscous stress tensor is

𝜏 = 𝜇(𝜑)(v∇+∇v).

Dissipation is defined in a manner analogous to the definitions in Appendix B:

𝒟 =

∫︁
𝑉𝜉

[︁
𝜏 : (v∇)−ℳ𝐷𝑐

𝐷𝑡

]︁
𝑑𝑉 −

∫︁
𝜕𝑉𝜉

𝜒
𝐷𝑐

𝐷𝑡
𝑑𝜕𝑉 > 0,

J = −𝐵∇ℳ (𝐵 > 0)in 𝑉,
𝐷𝑐

𝐷𝑡
= 𝑏𝜒 (𝑏 > 0)on 𝑆.

The remainder of the derivation (energy balance and the PVP) is identical to
the derivation in Appendix B, except that the condition enforced by the Lagrange
multiplier 𝜋, is now: ∫︁

𝑉

𝜋𝛿∇ · v𝑑𝑉 = 0.
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(НЕ)СТИШЉИВОСТ И ОДРЕЂИВАЊЕ ПАРАМЕТАРА У
МОДЕЛИМА ФАЗНОГ ПОЉА ЗА КАПИЛАРНА ТЕЧЕЊА

Резиме. Модели фазног поља (разуђене међуповрши) су прилагођени ди-
фузном кретању троjне линиjе са променљивим контактним углом, те тако до-
звољаваjу примену неклизаjућег граничног услова без сингуларитета напона.
Разматрамо две често коришћене класе модела фазног поља: саставно сти-
шљив (СС) модел, у коме jе стишљивост ограничена на мешавину флуида
унутар разуђене међуповрши и нестишљив (НС) модел. Прво, показуjемо да
СС модел примењен на комбинациjу флуида различитих густина производи
рачунску нестабилност, коjа се испољава кроз цепање троjне линиjе. Нудимо
квалитативно физичко обjашњење ове нестабилности, коjим исходи да jе са-
ставна стишљивост разуђене међуповрши противречна глобалном нестишљи-
вим течењу. Друго, изводимо НС модел као систематску апроксимациjу СС
модела, засновану на одговараjућем избору поља брзина континуума. Треће,
поредимо резултате НС модела са теориjским решењима класичне теориjе са
дисконтинуитетима, као и са експерименталном кинетиком. У моделу фазног
поља кинетика троjне линиjе jе прецизно представљена параметром покретљи-
вости троjне линиjе. Коначно, истражуjемо утицаj параметра запреминске
покретљивости фазног поља на кинетику процеса квашења и налазимо да jе
таj утицаj занемарљив унутар великог распона вредности овог параметра.
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